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Abstract
We study approximation problems formulated as reg-

ularized minimization problems with kernel-based sta-
bilizers. These approximation schemas exhibit easy
derivation of solution to the problem in the shape
of linear combination of kernel functions (one-hidden
layer feed-forward neural network schemas). We prove
uniqueness and existence of solution to the problem. We
exploit the article by N. Aronszajn [1] on reproducing
kernels and use his formulation of product of kernels
and resulting kernel space to derive a new approxima-
tion schema - a Product Kernel Regularization Network.
We present a concrete application of PKRN and com-
pare it to classical Regularization Network and show that
PKRN exhibit better approximation properties.

1 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space (shortly RKHS)
was defined by Aronszajn, 1950 ([1]) as Hilbert space
H of functions (real or complex) defined over ft c Mrf

with the property, that for each x £ ft the evaluation
functional on H given by Tx : / \-* f(x) is bounded.
This implies existence of a positive definite symmetric
function k : ft x ft —> E (so called reproducing kernel)
corresponding to H such that

1. for any / e H and y £ ft the following reproduc-
ing property holds f(y) = </(x), k(x, y)), where
{.,.) is scalar product in H and

2. for every y e ft, the function ky(x) — k(x, y) is
an element of H.

Note that the reproducing kernel for H is unique. On the
other hand, every positive definite symmetric function is
a reproducing kernel for exactly one Hilbert space, that
can be described as eomp{]T^=1 a,ikx.;Xi £ fi,ai £
R}, where comp means completion of the set.

Next we will consider product of Reproducing Ker-
nel Hilbert Spaces. For i = 1,2 let Fi be a RKHS
of functions on fti, let K{ be the corresponding ker-
nel. Consider the following set of functions on ft —
nx x n2 Ff = {£r=i/u(*i)/2,*(z2) I n e N,A e

Fi,f2 £ ^2}- Clearly, Ff is a vector space, it is
not complete though. For its completion, we first de-
fine a scalar product on F'. Let / , g be elements of
Ff expressed as f(xux2) = YH=I fi,i(xi)hAx2)>
g{xx,x2) = Y,7=i9i,j(xi)92j(x2)- We define </,#) =
Er= iE^ i ( / i , i ^ i J> i< /2 , i , 5S j>2 , where {.,•>< de-
notes the scalar product in Fim It is a routine to check that
this definition does not depend on the particular form
in which / and g are expressed and that the properties
of scalar product are satisfied. We define norm on F'
by 11/11 = >/</, /) . Finally, let F be the completion
of Ff. It can be shown ([1]) that the completion exists
not only as an abstract Hilbert space but that F is in fact
a space of functions on ft. We call F the product of
Fx and F2 and write F = Ft 0 F2.

Theorem 1.1 (flj) For i = 1,2 let F{ be an RKHS on
fti with kernel K{. Then the product F = Fx ® F2 on
Qi x ft2 is an RKHS with kernel given by

K((xux2),(yuy2)) = Ki(x

where xuyi £ tth x2,y2 € ft2.

(1)

for proofs of the sketched properties we ask the reader
to refer to [1] or to [12].

2 Learning from data as minimization of functional
The task to find an optimal solution to the setting of

approximating a data set z = {(ui, Vi)}^Lx C R d x l b y
a function from a general function space X (minimizing
error) is ill-posed. Thus we impose additional (regular-
ization) conditions on the solution ([5]). These are typi-
cally things like a-priori knowledge, or some smoothness
constraints. The solution / 0 has to minimize a func-
tional T : ft —» E that is composed of the error part
and the "smoothness" part: F(f) = £z(f) + 7 $ ( / ) ,
where £z is the error functional depending on the data
z = {(u»,Uz)}£Li C Rd x R and penalizing remote-
ness from the data, $ is the regularization part — the
so called stabilizer — penalizing "remoteness from the
global property" and 7 is the regularization parameter
giving the trade-off between the two terms of the func-
tional to be minimized.
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To prove existence and uniqueness of solution to such
a problem we will use some results from mathematical
analysis. Error part of our functional doesn't exhibit suf-
ficiently nice properties, so the regularization part has to
do the job. We employ RKHS in such a way that we
nicely and easily obtain existence, uniqueness and even
form of the solution.

Let 7i be an RKHS over Q C Rd with kernel k
and norm ||.||fc. We construct the minimization func-
tional composing of error part £z(f) based on data z —
{(w», Vi)\ i = 1 , . . . , N} C Rd x R and let the regular-
ization part be <£(/) = | | / | | | forming

vi)2 + ), where 7 e Now we

711/112, (2)

where 7 G M+. (See section 2.1 for a more detailed
construction.)

Now uniqueness of solution to such a problem comes
clearly from strong quasiconvexity of the functional T
composing of convex error part and strongly quasicon-
vex kernel part. To show existence of solution we need
weak sequential lower semicontinuity of the functional
which can be shown by computing second derivatives of
the functional, for precise derivation see [11].

Derivation of the shape of the solution to the regular-
ized minimization problem has been shown already in
[5] but without taking advantage of RKHS, in [4], [8]
and others known as Representer theorem, for the kernel
case see [11]. All the proofs are based on the idea that
minimum of a function can exist in an interior point only
if first derivative equals zero.

Employing this theorem we obtain solution to the
kernel-based minimization problem in the form of

N

(3)

where ui are the data points and &(-, •) the corresponding
kernel.

2.1 Concrete minimization functional and RKHS

An error functional is usually of the form £z(f) =
^2i=iV(f(ui),Vi). A typical example of the empiri-
cal error functional is the classical mean square error:

In [5] a special stabilizer based on the Fourier Trans-

form was proposed: &G(I) = JRd ^ ~ - d m d ( s ) , where

G : Rd -> R + is symmetric (G(s) = G(-s)) func-
tion tending to zero as ||s|| —> 00 (the last holds for any
G e £1). That means 1/G is a low-pass filter.

Thus the functional TQ to be minimized is of the
form: TG{f) = Sz(f) + £ l

show how to build an RKHS corresponding to the regu-
larization part of our functional:

Let us define g(x,y) = G(x — y) =
JRdG(t)e/lt'xe~ltydm(i(t). For g G <S(M2d) sym-
metric positive definite we obtain an RKHS H
(using the classical construction, see [4], [10],[13]).
We put (f,g)n = JH^ldmn(s) and ob-

tain the norm \\f\\2
n = fRd I4g£dmn(s), for

H = compspan{G^(x,.), x G Rd}, where comp{... }
denotes completion of the set {... } and a* means com-
plex conjugate of a. It is easy to check the reproducing
property of G on H, that is (/(x), G(x - y))n = f(y).

Special types of reproducing kernels and following
RKHS are the well known Gaussian kernel k\(x,y) =

_ll i|2 - | | s | | 2

e-\\z-y\\ with Fourier transform ki(s) = e~ 2 or in
one dimension kernel k2(x,y) = e~\x~y\ with Fourier
transform k2(s) = (1 -f s2)"1 . The norm for this RKHS
is of the form \\f\\* = J ^ ^ = ||/||22 + \\f>\\l2.
So we see we obtain a Sobolev space W\.

As a more general example we will consider the prod-
uct of kernels introduced in section 1. Suppose that apri-
ori knowledge of our data suggests to look for the solu-
tion as a member of product of two functional spaces. In
one dimension the data may be clustered thus being suit-
able for approximation via Gaussian kernels. In the other
dimension we have only information on smoothness of
the data, hence we will use kernel resulting in Sobolev
norm. Employing theorem 1.1 we obtain a kernel for
the product space of the form: K((xi,x2), (2/1,2/2)) =
h(xuyi) • k2(x2y2) = e-"*1-*1!'2 • e^*2"*2 ' , where

Regularized minimization schema in this case is of the
form:

kxk2{s)
(4)

Taking advantage of this being an RKHS we have the
form of the solution to such a type of minimization:

N

fo(xux2) = (5)

Approximation schemas of this type exhibit so far nicer
approximation properties since it can be better fitted to
special types of data.

3 Learning algorithm
Now we present a learning algorithm based on the

theoretical results from the previous sections. We as-
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Fig. 1. a) Product Kernel Regularization Network b) Product
Unit

sume that we have a data set {i£i\tt2\v l}fLi, where
ui e Rn, u2 £ Mm, vi eR and N is a number of data
samples. We will fit these data set using Product Kernel
Regularization Network (PKRN) derived from the regu-
larization schema 4.

It is a feed-forward neural network with one hidden
layer of N product units and a linear output layer (see
Fig. la). By a product unit (see Fig. lb) we mean a unit
with (n 4- m) real inputs and one real output. It con-
sists of two positive definite kernel functions Ki(c{, •),
^2(^2, •)> one evaluating the first n inputs and one eval-
uating the other m inputs, the output of the product unit
is computed as the product K\{c\,ui) • K2(c2, ^2)-

The network then evaluates the function

f(ui,u2) = -K2(c2\u2), (6)

where the parameters c[l and c2 are called centers
and the coefficients of the linear combination W{ weights.

The learning algorithm for PKRN is sketched at Fig. 2.
It is derived from Tikhonov regularization and for the
case of Regularization Network was described in [8].
See also [6].

The algorithm is quite simple, setting the centers of
kernels to the data points given by the training set and
evaluating the values of output weights by solving linear
system of equations. Parameter 7 must be estimated in
advance (cross-validation is usually used).

4 Experiments

We tested the performance of proposed Product Ker-
nel Regularization Network on several experiments, in-
cluding both benchmark and real life problems.

We always use two disjunct data sets, one for training
and one for evaluating the error of the result, and com-
pute the normalized error:

Input: Data set {u[\ u2\ v{}^=1 C l n x R m x ]
Output: Product Kernel Regularization network.

1. Set the centers of kernels:

2. Compute the values of weigths w\,

(IcyI 4- K)w = v,

where / is the identity matrix,
ci\uij)-K2(c2i,u2

j)
, . . . , ?;*;), 7 > 0.

Kid =

Fig. 2. Learning algorithm for Product Kernel Regularization
Network.

Table 1. Error values for PKRN and RN on Probenl data sets.

cancer 1
cancer2
cancer3
glass 1
glass2
glass3

PKRN
Etrain
2.739
2.152
2.374
6.141
5.269
3.691

Etest
1.816
3.516
2.798
8.590
8.202
7.411

RN
•Entrain

2.658
2.279
2.348
4.899
4.570
4.837

Etest
1.875
3.199
2.873
8.033
8.317
7.691

N

(7)

where N is number of examples and / is the network
output.

We have used the Gaussian function e v ~b ) for
both kernel functions (Ki and K2), but the kernels dif-
fer in the width b of the Gaussian functions. All para-
meters 7, bi and b2 were estimated by cross-validation.
LAPACK library [7] was used for linear system solving.

The table 1 compares the resulting errors of PKRN
and Regularization Networks (RN) on data sets selected
from Probenl [9] benchmark repository.

The applicability of PKRN on real life problems is
demonstrated on the prediction of the flow rate on the
Czech river Ploucnice. Our goal is to predict the cur-
rent flow rate from the flow rate and total rainfall from
the previous date, i.e. we are approximating function
/ : E x R -> R.

We have three different data sets for this task - called
pi 1, pi Is and pl2, each containing 1000 training samples
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and 367 testing samples. The results obtained on these
data sets by PKRN are listed in the table 2.

Table 2. Error values of PKRN on training and testing sets of
the Ploucnice data.

plls pl2
-Strain

Etest

0.057180 0.057215 0.109477
0.048332 0.048475 0.097608

The table 3 shows that the PKRN overperformes the
so called conservative predictor. Conservative predic-
tion is a predictor saying that the value will be the same
as it was yesterday, and in spite of its simplicity it is very
successful on some tasks, including this one.

The prediction on the testing set made by PKRN is
displayed at Fig. 3.

Table 3. Comparison of errors obtained by PKRN and conser-
vative predictor (CP).

Etrain

Etest

PKRN
0.057
0.048

Prediction of flow rate on the ri\

CP
0.093
0.054

cr Ploucnice

0 50 100 150 200 250 300 350 400

Fig. 3 . Prediction of the flow rate on the river Ploucnice by
Product Kernel Regularization Network.

5 Conclusion

We have shown how to employ RKHS in approxi-
mation theory and stressed advantages of this approach.
Inspired by the article [1] we introduce kernel-product
based approximation and derive the shape of Product
Kernel Regularization Networks (PKRN).

We tested the performance of proposed PKRN on
benchmark tasks from Probenl repository and showed

that its result are comparable to standard variant of Reg-
ularization Network. We demonstrated the applicability
of PKRN on prediction of river flow rate, which is a real-
life task.

We expect our algorithm to be useful particularly in
situations where some prior knowledge of the character
of data is available in the sense that we can expect that
for some groups of inputs different kernel functions are
suitable.
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