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Abstract
In this paper, we present a new method to enhance

classification performance based on Boosting by intro-
ducing nonlinear discriminant analysis as feature se-
lection. To reduce the dependency between hypothe-
ses, each hypothesis is constructed in a different feature
space formed by Kernel Discriminant Analysis (KDA).
Then, these hypotheses are integrated based on Ad-
aBoost. To conduct KDA in each Boosting iteration
within realistic time, a new method of kernel selection
is also proposed. Several experiments are carried out
for the blood cell data and thyroid data to evaluate the
proposed method. The result shows that it is almost the
same as the best performance of Support Vector Machine
without any time-consuming parameter search.

1 Introduction

Recently, kernel methods have been widely noticed
as a powerful approach to solving difficult classification
tasks. The Support Vector Machine (SVM) is a typical
classifier based on the kernel method. The advantage
of kernel methods originally comes from the nonlinear
mapping to a high-dimensional feature space. If a proper
kernel function is selected, the inputs in the same class
can be completely isolated from the others and the class
separability is maximized in the feature space. However,
the features mapped to such a high-dimensional space
often suffer from noise and outliers; hence dimensional
reduction for the feature space such as Kernel Principal
Component Analysis and Kernel Discriminant Analysis
(KDA) have been often used [1][2].

KDA is a promising method of feature selection in
which the class separability is maximized in a feature
space. However, it is not easy to find a proper kernel
function for a particular dataset. To find an optimal ker-
nel, cross-validation has been often employed. However,
an eigenvalue problem must be solved at every validation
step in KDA; hence, the computation costs often become
serious especially when a large training dataset is given.
On the other hand, Boosting has been also widely known
as a powerful method to realize a strong hypothesis by

combining several weak hypotheses [3] [4].
From the idea underlying in Boosting, we come upon

a new idea for a practical KDA implementation without
immense computations; that is, even if week hypotheses
are constructed with low-performance features obtained
by KDA using a small subset of training samples, we ex-
pect to construct a strong hypothesis by combining such
week hypotheses based on the Boosting principle. In this
framework, we apply KDA to a small number of training
samples; hence, it is expected that the computation costs
of kernel selection are greatly reduced. Unfortunately,
however, if we adopt cross-validation as a kernel selec-
tion method, the computation costs are still high because
we need to evaluate classification performance at every
step in kernel selection and boosting. To overcome this
problem, we can adopt another criterion in kernel selec-
tion: (between-class scatter)/(within-class scatter).

In this paper, we propose a novel boosting approach in
which each weak learner is constructed based on a dif-
ferent feature space whose axes are obtained by KDA
with a small subset of training samples. This approach
provides a practical implementation for the combination
of Boosting and KDA, which can lead to reducing clas-
sification dependency between constituent hypotheses

In the next section, we describe our strategy and the
Boosting KDA algorithm. Then Section 3 shows some
experimental results for two standard datasets.

2 Boosting Kernel Discriminant Analysis
Here, we briefly explain KDA and AdaBoost.M2 [3],

and then we propose a novel method to select an appro-
priate parameter in KDA and a new Boosting strategy to
increase the diversity of generated hypotheses. Finally
we show the whole learning algorithm of the proposed
method.

2.1 KDA and AdaBoost.M2

KDA [2], which is a nonlinear extension of LDA, is
well known to give a subspace where the class separabil-
ity is maximized in a high-dimensional feature space. In
KDA, input data are projected into a high-dimensional
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feature space at first, then they are projected on a low-
dimensional subspace called KDA subspace.

Suppose that a training set is given as
{(xij,Vij)f=i}?=i where Xij is an / dimensional
column vector and y^ is the class label of Xij. C is the
number of classes and each class has Q (i = 1 , . . . , C)
samples. Let N = J2i&i be the total number of training
samples. We assume that observations have zero-mean
in the feature space and this is achievable by adjusting
'Kernel Matrix' (see [5] for details). The inputs are
mapped into a high dimensional feature space through a
nonlinear mapping function 4> • RJ—>F, where F is the
feature space. A between-class scatter matrix B and a
within-class scatter matrix W in F are given as follows:

c c

(2)
t = l j=l

where mi = Ylj=i <t>(xij) *s m e center of the class i in
the feature space. Basis vectors v spanning a KDA sub-
space are obtained by solving the following eigenvalue
problem: XWv = Bv.

To calculate B and W in the high dimensional space,
we use a kernel function K(x, xf) = (p{xY(j){xf). This
enable us to calculate B and W without treating </>(x).
This method is well known as 'Kernel Trick' [1]. As one
of various kernel functions, the Gaussian kernel

K(x,x') = eXp(JX-f^) (3)

is often used, and we also use this Gaussian kernel here.
On the other hand, AdaBoost is a major boosting algo-

rithm developed by Freund [3], which boosts the perfor-
mance by the ensemble of weak learners whose perfor-
mances are slightly better than random guessing. Ada-
Boost.M2 is one of the highly sophisticated multiclass
extensions of AdaBoost, which has been proposed for
two-class problems (see [3] for details). We use Ada-
Boost.M2 to integrate hypotheses.

2.2 Proposed Kernel Selection

In KDA, instead of finding an optimal parameter a
in Eq. (3) by cross-validation, we present a method to
select a such that the following criteria S is maximized:

c trace(B)
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Fig. 1. cr-S curves for Gaussian kernel

we have observed two types of a-S curves shown in
Figs. l(a),(b). As can be seen from Fig. l(a), Type 1
has a single peak. In this case, we should select a at this
peak unless it is not too small. If a is too small, some test
samples might be projected to the complementary space
of the feature space which is spanned by training data.
Consequently, the test performance will get worse even
though the training data are correctly classified. To avoid
such an inappropriate situation, we should select a with
the largest S under the condition that a is larger than a
threshold value (here we set it to 0.01).

On the other hand, Type 2 in Fig. l(b) does not have
any peak and S monotonically increases to a certain
value. Since the parameter a that maximize 5 becomes
so large, the Gaussian kernel has a similar value in any
case; then the kernel matrix can be easily degenerated.
Hence, it is preferable to select a as small as possible
under the condition that 5 is not too small compared
with the maximum value. An ad hoc solution for this
is to find a ( 'C in Fig. l(b)) to maximize the following
criteria H:

(5)

This criterion is the same as used in the conventional
LDA. Applying this kernel selection to several datasets,

where (<TI,5I) and (cr2,5f2) correspond to the points
with minimum and maximum <r, respectively ('A' and
'B'in Fig. l(b)).

2.3 A Strategy to Generate Diverse Hypotheses

To obtain various KDA subspaces, a small subset of
training samples is extracted from the whole training set,
then a KDA subspace is constructed from it. Intuitively,
this KDA subspace is regarded as a 'weak feature space'
because it is constructed based on limited information
on training samples. In such a weak feature space, the
corresponding hypothesis must also have week perfor-
mance. Therefore, it is expected that a strong hypothe-
sis is constructed by combining these week hypotheses
based on AdaBoost.

For each training subset, r% of training samples are



431

Input: Training set {(x»j, Vij)f =i}?=i where Xij £ R1

and the class label y^ € Y = { 1 , . . . , C}; the
distribution probability of samples
D(i,j) = 1/iV for i = 1 , . . . , C, i = 1 , . . . , Ci;
the number of iterations T; kernel function K and
the percentage r of selected data.

Initialize weight vectors: w}jy = D(i,j)/(C — 1)
for i = 1 , . . . ,7V, j = 1,..'. , Q , t/ € Y - {yij}

D o f o r t = l , 2 , . . . , r

y G Y - {yij}; and set Dt(iJ) = g c s % w

2 Choose r% of the training data randomly, then
denote it as Rt.

3 Obtain a kernel parameter at by applying the
proposed kernel selection method to Rt.

4 Construct KDA subspace with (K, <Tt,Rt), and
project all training data into this subspace, then
denote a set of the feature vectors as Ft.

5 With (Dt,quFt), build the t-th hypothesis ht :
R1 x Y — [0,1]

6 Calculate the pseudo-loss of ht :

8 Set a new weight vector to be
( / ) ( (

^ , 2 / j,y

for i = 1, . . . , C, j = 1,. . . , Cu y £Y - {y{j}
Output the final hypothesis

T

hf(x) = argmax £ (log j-t)ht(x,y)

Fig. 2. The Proposed Boosting KDA Algorithm

randomly chosen. Here, r is set to a small value to re-
duce the dependency between hypotheses generated in
Boosting steps. If r is small, the total combinations of
these subsets increase, then it will result in increasing
the diversity of hypotheses that leads to high generaliza-
tion ability [6].

In Fig. 2, we summarize the proposed Boosting KDA
algorithm. Step Initialize, Steps 1, 5, 6, 7, 8, and Step
Output correspond to the procedures in AdaBoost.M2.
The percentage r of selecting training samples in Step 2
is set to 1, 3, 5, 10, 15 to study the effect of increasing
the diversity of hypotheses. The kernel selection in Step
3 is carried out based on the procedure in 2.2 and KDA
algorithm stated in 2.1 is conducted in Step 4.

3 Experiments

The proposed Boosting KDA is compared with Ad-
aBoost [7] and SVM in terms of the recognition rate and
training speed. In addition, the progress of recognition
rates for different r are investigated to study the prop-
erties of Boosting KDA. Here, a blood cell dataset [1]
and a thyroid dataset [8] are used for the evaluation. The
blood cell dataset contains 3097 training data and 3100
test data. The number of classes and attributes are 12
and 13, respectively. The thyroid dataset contains 3772
training data and 3428 test data. The number of classes
and attributes are 3 and 21, respectively.

We adopt RBF networks to create hypothesis, and the
number of hidden units is set to twice the number of
classes. Training of RBF is carried out based on the
conjugate gradient descent, which optimizes the centers
and widths of radial-basis functions, and modifies the
weights to reduce training errors. The maximum itera-
tions in the optimization is set to ten to avoid over-fitting.

Table 1 shows the test performance of the proposed
method, AdaBoost, and SVM [1]. As seen from Table 1,
the performance of SVM changes depending on the type
of kernel and the implementation of multiclass problems.
However, the performance of the proposed method is al-
most the same as the best performance of SVM. Figures
3(a),(b) show the progress of test performance in Boost-
ing KDA as the boosting steps increase (r= 1,3,5,10,15).
As seen from Figs. 3(a),(b), the performance for larger r

Table 1. The comparison of test performance. For SVM, the
best results are picked up from [1].

(a) Blood Cell Data
Algorithm

Boosting KDA
Boosting Only
L1/L2 SVM

DDAGSVM

ECOC SVM

Kernel
Gauss

—
Gauss
Poly

Gauss
Poly

Gauss
Poly

Multiclass Ext.
AdaBoost.M2
AdaBoost.M2
one-against-all
one-against-all

pairwise
pairwise

(63,10,27)
one-against-all

rate(%)
93.74
91.42
92.77
93.58
92.41
93.00
94.05
92.84

(b) Thyroid Data
Algorithm

Boosting KDA
Boosting Only
L1/L2 SVM

DDAG SVM

Kernel
Gauss

—
Gauss
Poly

Gauss
Poly

Multiclass Ext.
AdaBoost.M2
AdaBoost.M2

pairwise
pairwise
pairwise
pairwise

rate(%)
97.90
96.03
97.29
97.72
97.40
97.86
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Table 2. Average training time (sec.) per iteration in the pro-
posed method (CPU: Intel Pentium-IV, 1.8GHz).

200 400
Boosting Steps

(a) Blood Cell Data

600

400 500200 300
Boosting Steps

(b) Thyroid Data

Fig. 3. Test performance of Boosting KDA with r=l,3,5,10,15
for (a) blood cell data and (b) thyroid data. • and •
mean the points where the training performance attains
to 99% and 100%, respectively.

is higher than that for smaller r at early boosting steps,
while this tendency reverses at late boosting steps. It
should be noted that the performance for blood cell data
is distinctively degraded when r = 1 even if there are no
large differences in other cases. Considering that large
r leads to slow convergence in training (see the result in
Table 2), r should be selected as small as possible within
an acceptable performance level.

When it comes to over-fitting, the test performance
does not degrade even when the training performance at-
tains to 100% except for the case of r = 15 in blood cell
data.

r [%]
blood cell

thyroid

1
10.2
3.5

3
11.6
6.5

5
15.2
16.7

10
54.0
88.9

15
151.8
232.6

4 Conclusions
We have developed a novel method to introduce Ker-

nel Discriminant Analysis into Boosting and a method
to choose an appropriate kernel parameter in KDA.
The proposed method achieved fairly good performance
without any time-consuming parameter tuning. But it
takes a little longer time in training than S VM to achieve
good recognition performance. To overcome this, a more
effective method to choose subsets leading to fast con-
vergence should be developed.
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