
38

Time-Oriented Hierarchical Method
for Computation of Minor Components

M. Jankovic1, H. Ogawa2

1 Control Department, EE Institute "Nikola Tesla", Serbia and Montenegro
2Department of Computer Science, Tokyo Institute of Technology, Japan

E-mail: elmarkoni@ieent.org, ogawa@og.cs.titech.ac.jp

Abstract
This paper proposes a general method that transforms known
neural network MSA algorithms, into MCA algorithms. The
method uses two distinct time scales. A given MSA algorithm is
responsible, on a faster time scale, for the "behavior" of all
output neurons. On this scale minor subspace is obtained. On a
slower time scale, output neurons compete to fulfill their "own
interests". On this scale, basis vectors in the minor subspace are
rotated toward the minor eigenvectors. Actually, time-oriented
hierarchical method is proposed. Some simplified mathematical
analysis, as well as simulation results are presented.

1 Introduction
Neural networks provide a way for parallel on-line
computations of the principal/minor component analysis
(PCA/MCA) or principal/minor subspace analysis
(PSA/MSA). Due to their parallelism and adaptivity to
input data, such algorithms and their implementations in
neural networks are potentially useful in feature
extraction and data compression. Generally speaking, the
purpose of PCA is to derive a relatively small number of
deccorelated linear combinations (principal components)
of a set of random zero-mean variables while retaining as
much of the information from the original variables as
possible. Among the objectives of PCA are:
dimensionality reduction, determination of linear
combinations of variables, feature selection, visualization
of multidimensional data, identification of underlying
variables of identification of groups of objects or outliers

Nevertheless, it has been clearly shown that computing
the last principal components of a data sequence, i.e.
those principal components endowed with the smallest
(non-zero) powers, may be very useful as well, for
instance in moving target following [2], frequency
estimation [3], adaptive array processing, emitter location
and signal parameter estimation [4], biological data
analysis and understanding [5], noise reduction problems,
function approximation like curve fitting and surface
fitting [6] or robust constrained beamforming [7].

A layer of parallel linear artificial neurons shown in Fig.
1.

Input vector x

YN

Output vector y

Fig. 1. The linear layer of artificial neurons

The output of the n-th unit (/i=l, 2, ..., N) is yn = w/x,
with x denoting a AT-dimensional input vector of the
network and wn denoting a weight vector of the n-th unit.
This network, together with appropriate learning rule,
could be used as a powerful technique for learning and
tracking principal/minor information in time series.
Within last years various MCA and MSA learning
algorithms have been proposed and mathematically
investigated [1-12]. Most of them are based on local
Hebbian learning. Due to their locality it has been argued
that these algorithms are biologically plausible. MSA
algorithms are useful for the problems in which only a
minor subspace identification is of interest and not the
decorellation property. In this paper we propose a simple
method for converting MSA algorithms to MCA
algorithms. It is named Time-Oriented Hierarchical
Method (TOHM). Of course, all the time we are talking
about parallel algorithms for estimation of MCA and
related MSA. Algorithms which discuss sequential
extraction of minor components are not considered (for
review of those algorithms see e.g. [1]).

39

2 Time-Oriented Hierarchical Method
A general method for transformation of MSA algorithms
to MCA algorithms will be introduced. The main idea is
that
Each neuron tries to do what is the best for his family,
and then what is the best for himself
We shall call this idea "the family principle". In other
words, the algorithm consists of two parts: the first part is
responsible for the family-desirable feature learning and
the second part is responsible for the individual-neuron-
desirable feature learning. The second part is taken with a
weight coefficient which is, by absolute value, smaller
than 1. This means that some time-oriented hierarchy in
realization of the family and individual parts of the
learning rules is made.
In order to realize "the family principle", we propose the
following general method, which transforms MSA
algorithm, denoted by FPMSA (defines AWPSA) to a MCA
algorithm, denoted by LAMCA (defines AWPCA)'-

LA,[MCA ~ ' wT
kwk = 1, (1)

where D is a diagonal matrix with nonzero elements dn

and such that | ^ | < 1 . IP denotes an individual part of the
learning rule (defines Aw/p). This is an algorithm for
achieving maximization of E((Dy)Ty) under the
constraints wkwk=\ for k=\,2,...,N. If all dn are equal to
a, we have the homogenous case. It is not difficult to see
that if homogenous MSA algorithm is used and all dn are
equal, then we have fully homogenous MCA algorithm.

3 Neural Learning on Grassman/Stiefel
Submanifold

In this paragraph it will be explained how proposed
learning method can be related to the neural learning on a
Grassman minor submanifold (it will be defined later in
the section). Only homogeneous case (all dn are equal to
a) will be analyzed. In the inhomogeneous case,
algorithm can be related to a neural learning on a Stiefel
minor submanifold. All definitions can be made
analogously.
First, we define a Grassman on-submanifold (similar to
definition of Grassman manifold):
The space of matrices We O **" c R **N (N<K) such that
WTW=I and a function J: O **"-> R such that
J(W)-J(WQ) for any NxN orthonormal matrix Q is called
the Grassman on-submanifold.
Neural network algorithms frequently can be seen as
algorithms that maximize/minimize cost function under

some constraint, which is usually orthogonality
constraint. In other words it can be written as:
Find Weh such that: J{Weks) =max/min J{W), We O KxN.
A standard way to obtain desired solutions is to define the
Lagrangian function:

where / is so-called Lagrangian multiplier, and to look for
free extremes of the function .//(W), for instance by means
of gradient ascent/descent technique, that is

AW
(3)

In order to ensure orthonormality, the iterative
orthogonalization of the columns of W could be employed
as well, for instance by the Gram-Schmidt
orthogonalization of the matrix updated by gradient
optimisation of J{W) or projection onto orthogonal group
[13]. However, imposing the orthonormality constraint
iteratively may be problematic in practice (see e.g. [8,9]).
That is the reason why the researchers started to study
learning paradigms that keep the weight matrix
orthogonal at any time. Such algorithms are known as
SOC (Orthonormal Strongly-Constrained) algorithms.
First a SOC MCA algorithm will be introduced. Let's
analyze the following system of equations:

y2 = max, (4)

, .

where x represents input vector for the single layer single
output (y) neural network and w represents weight vector.
Now, we can easily see that equation (5) can be written as

T T
W XX W

(6)

If we directly construct gradient ascent algorithm taking
the gradient of y2 with respect to w, we have the
following learning algorithm:

,. lx />x , xyJw(i)Tw(i)-y2w(i)
W{1 + 1) = VV\j) + /(O l =; . (7)

w(i) w(i)
Time index /, for x and y is omitted in order to shorten
equations. It is not difficult to see that if w(i)Tw(i)=\ we
directly have famous Oja's learning rule. If we extend
this to multiple output case we have

-Xy

where yk represents the k-th output neuron and wk

represents the k-th column of W. Learning rule for weight
vectors is given as

40

v * (0 T wk (0 - wk (0
(9)

R **N (N<K) such that
Now, we define Grassman minor submanifold:
The space of matrices We O KxN

WTW-l and W spans the minor subspace defined by the TV
minor eigenvectors of matrix C, and a function J: O KxN—>
R such that J(W)=J(WQ) for any NxN orthonormal matrix
Q will be called the Grassman minor submanifold.
If algorithm (9) is applied under strict constraint for W -
W is such that WTW-l and W spans the minor subspace
defined by matrix C, we actually have learning algorithm

(10)wk(i)
and

yk=wkx. (11)

Now, our cost function in compact notation is
J = E(tr(yyT)) = E(tr{WT xxTW) = tr(WT CW) = max. (12)
It is not difficult to see that function J satisfies
J(W)=J(WQ) for any NxN orthonormal matrix Q. In other
words we can say that our algorithm (10) performs
neural learning on Grassman minor submanifold. So, we
have one SOC algorithm. Using stochastic approximation
[14] we can relate (10) to following ordinary differential
equation (in compact notation)

— = (cw- Wdiag(wTClv]}, (13)

where dia.g(WrCW) is a diagonal matrix which consists of
diagonal elements of WTCW. If we write this equation for
each column wk, we have

—— = \Cwk — Xk wk), (14)

where Xk is the k-X\\ element of diag(WrCW). We can
easily conclude that the stationary points of these
equations are minor eigenvectors of the matrix C. Since
we are performing neural learning on minor subspace the
resulting wk will be equal to minor eigenvectors of matrix
C. If the wk(i) of the corresponding discrete algorithm
visits infinitely often a compact subset of the domain of
attraction of the solution of (14), then the solution of (14)
is also a solution for the corresponding discrete algorithm
(10). The proof is lengthy and won't be presented here. It
can be done by the approach used in [15].
Proposed method is not easy to implement in practice.
The reason is that in online methods for MCA, minor
Grasmman submanifold is not known. So, we have to
apply Lagraingian method to our learning rule which
results in the following algorithm:
wk(i + \) = wk(i) + y(i)(xyk-yk

2wk(i))+/]y(i)AWMSA, (15)

where AWMSA represents part of the learning rule that is
contributed by the adopted MSA learning rule which
makes "weak" constraint. Equation (15) can be written as

-yk
2wk{i)\ry(i)AWMSA. (16)

If a is small enough we can consider that part multiplied
by a does not affect the MSA learning part and
appoximately we have a learning on Grassman minor
submanifold. Now, we can see that equation (16) actually
represents a method proposed in this paper, in the
homogenouus case. If a is small enough, we can assume
that analysis performed for SOC algorithm (10) can be
valid for (16). It must be said that it is necessary to
perform stability analysis for any particular selection of
MSA. Only after such analysis it is possible to select
proper a.

4 Simulation results
In order to illustrate effectiveness of the proposed TOHM
we shall consider the small-scale numerical simulations
whose results are given in Table 1-4 . The number of
inputs was K = 5 and the number of output neurons was N
= 3. Artificial zero-mean vectors with uncorrelated
elements were generated by the following equations:

= (rem(i,23)-ll)/9)5;

= (rem(i,27)-13)/9);

= ((rand(U)<.5)*2-l)*log(rand(l,l) + .5

In such case, eigenvectors are C\ = (01000)T, c2 =
(00100)T, c3 = (10000)T, c4 = (00010)T and c5 = (00001)T

(sorted in such way that Cj corresponds to the largest
eigenvalue and c5 corresponds to the smallest
eigenvalue). Let d be the vector which consists of
diagonal elements dk of matrix D in (1).
Tables 1-4 contain simulation results for MCA derived by
implementation of TOHM on some of the stable MSA.
MCA algorithm derived from some of the MS Ax
(xe{ 1,2,3}) by the TOHM is denoted by the TOHM
MSAx.

Table 1 Weight vectors of the TOHM MLA1
after 66000 iterations; d={0.36, 0.09, 0.018}

w
-1.0001
0.0191
-0.0737
-0.0217
-0.0621

-0.0337
0.0326
-0.0496
-1.0043
0.0644

-0.0905
-0.0461
-0.0395
0.2019
0.9972

Tables 1, 2 and 3 contain simulation results for
inhomogeneous TOHM-MSA1, TOHM-MSA2 and

41

T0HM-MSA3, respectively. MSA1-3 are defined in refs.
10, 11 and 12, respectively. Table 4 contains results for
TOHM MSA2 algorithm in homogeneous case.

Table 2 Weight vectors of the TOHM MLA2
after 5000 iterations; d={0.36, 0.09, 0.018}

w
0.0177
0.0103
-0.0199
1.0015
0.0059

1.0032
-0.0232
-0.0188
-0.0135

0.0393

0.0437
-0.0227
-0.0068
0.0028
-1.0042

Table 3 Weight vectors of the TOHM MLA3
after 20000 iterations; d={-0.005, -0.0025,- 0.00125}

w
-0.0067
0.0957
0.0385
-0.0651
0.9925

0.9971
-0.0728
0.0177
0.0057
0.0147

0.0031
-0.0507
-0.0293
-0.9966
-0.0577

Table 4 Weight vectors of the TOHM MLA2
after 4500 iterations; d={0.36, 0.36, 0.36}

w
0.0040
-0.0069
0.0300
1.0004
-0.0621

0.9967
0.0778
-0.0659
0.0035
-0.0416

0.0440
-0.0179
-0.0076
0.0715
0.9989

The simulation results show that the TOHM is useful.

5 Conclusion
In this paper, a general method (named time-oriented
hierarchical method - TOHM) that transforms the MSA
learning rules for a single layer linear neural network into
MCA learning rules is analyzed. Introduction of the two
distinct time bases is the novelty of the proposed
algorithm. This indirectly means that possible biological
implementation of the network requires two types of the
neurotransmitters. On a faster time scale, MSA algorithm
is responsible for the "behavior" of the all output neurons
(family). On a slower scale, output neurons will compete
for "fulfillment of their own interests". On this scale,
basis vectors in the minor subspace are rotated toward the
minor eigenvectors. Some simplified mathematical
analysis, as well as simulation results are presented.

References
[1] A. Chichocki, S.-I. Amari (2003) Adaptive Blind

Signal and Image Processing - Learning Algorithms
and Applications. John Wiley and Sons, New York

[2] R. Klemm (1987) Adaptive airborne MTI: an
auxiliary channel approach. IEE Proceedings 134:
269-276

[3] G. Mathew and V. Reddy (1994) Orthogonal
Eigensubspace estimation using neural networks.
IEEE Trans. On Signal Processing: 42: 1803-1811

[4] R. Schmidt (1986) Multiple emitter location and
signal parameter estimation. IEEE Trans. On
Antennas and Propagation 34: 276-280

[5] L. Wiscott (1998) Learning invariance manifolds.
International Conference on Artificial Neural
Networks: 555-560

[6] L. Xu, E. Oja, C.Y. Suen (1992) Modified Hebbian
learning for curve and surface fitting. Neural
Networks 5:441-457

[7] S. Fiori (2003) A Neural Minor Component Analysis
Approach to Robust Constrained Beamforming. IEE
Proceedings - Vision, Image and Signal Processing
150:205-218

[8] T.-P. Chen and S. Amari (2001) Unified stabilization
approach to principal and minor components. Neural
Networks 14: 1377-1387

[9] T.-P. Chen, S. Amari, and Q. Lin (1998) A unified
algorithm for principal and minor components
extraction. Neural Networks 11: 385-390

[10] S. Fiori (2002) A minor subspace algorithm based on
neural Stiefel dynamics. International Journal of
Neural Systems 12: 339 - 350

[11]S.C. Douglas, S.Y. Kung and S. Amari (1998) A
self-stabilized minor subspace rule. IEEE Signal
Processing Letters 5: 328-330

[12] K. Abed-Meraim, S. Attallah, A. Ckheif and Y. Hua
(2000) Orthogonal Oja algorithm. IEEE Signal
Processing Letters 7: 116-119

[13] S. Fiori (2001) A theory for learning by weight flow
on Stiefel-Grassman Manifold. Neural Computation
13: 1625-1647

[14] L. Ljung (1977) Analysis of recursive stochastic
algorithms. IEEE Trans. Automat. Contr. 22, 551-
575

[15] E. Oja, J. Karhunen (1985) On stochastic
approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. J. Math. Anal.,
Appl. 106: 69-84

