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Abstract. Metabolic phenotyping in large-scale population studies can yield
crucial information regarding the impact and interaction of genetic and envi-
ronmental factors with regard to the prevalence and risk of chronic diseases.
Spectroscopic technologies such as nuclear magnetic resonance (NMR) spec-
troscopy and mass spectrometry (MS) can be used to generate multi-parameter
profiles of biological samples and together with automated sample delivery and
mathematical modelling systems, can be used as a high throughput screening
tool. The adaptation of these metabolic profiling tools from pre-clinical studies
in animal models to population studies in man is explored and an overview of
the current and future roles of metabolic phenotyping is described, including
the idea of “Metabolome Wide Association Screening” focussing on key dis-
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ease areas such as cardiovascular disease and metabolic syndrome, cancers and
neurodegeneration.

1 Introduction

Recognition of the inadequacy of the genome sequence to explain the
fundamental nature of many disease processes has precipitated a marked
increase in the evaluation of approaches that relate gene expression to
phenotypic outcomes. There is also increasing recognition of biological
complexity and the conceptual paradigm has been shifted from simple
univariate measurements of response to the need to integrate technolo-
gies and their outputs in order to operate at a systems biology level.
Interactions of genes, proteins and metabolites at different levels of
biomolecular organization can be probed by various technologies and
integrated using bioinformatic and chemometric strategies to extract la-
tent information that carries a diagnostic or even prognostic signature.
One of the major goals of twenty-first century medicine will be the in-
troduction of personalized health care through a holistic understanding
of an individual’s overall biochemical status. In order to achieve this
aim, the effects of both genetic predisposition and a wide range of envi-
ronmental factors such as diet, drug intake, smoking habits, stress and
amount of physical activity, etc., need to be taken into account. Metabo-
nomics (variously referred to as metabolomics or metabolic profiling)
(Nicholson et al. 1999, 2002; Fiehn et al. 2000) is a rapidly emerg-
ing field of research combining sophisticated analytical tools such as
nuclear magnetic resonance (NMR) spectroscopy and mass spectrome-
try with multivariate statistical analysis to generate complex metabolic
profiles of biofluids and tissues. Pathological stimuli or genetic modi-
fication influence metabolite profiles in a characteristic and consistent
manner, involving adjustment of the intra- and extracellular fluids as
the organism strives to maintain homeostatic equilibrium. By harness-
ing appropriate mathematical and pattern recognition procedures to in-
terrogate the data produced by high-resolution spectral analysis, char-
acteristic profiles of physiological or pathological responses can be es-
tablished.
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The global objective of this chapter is to review the potential of
metabolic profiling methods for characterizing the complex metabolic
phenotype of humans in health and disease. Metabolic profiling has
been successfully applied across a wide range of fields in plant and an-
imal biology such as characterization of natural products (Bailey et al.
2002), monitoring response to therapeutic or nutritional interventions
(Neild et al. 1997; Lamers et al. 2003; Wang et al. 2004), toxicology
(Ebbels et al. 2007), drug metabolism (Foxall et al. 1996; Plumb et al.
2003), functional genomics (Gavaghan et al. 2000) and disease diag-
nosis and prognosis (Brindle et al. 2002; Yi et al. 2006; Clayton et al.
2006). The vast majority of metabolic profiling studies have been con-
ducted in laboratory models of disease or toxicity where control over
genetic and environmental conditions can be exercised. However, given
the substantial array of animal studies that identify the metabolic re-
sponse to controlled interventions, it is now appropriate to expand the
available knowledge to address more complex phenotypes and, in par-
ticular, to extend the methodology to investigate human metabolism.
The potential of metabolic profiling to address complex human clinical
and even epidemiological questions has vastly increased due to recent
advances in both analytical and mathematical technology; including ca-
pacity for higher throughput of samples, increased analytical sensitivity
and the evolution of mathematical methods for accommodating analyt-
ical and biological variation. In this chapter, illustrations of research
where metabolic profiling has already been employed in investigating
human health and disease is summarized, and potential areas which
would benefit from application of such technology are outlined.

2 Defining the “Normal” Phenotype

Prior to utilizing metabolic profiling technology for diagnostic purposes
in human studies, it is first necessary to define the metabolic range cov-
ered by normal physiological variation. Only then can robust and spe-
cific biomarkers of disease be extracted. Metabolic variation is depen-
dent on both genetic and environmental parameters, and each biological
tissue or fluid has its own unique metabolic signature (Fig. 1). Ethnic-
ity, gender, age, activity, nutritional status, medication, stress, polymor-
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Fig. 1. Standard 600 MHz 1H NMR spectra showing characteristic profiles for
urine, plasma and bile
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Fig. 2. Selected regions of standard 600-MHz 1H NMR spectrum of urine sam-
ples from a healthy male before and after consuming an evening meal showing
characteristic metabolic changes associated with the consumption of fish and
a glass of wine (vertical scale for region on right hand side of plot x5)

phisms, hormone levels and circadian cycles are all known to impact
upon mammalian metabolite profiles (Holmes et al. 1994; Slupsky et al.
2007; Williams et al. 2006; Bollard et al. 2001; Teague et al. 2004,
2006) (Fig. 2). Evaluation of normal ranges of mammalian metabolite
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composition under various physiological and analytical conditions can
be found in the literature for several biological matrices, including urine
(Holmes et al. 1994; Maher et al. 2007), plasma (Teahan et al. 2006;
Lenz et al. 2003), cerebrospinal fluid (CSF) (Koschorek et al. 1993),
feces (Saric et al. 2008) and various tissues (Tsang et al. 2005; Wang
et al. 2008; Garrod et al. 1999). The extent of variation and the dynamic
ranges of metabolite concentrations in metabolite profiles are depen-
dent upon the influence of homeostatic mechanisms on that biological
matrix (Fig. 1). For example, plasma composition is maintained under
homeostatic control and metabolite concentrations are found to be rel-
atively stable in terms of both qualitative and quantitative differences
in comparison with excretory biofluids such as urine, where metabolite
concentrations vary greatly in terms of both the presence and quantity.

3 Detecting Pathophenotypes: Diagnostics

In many instances, diagnosis of the presence of a disease is achievable
by routine and inexpensive clinical assays or genetic tests, for example
type 2 diabetes, inborn errors of metabolism such as phenylketonuria,
and many neurodegenerative disorders (Guthrie and Susi 1963; Inter-
national Huntington Association and the World Federation of Neurol-
ogy Research Group on Huntington’s Chorea 1994). However, for some
diseases, early diagnosis remains the key issue, and even for those dis-
eases that are easily diagnosed by simple assays, in some cases the
stage of disease is harder to determine accurately. Therefore, improved
diagnostics are required in order to establish the optimal therapeutic
management. Here the application of metabolic profiling can be an ef-
ficient tool for differential diagnosis of various disease conditions, as
has been shown for a wide range of diseases, including cardiovascu-
lar, intestinal disorders, cancers, renal disease (Fig. 3), osteopathies and
neuropathologies. Several examples are discussed in the following sec-
tions.

3.1 Metabolic Profiling of Insulin Resistance

Insulin resistance (IR) is one of the fastest growing human pathologi-
cal conditions, and is now an increasing health burden in the develop-
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Fig. 3. Principal Components scores plot derived from the NMR and MS pro-
files of urine obtained from humans with different types of Fanconi syndrome.
(Adapted from Vilasi 2007)

ing world as well as westernized societies. IR has been studied across
a wide range of animal models using metabolic profiling and large-scale
epidemiological studies are now being undertaken in human popula-
tions. Several studies on models of insulin resistance and type 2 dia-
betes have been undertaken in animal models. For example, the effects
of streptozotocin-induced diabetes have been profiled using NMR with
principal components analysis (PCA) (Nemoto et al. 2007). The effects
of a high-fat diet were explored in inbred mouse strains selected for
their resistance (BALB/c) and susceptibility (129S6) to IR and nonalco-
holic fatty liver disease (NAFLD). High plasma concentrations of phos-
phocholine and increased urinary excretion of methylamines, associated
with changes in gut microflora were found (Dumas et al. 2006a). Several
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studies have also been conducted on the Zucker rat, which is a com-
mon animal model for IR and obesity (Dumas et al. 2006b; Yi et al.
2006). Several recent EU-funded initiatives such as MolPAGE, FGENT-
CARD, PROCARDIS involve or even focus on metabolic profiling of
the human IR phenotype. Most of the early publications arising from
these studies encompass an exploration of variation in human biofluids
(Teague et al. 2004; Maher et al. 2007; Plumb et al. 2005), but several
smaller studies targeting IR have identified specific metabolic pheno-
types or metabotypes associated with IR and type 2 diabetes (Williams
et al. 2005; Atherton et al. 2006). Indeed, type 2 diabetes was first pro-
filed using NMR spectroscopy in 1984 (Bales et al. 1984). Although
as yet there are few substantive papers exploring the more subtle and
substantive metabolic consequences of IR, an explosion in the litera-
ture reporting on some of the major epidemiological studies is immi-
nent.

3.2 Cardiovascular Disease

Like IR, cardiovascular disease (CVD) is also a part of the metabolic
syndrome spectrum and is also growing at an alarming rate. CVD has
been studied across several small populations using metabolic profiling
approaches. Predominantly NMR spectroscopy-based studies on plasma
or serum, in particular, have yielded metabolic profiles that are differ-
entiated from control or healthy profiles in both the lipoprotein pro-
files, choline metabolites and in some of the lower molecular weight
metabolic components (Brindle et al. 2002; Kirschenlohr et al. 2006).
One LC-MS study, conducted on patients with myocardial ischaemia,
some of whom demonstrated inducible ischemia and some of whom
did not, was able to separate the two groups clearly on the basis of
citric and lactic acid amongst other metabolites. However, of the 23
metabolites identified as candidate biomarkers, few were identified and
the study lacked a matched control group. Nevertheless, the potential of
LC-MS methodology to characterize myocardial ischemia was clearly
demonstrated (Sabatine et al. 2005). Although early studies have pro-
duced promising results in terms of obtaining a diagnostic signature,
due to confounders such as medication, the higher prevalence of the
disease in men and the high dependency on diet and lifestyle, there is
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still a requirement for larger-scale definitive studies in this area. Identi-
fication of an early diagnostic for CVD, or even a prognostic signature,
would undoubtedly be one of the “Holy Grails” of metabolic profiling.
Several population-based epidemiology studies have been designed to
test hypotheses regarding the relationship between the development of
hypertension, a condition that predisposes to CVD, and various lifestyle
factors. In particular, the INTERMAP study (International Study of
Macronutrients and Blood Pressure) was launched in 1996 to investi-
gate the relationship of dietary intake of macronutrients and other fac-
tors to blood pressure across four countries: China, Japan, the United
Kingdom and the United States (Stamler et al. 2003). This study in-
volved collection of two 24-h urine samples from 4,680 participants,
in addition to blood pressure measurements and NMR spectroscopy;
the first results are beginning to emerge (Dumas et al. 2006b; Homes
et al. 2007). Furthermore we have recently introduced the concept of the
“Metabolome-wide association study” (Holmes et al. 2008) demonstrat-
ing broad metabolite profile screening is linked statistically to disease
risk factor data to identify new molecular targets in metabolism that can
be physiologically tested. Thus, whilst large epidemiological studies
present a practical and logistical challenge, they are at least feasible and
metabolic profiling is well suited to characterizing the metabolic phe-
notypes of populations, which have high risk and prevalence of patho-
logical or prepathological conditions such as CVD and hypertension.

3.3 Metabolic Investigations of Neuropathological Disease

Disease progression in many neurodegenerative and psychological dis-
orders is difficult to assess with batteries of cognitive or psycholog-
ical tests forming part of the diagnostic for disease stage. For these
pathologies, it would be ideal to have a metabolic indicator of dis-
ease stage in order to achieve the optimal therapeutic intervention strat-
egy. In the neurodegeneration field, there are many more studies using
magnetic resonance spectroscopy (MRS) of tissues than high-resolution
NMR spectroscopy; however, MRS profiles lack sensitivity in compar-
ison. Again, in experimental models such as the transgenic R6/2 mouse
model of juvenile Huntington’s disease (Bates et al. 1997), NMR-based
metabonomic studies in the R6/2 mouse characterized the metabolic
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signature of HD in several tissues and body fluids (urine, plasma, skele-
tal muscle, striatum, cerebral cortex, cerebellum and brain stem) at 4, 8
and 12 weeks of age (Tsang et al. 2006b). This study supported previ-
ous results obtained by Jenkins et al. (1993) using MRS, but addition-
ally was able to resolve choline and glycerophosphocholine resonances.
Choline levels were observed to decrease in most of the neuroanatom-
ical regions analysed in the R6/2 mouse, whereas glycerophospho-
choline increased suggestive of a pro-catabolic phenotype in the R6/2
mouse model. This has also been shown in a small number of HD
patients where glycerophosphocholine levels correlated with disease
progression (Underwood et al. 2006). Currently, the European Hunt-
ington’s Disease Network is focused on collaborating across European
cohorts to establish biomarkers of HD and is actively employing a sys-
tems biology approach combining transcriptomic, proteomic and meta-
bonomic data from HD patients and age-matched controls. For schizo-
phrenia, the metabolic profiling strategy has been taken one step further,
and not only has the metabolic phenotype of the pathology been de-
fined (Tsang et al. 2006a), but a preliminary study evaluating response
to therapeutic intervention with antipsychotics has been profiled, show-
ing that those patients treated on the first episode of the disease were
able to achieve normalization of their spectral profiles (Holmes et al.
2006).

3.4 Intestinal Disorders

Although it is relatively easy to diagnose irritable bowel disorders, dis-
criminating between them, for example Crohn’s disease (CD) and ulcer-
ative colitis, can provide more of a challenge. Moreover, monitoring the
condition generally involves an invasive series of surgical procedures
such as colonoscopy. Recently spectroscopic methods have been ap-
plied to stool samples from CD, ulcerative colitis, polyposis and colon
cancer to achieve discriminatory profiles for each of these conditions
(Marchesi et al. 2007; Scanlan et al. 2008). Faecal water profiles from
each of these conditions were found to have higher levels of amino
acids, lower levels of short chain fatty acids and characteristic bile acid
signatures, although the specific amino acids and short chain fatty acids
that changed were different for each condition.
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3.5 Cancers

Cancer is one area where a specific and distinctive metabolic profile has
remained elusive. The first studies performed on profiling cancer using
NMR spectroscopy as a diagnostic tool were unfortunately badly con-
founded (Fossel et al. 1986), which resulted in avoidance of this area
for many years. Two of the main problems with cancer diagnostics are
the lack of specificity and the fact that many of the metabolic changes
are associated with inflammation. Now, however, with the recent ad-
vances in technology, several studies on small cohorts of patients have
produced promising results. In one such study Odunsi et al. were able
to differentiate between patients with ovarian cancer and matched con-
trols using NMR analysis of blood plasma (Odunsi et al. 2005), whilst
in another study, excised tumour tissue was analysed using GC-MS and
ovarian cancers were differentiated from borderline tumours with high
sensitivity (Denkert et al. 2006). Because of the difficulty of finding
cancer-specific biomarkers, several studies have employed more than
one “omics” platform. For example, renal cell carcinoma has been char-
acterized using a combined proteomic and MS-based metabolic profil-
ing approach (Perroud et al. 2007). Due to the obvious effect on glycol-
ysis in tumours, studies on cancer cell lines often employ 13C-labelled
glucose. Using this labelling approach, characterization was achieved
for a breast cancer mammary epithelial line from a normal mammary
epithelial line (Yang et al. 2007) using a combination of NMR and GC-
MS. Whilst such studies can potentially throw light on mechanisms and
aid drug target discovery, the metabolic situation is very different and
inherently more complex inside the human, and one must bear in mind
the biomarkers discovered via metabolic profiling of cell lines may not
always be translatable.

3.6 Infectious Diseases

There have been a number of metabolic profiling initiatives in the infec-
tious disease area, including parasitic infection, tuberculosis and menin-
gitis (Singer et al. 2006; Glickman et al. 1994; Coen et al. 2005). In
reality, infectious diseases are predominant in developing countries and
therefore relatively little metabolic profiling work has been done in this
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area due to financial constraints and practicality. Further complications
of applying the technology in this area is the fact that multiple infection
is the norm for many of these populations (Buck et al. 1978), thereby
rendering extraction of a panel of biomarkers for single infection dif-
ficult, although arguably it would be preferable to profile the multi-
ple diseases simultaneously. Since metabolic profiling is an inexpensive
technology, particularly when used in an exploratory capacity with sub-
sequent development of biomarker assays, it has great potential in the
diagnosis and surveillance of infectious diseases.

4 Defining Biomarkers

In order to be truly useful, a biomarker must be quantifiable, repro-
ducible and analytically simple to measure (Atkinson et al.). Other de-
sirable qualities of biomarkers are that the biomarker is inexpensive to
measure, its concentration or level does not vary across a large range,
it is specific to the condition of interest and that it is not affected by
co-morbid factors.

The capacity for metabolic profiling approaches to generate diagnos-
tic molecular signatures has been demonstrated for a range of conditions
in human studies, but many studies have been preliminary in nature and
now require extensive validation across larger cohorts on individuals.

Biomarker detection plays a key role in the discovery and develop-
ment of new treatments for human disease and therefore there has been
a great deal of method development in the area of improving biomarker
detection and extraction from large multivariate data sets.

Increased sensitivity of analytical detection is useless without the
means to interpret the greater number of candidate molecules or sig-
nals generated by an analytical platform. The three major analytical
platforms—GC-MS, LC-MS and NMR spectroscopy—have strengths
and weaknesses that are partially determined by the nature of the dis-
ease or intervention under investigation. Although GC-MS typically
requires time-consuming derivatization steps, there are several good
databases for molecular identification once the data are acquired. To
improve molecular identification, GC-MS data can be deconvolved us-
ing hierarchical multivariate curve resolution to resolve the spectra into
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pure profiles of compounds (Jonsson et al. 2006). GC-MS is well suited
to measuring diseases where targeted analysis can be applied to a set
of molecules which are known to carry a signature for a particular dis-
ease, for example the measurement of organic acids for characteriza-
tion of many inborn errors of metabolism. LC-MS, and more particu-
larly UPLC-MS, with its enhanced resolution and sensitivity, provides
a comprehensive signature of metabolic perturbation and is becoming
increasingly useful as the databases associated with molecular identi-
fication from retention-time–m/z pairs improve. NMR spectroscopy is
the most reproducible of the three techniques and the least prone to arte-
fact. Sensitivity remains lower than MS methods even with the use of
cryoprobes, but the technique is inherently more amenable to structural
elucidation. For a few well-funded laboratories, the obvious choice is to
employ all three techniques. For the rest then, a sensible choice has to
be made based on cost, laboratory infrastructure and the clinical, thera-
peutic or nutritional areas of interest.

Whatever the platform of choice, there is a continuous stream of new
chemometric and bioinformatics processing and preprocessing tech-
niques for optimization of the analysis of spectral data including algo-
rithms for curve resolution (Jonsson et al. 2006), peak alignment (Jons-
son et al. 2005; Csenki et al. 2007; Stoyanova et al. 2004), normalization
(Dieterle et al. 2006) and quantification (Vehtari et al. 2007) in order to
provide the best chance of capturing potential biomarkers. Other meth-
ods focus more on the identification of correlation within the data struc-
ture in order to provide as much information as possible regarding the
identity of biomarkers, for example statistical correlation spectroscopy
(Cloarec et al. 2005; Crockford et al. 2006).

5 The Way Forward

Arguably, the most valuable type of biomarker is either an early diag-
nostic or even prognostic, i.e. one which allows detection of a disease
prior to the manifestation of clinical symptoms. Identification of prog-
nostic biomarkers can result in prevention of the development of that
pathology, or even the reversal of the pathology. Several recent studies
have indicated that for certain conditions metabolic profiling can un-
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cover a prognostic signature. For example, from the predose 1H NMR
urine profile, it is possible to predict animals who will develop toxicity
after an oral dose of galactosamine and to predict toxicity associated
with paracetamol ingestion (Clayton et al. 2006).

Psychological and physiological stress have also been shown to pre-
dispose individuals to a number of illnesses and conditions and the con-
cept of allostatic load, the indication of wear-and-tear on multiple bio-
logical systems as they adapt and respond, within the individual, to life’s
demands (McEwen 2002). It was found that for men at highest risk of
mortality, a cluster of five biomarkers are usually present at elevated
levels, namely CRP, IL-6, fibrinogen, norepinephrine, and epinephrine
(Gruenewald et al. 2006). Application of metabolic profiling strategies
to epidemiological cohorts should finally give enough power to make
associations between gene-gene and gene-environment factors and the
associated consequence on the metabolic phenotype.

As the world turns towards systems biology, there is a pressing need
to begin to integrate multiple “-omics” data sensibly. Simply making
lists of genes, proteins and metabolites that are altered by a particular
disease, mathematical modelling solutions can help to extract latent in-
formation and can use aspects of one “-omics” data set to strengthen
another. This integration has been attempted at a preliminary level in
animal models with relatively small group sizes, but has yet to be ap-
plied on a large scale to human clinical or population studies. Examples
of co-analysis of “-omics” data include integrating metabolic profiles
with quantitative trait locus data in a diabetic rat model (Dumas et al.
2007), combining metabolic and proteomic data for a mouse model of
prostate cancer (Rantalainen et al. 2006). Bayesian methods for estab-
lishing correlations between two disparate sets of data show promise
and have the added advantage of being nonlinear. Preliminary studies
linking clinically measured lipoprotein measurements to 1H NMR spec-
tra enable some resolution of the highly overlapped lipoproteins in the
NMR plasma spectra (Vehtari et al. 2007).

Metabolic profiling technology has come a long way since its ori-
gins in small-scale animal studies looking at gross metabolic changes.
It is now an exquisitely sensitive tool for profiling multiple dynamic
biological processes and cannot only accommodate the high degree of
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Fig. 4. Schematic showing genetic and environmental factors that contribute to
the global metabolic profile of humans
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metabolic variation typical of human data sets, but can help to unravel
the various contributions from a range of genetic, epigenetic and envi-
ronmental influences (Fig. 4). We are now standing on the threshold of
a new era as this technology comes of age and is increasingly applied
in the systems biology arena. With judicious application, this technol-
ogy promises to deliver advances both in personalized health care and
in population screening.
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