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Abstract. For several solid human malignancies, currently available serum
biomarkers are insufficiently reliable to distinguish patients from healthy in-
dividuals. Metabonomics, the study of metabolic processes in biologic sys-
tems, is based on the use of 1H-NMR spectroscopy and multivariate statistics
for biochemical data generation and interpretation and may provide a charac-
teristic fingerprint in disease. Here we review our initial experiences utilizing
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the metabonomic approach for discriminating sera from women with epithelial
ovarian cancer (EOC) from healthy controls. 1H-NMR spectroscopic analysis
was performed on preoperative serum specimens of 38 EOC patients, 12 pa-
tients with benign ovarian cysts and 53 healthy women. PCA analysis allowed
correct separation of all serum specimens from 38 patients with EOC (100%)
from all of the 21 premenopausal normal samples (100%) and from all the sera
from patients with benign ovarian disease (100%). In addition, it was possible
to correctly separate 37 of 38 (97.4%) cancer specimens from 31 of 32 (97%)
postmenopausal control sera. ROC analysis indicated that the sera from patients
with and without disease could be identified with 100% sensitivity and speci-
ficity at the 1H-NMR regions 2.77 parts per million (ppm) and 2.04 ppm from
the origin (AUC of ROC curve = 1.0). These findings indicate that the 1H-NMR
metabonomic approach deserves further evaluation as a potential novel strategy
for the early detection of EOC.

1 Background

Cancer is a major public health problem. Current estimates suggest that
approximately three out of every ten individuals will be diagnosed with
cancer at some point during their lifetime (Wingo et al. 1995). Screen-
ing and early detection are two strategies with the potential to reduce
morbidity and mortality from a particular cancer among the screened
population. Although significant advances have been made in screen-
ing/early detection of cancers of the breast, cervix, skin, and colon,
there are no reliable early detection strategies for cancers of the pan-
creas, lungs and epithelial ovarian cancer (EOC). This review focuses
on the use of 1H-NMR-based metabonomics as a potential method for
early detection of EOC.

Ovarian cancer is the leading cause of death from gynecologic ma-
lignancies. There are more than 23,000 cases annually in the United
States, and approximately 14,000 women can be expected to die from
the disease in 2007. Survival rates remain disappointing for patients
with advanced EOC and primary peritoneal carcinomas despite modest
improvements in response rates, progression-free survival and median
survival using adjuvant platinum and paclitaxel chemotherapy follow-
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ing cytoreductive surgery (Armstrong et al. 2006; McGuire et al. 1996).
This has been attributed to two important reasons. First, in contrast to
most other solid tumors, more than 75% of EOC patients present with
advanced-stage disease (FIGO III or IV). Whereas the small proportion
of patients with accurately diagnosed stage I disease have 5-year sur-
vival rates in excess of 90% (Young et al. 1990), the survival rate for
women diagnosed with distant disease is only 25%. Secondly, although
most patients with advanced disease initially respond to platinum- and
paclitaxel-based chemotherapy including complete responses, the re-
lapse rate is approximately 85% (Greenlee et al. 2001). Within 2 years
of cytoreductive surgery and systemic chemotherapy, tumors usually
recur and once relapse occurs, there is no known curative therapy. The
link between stage and mortality suggests that early detection may have
a significant impact on disease morbidity and mortality in EOC. The
need for early detection is especially acute in women who have a high
risk of ovarian cancer due to family or personal history of cancer, and
for women with a genetic predisposition to cancer due to abnormalities
in predisposition genes such as BRCA1 and BRCA2.

Although a number of potential early detection strategies have been
studied in EOC (Menon and Jacobs 2000), these have shown only lim-
ited promise. The ideal test for the early detection of EOC should be
noninvasive, acceptable to the screened population, have high validity,
and have a relatively low cost. The application of novel approaches such
as functional genomics, proteomics and metabonomics may improve
the ability to detect EOC at an early stage, with the potential of reduc-
ing morbidity and mortality from the disease.

2 Current Status of Early Detection of EOC
in the General Population

The majority of patients with EOC come from low-risk families and
are usually diagnosed due to symptoms of advanced disease. Current
candidate strategies for early detection of EOC in this population are
based on biochemical tumor markers evaluated mainly in the blood and
biophysical markers assessed by ultrasound and/or Doppler imaging of
the ovaries. The only biomarker that has been extensively studied for
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possible use in the early detection of EOC is CA125, a high-molecular-
weight glycoprotein of unknown function (Dorum et al. 1996; Fures
et al. 1999). Although CA-125 has good utility for monitoring effects
of treatment and for recurrence of ovarian cancer, its effectiveness as
a screening tool is limited. A systematic review of the performance of
the multimodal strategies of CA125 and ultrasound indicated that ap-
proximately 50% (95% confidence interval [CI] 23; 77) and 75% (95%
CI 35; 97) of patients were diagnosed at stage I in CA-125-based and ul-
trasound screening studies, respectively (Reviews 2003). Unfortunately,
the positive predictive values (PPV) of these strategies for the early
detection of EOC using these modalities have been consistently less
than 10% (Reviews 2003; van Nagell et al. 2000). Attempts to improve
the PPV of these early detection strategies in EOC have met with lim-
ited success. These include the utilization of complex longitudinal algo-
rithms for CA125 (McIntosh et al. 2002; Skates et al. 1995, 2003; Zhang
et al. 1999), sequential testing (Berek and Bast 1995; Jacobs et al. 1999)
and the addition of newer markers such as OVX-1 (Bast et al. 1983),
M-CSF (Suzuki et al. 1993), lysophosphatidic acid (Xu et al. 1998), os-
teopontin (Kim et al. 2002) and Kallikrein 11 (McIntosh et al. 2007). In
light of these considerations, novel approaches are needed for the early
detection of EOC.

3 NMR-Based Metabonomics for the Analysis
of Biofluids

An alternative approach for early detection of EOC is to utilize a novel
and unique strategy that provides a coherent perspective of the com-
plete metabolic response of organisms to pathophysiological insult or
genetic modification (Nicholson et al. 1999). This approach to the study
of metabolic processes in biological systems has been termed metabo-
nomics (Nicholson et al. 1999) and is the focus of this paper. We have
hypothesized that the analysis of a global view of metabolites in serum
would enhance the possibility of identifying metabonomic signatures
for EOC. Metabonomics is based on the use of NMR (and other spec-
troscopic methods) and multivariate statistics for biochemical data gen-
eration and interpretation. NMR spectroscopy is based on using nu-
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clear spins to probe their chemical environment when placed in a static
external magnetic field. Nuclei with a spin quantum number 1/2 are
best suited and include 1H, 13C, 15N and 31P. Since protons are present
in almost all metabolites in body fluids, a 1H-NMR spectrum allows
the simultaneous detection and quantification of thousands of proton-
containing, low-molecular-weight species within a biological matrix,
resulting in the generation of an endogenous profile that may be altered
in disease to provide a characteristic fingerprint (Lindon et al. 1999,
2000; Nicholson et al. 1999, 2002).

There are several advantages of NMR-based metabonomics in a clin-
ical setting. It can be performed on standard preparations of serum,
plasma, saliva or urine, circumventing the need for specialist prepa-
rations of cellular RNA and protein required for genomics and pro-
teomics, respectively (Lindon et al. 2000, 2001; Nicholson and Wil-
son 1989; Holmes et al. 2001). Moreover, since cancer is now known
to be a product of the tumor–host microenvironment (Liotta and Kohn
2001), the organ-specific milieu can generate, and enzymatically mod-
ify, multiple proteins, peptides, metabolites, and cleavage products at
much higher concentrations than for molecules derived only from the
tumor cells.

4 1H-NMR Analysis of Plasma and Cancer Detection

The initial report indicating that 1H-NMR spectroscopy of plasma might
be useful for cancer detection was published in 1986 by Fossel et al.
(Fossel et al. 1986). The report was based on the measurements of 1H-
NMR spectra of plasma samples (at either 360 or 400 MHz 1H reso-
nance frequency and at 20–22°C) for 331 subjects, including controls,
patients with various types of malignant and benign tumors and preg-
nant women, and examination of the spectra by applying a parameter,
Fossel Index (FI) which is calculated as a mean of the approximate
widths at half-height of the methylene and methyl resonance envelopes.
Although it appeared possible to clearly and reliably distinguish be-
tween normal controls (FI = 39.5 ± 1.6 Hz) and patients with malignant
tumors (FI = 29.9 ± 2.5 Hz), in many subsequent studies, a remarkable
overlap between cancer patients and controls was noted. This led to an
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intensive interlaboratory evaluation of the reproducibility and accuracy
of the NMR human blood test for cancer by Chmurny et al. (Chmurny
et al. 1988). This test was found to be reproducible but not accurate for
screening a general asymptomatic population for cancer.

There are several limitations of these early studies. First, affected
subjects in these studies had cancer of different organ sites and his-
tologies. Clearly, there is great variability in the biology, invasiveness
and metastatic potential of different tumors, and it would be surprising
to find a single test that could reliably detect all or even a large num-
ber of cancers (Chmurny et al. 1988). Secondly, the predictive value of
a positive screening test for cancer needs to be considered not only in
the context of sensitivity and specificity, but also the prevalence of dis-
ease in the population (for example, the prevalence of EOC is relatively
low). Finally, and most importantly, the early NMR studies are different
from metabonomics because of the significant improvements in high-
resolution NMR technology and novel computationally intense and ro-
bust analytic methods for 1H-NMR spectroscopic data interpretation.
These approaches, previously unavailable, have opened new avenues
for disease diagnosis and management, as evidenced by the recent suc-
cessful application of metabonomics to coronary heart disease (Brindle
et al. 2002) and hypertension (Brindle et al. 2003), and in our studies of
women with ovarian cancer.

5 1H-NMR-Based Metabonomics
for Ovarian Cancer Detection

We recently conducted a study to evaluate the utility of using 1H-NMR-
based metabonomic analysis to discriminate samples from women with
EOC from healthy controls, and women with benign ovarian diseases
(Odunsi et al. 2005). Preoperative serum samples of 38 patients with
EOC undergoing surgery at the Roswell Park Cancer Institute (RPCI)
were collected under an approved institutional review board (IRB) pro-
tocol. The stage distribution of the EOC patients were as follows: stage I:
two patients; stage IIIC: 34 patients; stage IV: two patients. Among
patients with advanced disease (stages IIIC and IV), four (11%) had
normal preoperative serum CA125 levels (<35 units/ml). In addition,
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preoperative CA125 was normal in one of the two patients with stage I
disease. The age range of the study patients was 46–86 years. For con-
trols, the sera of 53 normal healthy women (pre- and postmenopausal
controls), and 12 patients with benign ovarian cysts were collected un-
der two additional IRB protocols at RPCI. The age range of the healthy
premenopausal controls was 22–44 years, while the remaining 32 post-
menopausal controls had an age range of 45–75 years. The age range
of the 12 patients with benign ovarian cysts was 22–68.There were no
significant differences between the study subjects and postmenopausal
controls with respect to age, parity and use of oral contraceptives. Ali-
quots of serum were stored at –80°C until assayed.

5.1 1H-NMR Spectroscopic Analysis of the Serum Samples

Samples (100 µl) were diluted with solvent solution (99.9% D2O)
(450 µl) in 5-mm precision NMR tubes (Norell, Inc., Landisville, NJ,
USA). Conventional 1H-NMR spectra of the serum samples were mea-
sured at 600.22 MHz on a Bruker AMX-600 spectrometer (Billerica,
MA) operating at 600 MHz 1H frequency, using the pulse sequence:
RD–90°–t1–90°–tm–90°, acquire free induction decay (FID) (i.e., the
NOESYPR1D pulse sequence). RD represents a relaxation delay of
1.5 s during which the water resonance is selectively irradiated, and t1
corresponds to a fixed interval of 4 µs. The water resonance is irradiated
for a second time during the mixing time (tm, 100 ms). For each sample,
128 FIDs were collected into 64 k data points using a spectral width of
12.2 kHz and an acquisition time of 2.69 s. The FIDs were multiplied by
an exponential weighting function corresponding to a line broadening
of 0.25 Hz before Fourier transformation. The acquired NMR spectra
were corrected for phase and baseline distortions using UXNMR (ver-
sion 97) and referenced to lactate (CH3δ1.33). Chemical components
were assigned to the spectra on the basis of previously published data
(Ala-Korpela 1995; Nicholson et al. 1995). Figure 1a shows the 600-
MHz 1H-NMR spectra of serum from a postmenopausal patient with
stage 1 EOC, Fig. 1b shows the spectra from a healthy postmenopausal
patient, Fig. 1c shows the spectra from a healthy premenopausal patient,
while Fig. 1d shows the spectra from a patient with ovarian endometrio-
sis. In order to remove any ambiguity in assigned chemical shift values,
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�
Fig. 1. Comparison of patients with EOC with healthy subjects. The 600-MHz
1H-NMR spectra of serum samples from a postmenopausal stage 1 EOC patient
(a), a premenopausal healthy subject (b), a postmenopausal healthy subject (c),
and a patient with benign ovarian cyst (endometriosis) (d). The chemical shifts
of a selection of major metabolites are indicated, based on comparison with
published metabolites (Pretsch et al. 1989)

samples were spiked with a small amount of three reference compounds
to test whether perfect superposition of the signals could be achieved.
A sample of alanine was added first, followed by valine, and then glu-
cose with spectra acquired after each addition. In each case, the reso-
nances of the reference fell directly on top of the assigned resonances
in the biofluid.

5.2 Data Reduction of NMR Data

The 1H-NMR spectra (δ10–0.2) were automatically data-reduced to
200–250 integral segments of equal length (δ0.04) using NutsPro (ver-
sion 20021122, Acorn NMR, Inc., Livermore, CA, USA). Each segment
consisted of the integral of the NMR region to which it was associated.
To remove the effects of variation in the suppression of the water res-
onance, the region δ5.5 to 4.75 was set to zero integral. The data were
normalized to total spectral area and centered scaling was applied.

5.3 Pattern Recognition Analysis of the 1H-NMR Spectra

Principal component analysis (PCA) is an unsupervised method (i.e.,
analysis performed without use of knowledge of the sample class) that
reduces the dimensionality of the data input while expressing much
of the original n-dimensional variance in a 2D or 3D map (Eriksson
et al. 1999). Prior to PCA analysis, all NMR data were mean-centered
and pareto-scaled (Wold et al. 1998) to give each variable a variance
numerically equal to its standard deviation. PCA was carried out on
the 1H-NMR data from the sera of EOC patients and controls to plot
data in order to indicate relationships between samples in the multidi-
mensional space. The principal components were displayed as a set of
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Fig. 2a. PCA plots of factor scores for the first two principal components (t[1],
t[2]) showing the considerable separation achieved between (A) EOC serum
samples (X, �) and healthy premenopausal controls (�)

scores (t), which highlight clustering or outliers, and a set of loadings
(p), which highlight the influence of input variables on t. This data set
of NMR spectra displayed good discrimination between EOC patients
and controls. Thus, we were able to correctly separate all of the 38 can-
cer specimens (100%) and all of the 21 premenopausal normal samples
(100%) (Fig. 2a). In addition, it was possible to correctly separate 37
of 38 (97.4%) cancer specimens and 31 of 32 (97%) postmenopausal
control serum specimens (Fig. 2b). When patients with benign ovarian
disease were included in the PCA analysis, it was still possible to cor-
rectly separate all of 38 cancer specimens (100%) from the sera of all
12 patients with benign ovarian disease (Fig. 2c). Although sera from
patients with benign disease overlapped with sera from the healthy con-
trols, it was possible to achieve separation of cancer versus noncancer
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Fig. 2b. PCA plots of factor scores for the first two principal components (t[1],
t[2]) showing the considerable separation achieved between EOC serum sam-
ples (X, �) and healthy postmenopausal controls (�)

cases. All PCA plots indicated that most of the variation occurred in the
first two principal components.

5.4 Soft Independent Modeling of Class Analogy

In order to provide validation of the results, a supervised analysis of
the data was performed based on soft independent modeling of class
analogy (SIMCA). Since the majority of EOC patients in our study
and in clinical practice are postmenopausal, we chose to perform fur-
ther analysis by comparing the benign and cancer patients with healthy
postmenopausal controls. SIMCA utilizes the features of PCA to con-
struct significance limits for specified classes of samples in the scores
and the residual direction. Mapping of unknown samples onto the cal-
culated models provides the class identity based on similarity between
the unknown samples and the samples in the predefined class models.
A method of visualizing the SIMCA approach is the Cooman’s plot



216 K. Odunsi

-0.40

-0.20

0.00

0.20

0.40

-0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

t[
2

]

t[1]

PCA(X), Cancer vs Post-Menopausal
including Benign Ovarian Disease

c

Fig. 2c. PCA plots of factor scores for the first two principal components (t[1],
t[2]) showing the considerable separation achieved between EOC serum sam-
ples (X, �), healthy postmenopausal controls (�) and benign ovarian cysts (◦).
Note that optimum separation occurred in the second principle component. Pa-
tients with stage I EOC are denoted by X

(Coomans et al. 1984), which plots class distances against each other.
We built separate PCA models for the sera of EOC patients and post-
menopausal healthy controls. SIMCA was then applied to the models
using the Cooman’s plot and the classification performance was as-
sessed by predicting class membership in terms of distance from the
model. The critical distance from the model used corresponded to a 0.05
level, and defined a 95% tolerance interval. The resulting Cooman’s plot
demonstrated that sera classes from patients with EOC, benign ovarian
cysts and the postmenopausal healthy controls did not share multivariate
space, providing validation for the class separation (Fig. 3). Therefore,
it should be possible to predict whether future samples can be classi-
fied as cancer or noncancer. This preliminary data demonstrated that
1H-NMR-based metabonomic analysis of serum samples could achieve
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a clinically useful performance for the identification of serum samples
of patients with EOC.

5.5 Receiver Operating Characteristic Curve Analysis

Univariate receiver operating characteristic curve (ROC) analyses were
carried out via individual logistic regressions for each of 219 1H-NMR
regions in order to examine their utility for predicting EOC. The sensi-
tivity and specificity trade-offs were summarized for each variable us-
ing the area under the ROC curve denoted AUC, and calculated us-
ing the trapezoidal rule. An AUC value of 1.0 corresponds to a predic-
tion model with 100% sensitivity and 100% specificity, while an AUC
value of 0.5 corresponds to a poor predictive model (see Pepe et al.
1997 for an overview of ROC analyses via logistic regression model-
ing). The best two variable models were then fit starting from the uni-
variate information via a forward stepwise selection using the AUC as
the criteria for a variable’s entry into the model. The data showed that
a two variable model consisting of 1H-NMR regions 2.77 ppm from the
origin and 2.04 ppm from the origin provided a perfect fitting model,
i.e., AUC = 1.0. A scatterplot is provided in Fig. 4, which clearly il-
lustrates the delineation between the two groups. Of note, the univari-
ate model that considered only region 2.04 ppm gave an AUC = 0.942,
while the AUC for the univariate model for region 2.77 ppm gave an
AUC = 0.689, i.e., prediction based upon region 2.04 is enhanced condi-
tional upon the information contained in region 2.77 ppm. We hypoth-
esize that the preliminary information that we have derived from this
ROC analysis will allow us to refine this model for early-stage EOC,
and that this approach could represent a novel strategy for the early de-
tection of EOC.

5.6 Analysis of Spectral Pattern Differences

Based on the promising results showing complete separation of patients
with EOC and controls using unsupervised PCA, supervised SIMCA,
and ROC analyses applied to 1H-NMR spectra of sera, we have pro-
ceeded to identify the molecules responsible for the differences in spec-
tral patterns utilizing a previously described methodology (Gavaghan
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et al. 2000). The regions of the NMR spectrum that most strongly in-
fluence separation between EOC and healthy controls are indicated by
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the regression coefficients (data not shown). The coefficients were de-
rived from the PCA models and each bar represents a spectral region
covering 0.04 ppm, showing how the 1H-NMR profile of the EOC sam-
ples differed from the 1H-NMR profile of the healthy serum samples.
A negative value indicates a relatively greater concentration of metabo-
lite (assigned using NMR chemical shift assignment tables) present in
EOC samples and a positive value indicates a relatively lower concen-
tration, with respect to EOC samples. In general, the regression coeffi-
cients, or loadings, most influential for the EOC samples compared with
postmenopausal controls lie around δ3.7 ppm (due to various sugar hy-
drogens) while the loadings most influential for the EOC samples com-
pared with premenopausal controls lie around δ2.25 (due to acetoac-
etate). Other loadings suggest greater amounts of 3-hydroxybutyrate
and isobutyrate in the sera of EOC patients compared with pre- and
postmenopausal controls. These differences are also readily apparent
on visual inspection of the spectra. The biological significance of these
observations is currently unclear.

5.7 Validation of EOC Results in an Independent Set
of Serum Specimens

In an effort to validate the results described above, we recently exam-
ined an independent set of specimens from the Databank and Biorepos-
itory core facility at Roswell Park Cancer Institute. We compared 20
patients with stage III ovarian cancer with age-matched controls. The
results confirm our original data and indicate considerable separation
of EOC patients from healthy controls by PCA and PLS-DA methods
(Fig. 5a and b).

5.8 Mass Spectrometry-Based Metabolic Profiling
in Ovarian Cancer

In a recent study, the combination of gas chromatography/time-of-flight
mass spectrometry (GC-TOF MS) was used to analyze 66 invasive ovar-
ian carcinomas and nine borderline tumors of the ovary (Denkert et al.
2006). After automated mass spectral deconvolution, 291 metabolites
were detected, of which 114 (39.1%) were annotated as known com-
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Fig. 5a, b. Validation of 1H-NMR metabonomics in an independent set of EOC
specimens. a PCA plot and b PLS-DA plot showing considerable separation
between EOC cases (red) vs healthy controls (black)

pounds. Principal component analysis (PCA) revealed four principal
components that were significantly different between the two groups,
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with the highest significance found for the second component
(p = 0.00000009). PCA as well as additional supervised predictive mod-
els allowed a separation of 88% of the borderline tumors from the carci-
nomas. Using the KEGG database, the authors linked metabolic changes
to putative key enzymes that play an important role in the corresponding
pathways. These include enzymes that regulate pyrimidine metabolism
such as dihydropyrimidine dehydrogenase and thymidine phosphory-
lase. The unique aspect of the study is the demonstration that metabolic
profiling using GC-TOF MS is suitable for analysis of fresh frozen hu-
man tumor samples. Moreover, there appears to be a consistent and sig-
nificant change in primary metabolism of ovarian tumors, which can be
detected using multivariate statistical approaches.

In another recent study, peptides were extracted from frozen tissues
of 25 ovarian carcinomas (stages III and IV) and 23 benign ovaries; and
analyzed using MALDI-TOF MS, nanoESI MS and MS/MS (Lemaire
et al. 2007). A marker with anm/z of 9744 corresponding to 84 amino
acid residues from the 11S proteasome activator complex (PA28 or
Reg-alpha) was identified. This marker was subsequently validated us-
ing MALDI imaging, classical immunocytochemistry with an antibody
raised against the C-terminal part of the protein, and Western blot anal-
ysis. Together these two studies (Denkert et al. 2006; Lemaire et al.
2007) indicate that direct tissue analysis by mass spectrometry-based
strategies can facilitate biomarker discovery and validation in human
cancers.

6 Conclusions and Future Directions

There have been remarkable efforts by several groups of investigators to
identify reliable markers for early detection of a wide range of solid tu-
mors, including epithelial ovarian cancer (EOC). High-throughput
metabolite profiling and protein expression analysis aimed at the identi-
fication of metabolites that are generated as a consequence of tumor–
host interaction could provide a strategy for (a) discriminating can-
cer cases from healthy control candidates and (b) identifying a panel
of metabolites that could be useful as biomarkers of early detection
and targets of therapy. The rapid development of metabonomics and
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proteomics-based technologies are bringing new perspectives that will
likely integrate both approaches leading to a comprehensive and global
view of cancer cell behavior. Widespread and routine use of metabo-
nomics for cancer diagnosis will require the implementation of care-
fully developed SOPs based on larger studies in various cancer types.
The identification of a repertoire of metabolites and proteins that mark
the transition from normal to the transformed phenotype should allow
detection of cancer at a preclinical stage, where the chances for cure
would be highest.
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