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Abstract. There exists at present an urgent desire for better biomarkers, espe-
cially in the context of pharmaceutical drug development and in the detection
and management of disease. Many researchers in the area of biomarker dis-
covery and development have turned to the “-omics” sciences as a way of ad-
dressing these needs. Metabolic profiling, or metabonomics, defines the meta-
bolic phenotype and offers a source of novel biomarkers that have better po-
tential to translate effectively. This review will discuss the broad philosophy
and motivations behind metabonomics, and illustrate the case with applications
relevant to pharmaceutical development and patient management. Particular fo-
cus will be paid to the potential of metabonomics to contribute to biomarker
discovery in toxicology and cancer research.
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1 The Potential of the Metabolome
to Fill the Biomarker Gap

The high candidate drug attrition rate, particularly late in the develop-
ment process, is extremely costly and is often due to the poor transla-
tion/prediction of drug metabolism, efficacy or toxicity from preclini-
cal models to humans. These problems are exacerbated and intertwined
with the lack of mechanistic understanding relating to many disease pro-
cesses and indeed even in terms of pharmacological action itself. Given
that most disease is heterogenenous in phenotype, it is also widely rec-
ognized that there has been a dearth of biomarkers able to stratify pa-
tients into those groups most likely to benefit from a particular treat-
ment, and that this has led to costly failures of development programmes
(Frank and Hargreaves 2003). Such biomarkers are in fact a funda-
mental part of chemopreventative strategies, which require by default
a means by which to select subpopulations at particularly high risk of
disease or disease progression. Hence the need for biomarkers that can
personalise medicine for the individual and that translate effectively be-
tween models and humans is paramount.

The establishment of platforms that can characterise a biological
sample in an untargeted and highly parallel manner have revolutionised
modern biological research. Operating in a primarily hypothesis-gener-
ating rather than hypothesis-testing mode allows for efficient screen-
ing of candidate biomarkers without making prior (and not always cor-
rect) assumptions about what relationships may be detected. Where it
is possible to operate in a near comprehensive manner, such as in the
definition of the genome or the associated transcriptional profile (tran-
scriptome), one can be confident in obtaining a truly global perspective
of a system at the chosen biomolecular level. By its nature “-omics” sci-
ence is clearly technology driven, and its growth has only been possible
by major and continuous advances in analytical science and bioinfor-
matics. While this paradigm for research is somewhat challenging to
the traditional reductionist approach to biology, it has begun to be rou-
tinely used by many investigators.

Analogous to the concept of the genome or proteome, the meta-
bolome can be defined as the complete description of metabolite lev-
els in a biological system (Tweeddale et al. 1999). Seen from a geno-
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centric perspective, it offers a holistic description of the metabolic phe-
notype for functional genomics studies (Raamsdonk et al. 2001). From
a more integrated viewpoint, knowledge of the metabolome, in addi-
tion to gene expression and regulation, is a vital component of systems
biology. In reality, the metabolome is also subject to major exogenous
inputs in the form of exposure to pharmaceutical, environmental and di-
etary compounds, and in most multicellular organisms is manipulated
by means beyond the host genome or proteome via commensural mi-
crobes (Nicholson et al. 2004, 2005). Thus the metabolome is a diffuse
concept and the researchers in this area (metabonomics/metabolomics)
tend to work with data that can be more readily recognised as metabolic
profiles: descriptions of small molecule composition that are not neces-
sarily comprehensive but are largely unbiased in scope and amenable
to quantitative interpretation. Analytical techniques used to measure
metabolites, such as NMR spectroscopy and mass spectrometry, can
be used to generate such profiles in a targeted or untargeted manner,
efficiently defining detectable portions of the metabolome. While obvi-
ously desirable, metabolic profiles need not be fully resolved and an-
notated, i.e. all metabolites defining the profile are identified a priori).
Analytical profiles can be analysed directly by statistical pattern recog-
nition to identify factors that correlate to exposure to known toxicants
or to the presence or likelihood of disease, and hence target metabo-
lite characterisation. This distinction between targeted and untargeted
metabolic profiling has some parallels with the difference between
bottom-up versus top-down strategies for systems biology.

Among the ideas that surround metabolic profiling, the concept of
metabonomics (Nicholson et al. 1999) in particular embraces a top-
down approach, and traditionally has exploited the analysis of biofluids
such as urine or plasma, lending it towards efforts to understand integra-
tive physiological and systemic change (Fig. 1). Also, as part of metabo-
nomic studies, intact tissue is often analysed by magic-angle spinning
(MAS) NMR spectroscopy, which provides observations that have some
relevance to in vivo NMR spectroscopy (MRS/MRI). The combination
of biofluid analysis and untargeted metabolic analysis makes metabo-
nomics an ideal platform for translational biomarker research. Noninva-
sive or minimally invasive biomarkers derived from body fluids or that
can be detected by imaging are inherently more practical to take from
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Fig. 1. Metabonomics works at the interface between an organism and its envi-
ronment

the bench to the bedside. In addition, a metabolite is a defined chemical
entity that is the same across all cell types, species and individuals, un-
like gene products which change in sequence, splicing and are modified
post-translation. This makes the analytical protocols used for metabolite
detection fundamentally more likely to translate from models to humans
and vice-versa.

Metabonomic profiles have been shown in principle to reflect the
presence of pathological events in a number of disease models, includ-
ing those for diabetes and metabolic syndrome (Dumas et al. 2007),
infection (Wang et al. 2006), cancer (Al-Saffar et al. 2006; Bundy et al.
2006; Glunde et al. 2006; Teichert et al. 2008) and neurological dis-
ease (Tsang et al. 2006). Importantly, there are several key examples of
metabonomics studies demonstrating the ability to detect the presence
of, or potential for, disease in humans, namely atherosclerosis (Brindle
et al. 2002; Makinen et al. 2007), cancer (Odunsi et al. 2005; Beger
et al. 2006), schizophrenia (Holmes et al. 2006) and congenital defects
in metabolism in infants, including those of unknown aetiology (Wev-
ers et al. 1999). While the role of metabolism in the aetiology of disease
processes such as metabolic syndrome is obvious, there are metabolic
phenotypes for other pathologies such as neurological disease where the
link is less clear, highlighting the potential of metabonomics to provide
novel biological insight into already well-studied areas. Much of this
new biology arises from the fact that metabolic profiles will not only be
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determined by altered regulation of metabolic pathways and enzymatic
activity, but also reflect environmental exposures and the functional in-
tegrity of cells, and tissues. Nongenomic factors already form the basis
of most systemic biomarkers currently used in pathological reporting,
particularly in toxicology.

2 Metabonomics in Toxicology

In toxicology, there are several ways in which new biomarkers can make
an impact:

• By detecting otherwise silent pathologies;

• By being more translatable/relevant to humans;

• By predicting the individual susceptibility to an adverse event;

• By being less invasive and allowing response dynamics to be de-
fined using less compound and fewer animals;

• By predicting traditional outcomes (i.e. acting as surrogate end-
points) and thus allowing risk and safety margins to be evaluated
using less compound and fewer animals earlier in development;

• By revealing the mechanism leading to toxicity or the potential
for toxicity and thus aid risk assessment.

There is a wealth of data in preclinical models demonstrating how the
relationships between metabolic profiles and the severity, timing, site
and mechanism of chemical toxicity could be exploited for all of these
purposes (Robertson 2005; Keun 2006; Keun and Athersuch 2007).

Metabolic profiling can add significant value to the samples routinely
generated by preclinical studies in drug discovery and development. In
the context of such studies, endogenous metabolites are largely seen as
interferences to the study of drug metabolites or other biomarkers of ex-
posure. However, a substantial body of work has demonstrated that spe-
cific urinary metabolite changes could be associated with liver toxicity
(Nicholson et al. 2002). Using model compounds, a number of partic-
ular biomarkers have been reported in metabonomic studies, including
taurine for general liver dysfunction (Sanins et al. 1990); bile aciduria
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for billiary toxins (Robertson et al. 2000); N-methyl nicotinamide for
peroxisome proliferation (Connor et al. 2004), 5-oxoprolinuria for dis-
ruption to glutathione metabolism (Waters et al. 2006) and medium
chain dicarboxylic aciduria for dysfunction of mitochondrial fatty acid
metabolism (Mortishire-Smith et al. 2004). A combination of markers
was also shown to give site-specific information with regard to nephro-
pathy and was sensitive to the severity and recovery of the lesion (Gart-
land et al. 1990; Holmes et al. 1992; Anthony et al. 1994).

Information derived from metabonomics could provide toxicologi-
cal input in lead selection and optimisation where the amount of com-
pound available is relatively low. By using urine that might already be
collected for metabolism studies and by sampling continuously, early
hazards can be detected efficiently, i.e. without extended dosing using
extra animals. Using a multivariate regression model, five structurally
similar compounds could be ranked based on NMR urinalysis, reveal-
ing a specific interruption of renal choline uptake that was not detected
using classical methods of assessing toxicity (Dieterle et al. 2006). In
this instance, metabonomics was able to detect the potential for an ad-
verse event prior to the appearance of histopathology as well as provide
clues as to the mechanism of toxicity, thus aiding risk assessment. All
else being equal, the compounds producing a normal metabolic profile
could be the better candidates for further development.

An important factor in interpreting changes in metabolic profile is the
time course or trajectory. Urine sampling is noninvasive and effectively
allows continuous monitoring over time. As variation in the dynamics
of these metabolic perturbations also coincide with variation in the rate
and severity of toxicity between individual animals, metabolite trajec-
tories are important for understanding the specificity of a biomarker
response (Nicholson et al. 2002). In principle, even a single molecule
could be affected by several processes throughout an experiment, such
as an adaptive or stress response, the loss of function or compartmen-
tation, or significantly, regeneration (Fig. 2). It is difficult to correlate
such changes directly to other endpoints that may be undersampled or
have completely different time courses such as histopathology or gene
expression (Fig. 3). We may wish to filter out the other factors and focus
on the adaptive changes that might be the most relevant for predicting
the chronic outcome from an acute study. One way we can tackle the
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problem is to look at the relationship between the time courses of sev-
eral metabolites. Metabolites that share the same trajectories presum-
ably reflect the same underlying process, and understanding the collec-
tion of metabolites that respond together can help to refine the definition
of these processes. For example, it has frequently been observed that
the excretion pattern of hippurate and the Krebs cycle intermediates are
frequently coincident in toxicological studies (Fig. 4). While several ex-
planations of this phenomenon could exist for any given treatment, such
as a mitochondrial specific response, it is known that all these molecules
are similarly reduced by reduced food intake (Connor et al. 2004). We
can then use this correlation of metabolite excretion to infer the process
occurring, even when the magnitude of the effect is different from study
to study. We can also use the pattern of correlations as a model from
which to discern deviation from the influence of these processes and
begin to attribute further biological significance to metabolite changes.

Many of these key ideas were developed within the Consortium for
Metabonomic Toxicology (COMET) project (Lindon et al. 2003, 2005),
which during its initial phase between 2001 and 2004 generated a data-
base of over 35,000 biofluid metabolic profiles from 147 exposures in
rodents to toxicological and physiological stressors. These data mostly
included acute exposures to a wide variety of liver and kidney toxicants,
but physiological stressors such as food restriction and partial hepatec-
tomy were also examined, as was toxicity at other target organs such as
testicular and pancreatic toxicity. This project was able to demonstrate
that metabonomic responses to toxicity were (a) robust analytically and
biologically using a multi-centre approach and high-throughput profil-
ing (Keun et al. 2002, 2004) and (b) were sufficiently specific to the site
and mechanism of toxicity to allow detection and classification of ad-
verse events using a statistical model alone, the COMET expert system
(Ebbels et al. 2007).

A large element of the expert system was the efficient handling of
multivariate data via pattern recognition techniques. It had been shown
previously that techniques such as principal components analysis (PCA)
were potentially very valuable in visualisation and classification of
metabonomics data (Holmes et al. 1992; Keun et al. 2004). Within
this approach is the implicit assumption that allegedly similar profiles
represent similar states and hence the same responses to toxin expo-
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Fig. 2. Early effects to the aliphatic region of the 1H NMR spectrum of rat urine
after partial hepatectomy, a model of liver regeneration

sure, i.e. a compendium approach to toxicity classification. Putting this
idea into practice across many studies required that highly multivariate
metabolic trajectories be modelled. PCA allows trajectories to be visu-
alised not in just one or two dimensions but using an infinite number
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Fig. 3. Biomarker dynamics after acute toxin exposure

of measurements, summarising the variation into a lower dimensional
space. It was subsequently shown that, after appropriate adjustment for
the severity of response and the baseline metabolic profile, coincident
metabolic trajectories result from the appearance of the same lesion via
different chemical compounds (Keun et al. 2004). This led us to the
homothetic trajectories hypothesis: it is the shape of the trajectory, i.e.
how metabolite changes correlate to each other, that encapsulates the
metabolic response in a manner best suited to classifying the toxicity.

For the COMET expert system, it was also necessary to compare
trajectories easily and objectively. A nonlinear density estimation ap-
proach called CLOUDS was used (Ebbels et al. 2003). Related to Parzen
density estimation, CLOUDS allows toxin-likeness to be assessed by
superposition of trajectories. The overlap integral generated indicated
the similarity of response while also taking into account the variability
in response. In a training set of urinary NMR data from 80 studies, the
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Fig. 4. Selected metabolite excretion and body mass trajectories after partial
hepatectomy

approach was show to be able to cluster treatments according to target
organ and even sub-organ specificity (Ebbels et al. 2007). In a predictive
analysis it was possible to assign the correct target organ to the majority
of treatments with 92% accuracy.

In a shift from observational to mechanistic application of metabo-
nomics in toxicology the second phase of the COMET project will
attempt to (a) establish biomarkers for renal papillary necrosis, an other-
wise silent lesion and (b) define factors that contribute to the hypervari-
ability of response to galactosamine (galN), a model for idiosyncratic
hepatic toxicity. Metabonomic studies are already providing new insight
into the protective role of glycine in galN toxicity, providing an exam-
ple of the mechanistic role of the platform. In a 1H NMR spectroscopic
study, the level of N-acetylglucosamine (glcNAc) in the post-dose urine
was found to correlate strongly with the degree of galN-induced liver
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damage, while the urinary level of glcNAc was not significantly ele-
vated in rats treated with both galN and glycine (Coen et al. 2007).
Treatment with glycine alone was found to significantly increase hep-
atic levels of uridine, UDP-glucose and UDP-galactose. Uridine is also
protective to galN toxicity, suggesting that the protective role of glycine
against galN toxicity might be mediated by changes in the uridine nu-
cleotide pool rather than by preventing Kupffer cell activation, as cur-
rently presumed.

In addition to correlating to the presence of toxicity, there is also evi-
dence that metabolic profiles can directly predict the susceptibility of in-
dividual organisms to pathological events following toxicant exposure.
Proof-of-principle studies have shown that the severity of drug hepatox-
icity and drug metabolism in rodents can be predicted from pretreatment
urinary metabolic profiles (Clayton et al. 2006), and a validation of the
latter of these observations in a clinical trial is currently underway. In
light of the analogous concept of pharmacogenetics, this model has been
described as pharmaco-metabonomics. Interestingly, the prognostic uri-
nary metabolites identified appeared to be diet-related compounds gen-
erated by commensural gut microbes, highlighting how metabonomics
provides a unique viewpoint on extra-genomic interactions.

As metabolites from exogenous and endogenous sources are mea-
sured simultaneously in an unbiased manner, metabonomics is gener-
ally well suited to the generation of novel predictive biomarkers that
link environmental exposures to human health via a meet-in-the-middle
approach (Vineis and Perera 2007). The risk of developing cancer is
clearly linked to dietary exposure to carcinogens, such as in the meat-
derived heterocyclic amines (Gooderham et al. 2006), and exposure to
chemopreventative agents, such as resveratrol found in red grapes (Aziz
et al. 2003). Many more factors, either directly active toxicants or mod-
ulating agents could be discovered by a metabonomic approach, which
will be a more common part of prospective biomarker studies, both epi-
demiological and clinical.



90 H.C. Keun

3 Metabonomics in Oncology

Irrespective of biomarker discovery, there is strong evidence for a com-
mon metabolic phenotype associated with cancer. As long ago as the
1920s, Otto Warburg described the phenomenon of aerobic glycolysis,
the apparently greater tendency of tumour cells to convert glucose to
lactate in the presence of normal oxygen conditions. Evidence exists
to suggest that the glycolytic phenotype confers selective growth ad-
vantages to transformed cells (Gatenby and Gillies 2004) and the func-
tion of the tumour suppressor p53 has been linked to this phenomenon
(Matoba et al. 2006). Other aspects of the tumour metabolic phenotype
centre around the observation that growth of tumour cells in culture
is often unusually dependent on the availability of common substrates,
such as glutamine, methionine, cysteine and arginine (Wheatley 2005).
In oncology, the altered metabolic phenotype of tumours is routinely
exploited in diagnosis (e.g. FDG-PET) and in therapy (e.g. 5-FU, an an-
timetabolite). Metabolic profiling offers a number of opportunities for
discovery and development of noninvasive biomarkers in cancer studies
based on both screening and functional genomics strategies.

Metabolic profiles have been shown to be able to subclassify cancer
phenotypes in number of solid tumours, including those of the brain
(Tate et al. 2006), prostate (Cheng et al. 2005), ovary (Denkert et al.
2006) and breast (Katz-Brull et al. 2002). A key pathway involved in
this discrimination is choline metabolism. The ubiquitous presence of
elevated choline metabolites in tumour cells (Fig. 5) has been detected
by magnetic resonance both in vivo and in vitro, translating across
species and present across a wide range of primary and secondary tu-
mour sites (Glunde et al. 2006). This, together with an increase in the
phosphocholine/glycerophosphocholine (PC/GPC) ratio, has been
shown to be a general marker for rapid proliferation and tumorigenicity,
but in conjunction with other metabolite measurements could be predic-
tive of the invasiveness of a tumour and useful in the clinical staging of
disease. While effort continues to be invested in determining the mech-
anism behind this phenomenon, it would appear to be in part due to
increased choline transport into the cell and upregulated choline kinase
activity in response to the demand for phosphatidylcholine and mem-
brane synthesis (Glunde et al. 2004, 2005). The observation has proved
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Fig. 5. Perturbations to choline metabolism detected by 1H MAS-NMR spec-
troscopy of intact tissue

of particular value in the development of choline kinase inhibition as
a therapeutic strategy, which has been shown to be successful in both
HT29 and MDA-MB-231 xenograft models (Al-Saffar et al. 2006). This
work tells an important story about the value of biomarker research via
exploratory clinical studies in the translational research setting. Since
the identification of choline kinase as a drug target has derived in part
from the visible impact of its activity in tumours, we can immediately
turn around the result and use the choline NMR signal as a pharma-
codynamic marker, safe in the knowledge that it has clinical relevance
(Fig. 6). It also provides a phenotypic anchor with which to help evalu-
ate results in animal models.

We were interested in understanding how the metabolic phenotype of
tumours in an autochonous model of prostate cancer (Transgenic Ade-
nocarcinoma of Mouse Prostate; TRAMP) compared to the known hu-
man tumour profile. We found that while prostate-specific features of
the human phenotype were preserved, such as a depletion of the un-
usually high levels of citrate in the prostate, the more general feature
of elevated choline metabolites was not (Teichert et al., in press). Tu-
mour tissue from the TRAMP model did not exhibit any upregulation of
ChoK at either the transcriptional or protein level. These results helped
to rationalise the lack of sensitivity of certain in vivo MRS parame-
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Fig. 6. The potential life cycle of a metabolic biomarker

ters such as the total choline/citrate ratio, which have known signifi-
cance as a detection and progression marker in human disease, in the
TRAMP model (Fricke et al. 2006). It is an example of how metabo-
nomics can be used to evaluate preclinical models of cancer and sug-
gests that the TRAMP model will behave differently pharmacodynami-
cally to metabolically targeted therapies such as ChoK inhibition. These
differences between the TRAMP tumour metabolic phenotype and the
human disease may well originate from the specific form of oncogenic
transformation (SV40 t & T antigen) used to generate the model that af-
fects the products of p53 and Rb genes. It is interesting to note that the
loss of the PTEN tumour suppressor, a more relevant event to human
prostate cancer than the consequences of SV40 transfection, produces
the expected metabolic response in vivo MRS data to suggest that it may
be a more appropriate model for biomarker studies (Fricke et al. 2006).
Such experiments do not only support biomarker development, but si-
multaneously further our understanding of the link between metabolism
and malignant transformation.
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To what extent the metabolic phenotype of cancer is causal or con-
sequential to carcinogenesis and disease progression is still widely de-
bated; however, key examples such as the pseudohypoxia effect of high
succinate and fumarate levels in HIF activation show how metabolism
can directly promote tumour development (Pollard et al. 2005). In light
of this, metabolic profiling has clear potential to reveal new relation-
ships between metabolic perturbation and transformation, and there is
a good evidence base already available. Fibroblast cell lines progres-
sively transformed from a primary to a cancerous state using telomerase,
and oncogenic Ras show increasing sensitivity to glycolysis
inhibitors while simultaneously becoming resistant to inhibition of oxi-
dative metabolism. The choline metabolic phenotype is also mediated
by both the loss of tumour suppressor function and oncogene activa-
tion, specifically p300 (Bundy et al. 2006), oncogenic Ras (Ratnam and
Kent 1995), and telomerase (Iorio et al. 2005). While there are not yet
clear examples of metabonomics predicting the future occurrence of
cancer, there is in vivo evidence to support the hypothesis that some of
the metabolic features of cancer can arise with premalignant transfor-
mation of cells. The presence of a biochemically abnormal field sur-
rounding a tumour and either originating the neoplasm or caused by it
can be defined by p53 mutation (Ito et al. 2005) and epigenetic changes
(Ushijima 2007). It has been suggested that such a field could be de-
tected by metabolic profiling, since correlations to the stage of disease
were observed even in histologically normal tissue from patients with
prostate cancer (Cheng et al. 2005).

Whether any of these effects manifest themselves in biofluids is not
known, but clearly the discovery of systemic metabolic biomarkers spe-
cific to cancer is of enormous value in terms of patient management and
detection screening. Although there is evidence that metabolic profiles
of sera or serum lipids can detect the presence of ovarian (Odunsi et al.
2005) and pancreatic cancer (Beger et al. 2006), biomarker screening
in serum or plasma has a difficult past with both NMR-based (Fossel
et al. 1986; Okunieff et al. 1990) and SELDI-MS-based (Petricoin et al.
2002; Baggerly et al. 2005) protein marker profiles being challenged
due to high normal variability and sample bias (Ransohoff 2005; Tea-
han et al. 2006). Thus despite the enormous potential of all “-omics”
technologies, it is important to exercise some caution and to work hard
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to avoid historical pitfalls. Even in exploratory clinical studies, it is
valuable and probably necessary to rationalise any putative metabolite
biomarker firmly in the context of the tumour metabolic phenotype.
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