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Abstract. From the point of view of a participant observer, I tell the discov-
ery stories of trimeric G-proteins and GPCRs, beginning in the 1970s. As in
most such stories, formidable obstacles, confusion, and mistakes make even-
tual triumphs even more exciting. Because these pivotally important signaling
molecules were discovered before the recombinant DNA revolution, today’s
well-trained molecular biologist may find it amazing that we learned anything
at all.

Born three decades ago and now grown to robust maturity, trimeric
G-proteins and G-protein-coupled receptors (GPCRs) continue to gen-
erate exciting advances in biology and drug discovery. Here I recount
the story of their births, from the point of view of a participant observer.
As in most discovery stories, formidable obstacles, confusion, and mis-
takes make eventual triumphs even more satisfying.
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Two unrelated events—Sutherland’s discovery of cAMP in the 1950s
and the Vietnam war of the 1960s—brought me into the story. To avoid
military service, I spent two years at the National Institutes of Health
(NIH), in Bethesda, Maryland, where I learned to measure cAMP syn-
thesis in fat cell extracts. In 1969 I moved to the University of California
San Francisco (UCSF) as a research fellow, and began to study cAMP in
human leukocytes, a choice that reflected widespread interest in cAMP
as a second messenger, plus the fact that no one else west of the Missis-
sippi river knew the adenylyl cyclase assay. Neither I nor my colleagues
could have foreseen the delights cAMP would eventually bring.

Indeed, signaling research in the 1960s and 1970s would be almost
unrecognizable to scientists trained after the recombinant DNA revo-
lution of the 1980s. The cutting edge was hard-core biochemistry, but
many experiments focused on bio-assays using animal tissues or en-
zyme assays in extracts. In multiple laboratories from 1964 to 1972,
I never heard the words “genetics”, “DNA”, or “evolution” mentioned,
much less used in planning an actual experiment. Today’s molecular
biologists will find it astonishing that we learned anything at all.

I shall tell the birth stories of G-proteins and GPCRs in more or less
chronological order, emphasizing what investigators thought and imag-
ined at the time and explicitly labeling explanations based on hindsight.
A caveat is in order: more memoir than scholarly treatise, these stories
necessarily reflect a personal point of view, replete with limitations of
observer bias, faulty memory, and ignorant omission. Nonetheless, the
message is as true as I can make it, even if some details are wrong.

1 Prologue: GTP Enters the Picture

In the early 1970s, Martin Rodbell’s laboratory at the NIH was as-
saying adenylyl cyclase and binding of radioactive glucagon in liver
membranes. Lutz Birnbaumer, who was responsible for many of the ex-
periments, tells me (L. Birnbaumer, personal communication) that they
were pleased when the EC50 for glucagon’s activation of adenyl cy-
clase appeared identical to its Kd for binding to membrane sites. But
Lutz reminded his colleagues that the cyclase assay contained Mg2+

and ATP, while the binding assay did not. Repeating the binding as-
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Fig. 1. The receptor and adenylyl cyclase in the early 1970s. The diagram is
taken from a slide presented in seminars by the author in 1973–1975

says in the presence of Mg2+ and ATP produced a disconcerting result:
the glucagon binding curve shifted to the right, with a higher Kd. As-
tutely, they tested other nucleotides: GTP shifted the binding curve more
potently than ATP (Rodbell et al. 1971b). (The “pure” ATP they used
turned out later to be contaminated by GTP.) A chemically pure syn-
thetic ATP analog did not shift the binding curve, but did serve as an
effective substrate for glucagon-stimulated cAMP synthesis, but only if
GTP was added to the assay (Rodbell et al. 1971a).

These observations triggered fanciful speculations, but investigators
were slow to realize that the evidence might point to a GTP-binding
protein distinct from both receptor and adenylyl cyclase. Now we know
that GTP reduced the receptor’s affinity for glucagon by preventing the
trimeric G-protein, Gs, from enhancing the GPCR’s affinity for ago-
nist: agonist affinity was reduced because GTP binding to Gs caused it
to dissociate from the GPCR (De Lean et al. 1980; Ross and Gilman,
1980). At the time, however, many were not even convinced, despite ac-
cumulating evidence, that receptors and adenylyl cyclase were separate
molecules (see Fig. 1). In 1975, Al Gilman’s laboratory summarized
their failed attempts to purify adenylyl cyclase in the title of a paper:
“Frustration and adenylate cyclase” (Maguire et al. 1975).

Key insights into the mysterious relation between GTP and adeny-
lyl cyclase came from Zvi Selinger’s laboratory (Cassel et al. 1977;
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Cassel and Selinger, 1976). He and his colleagues were intrigued by
a report from the Rodbell laboratory (Londos et al. 1974) showing that
a hydrolysis-resistant GTP analog, Gpp(NH)p, activated adenylyl cy-
clase on its own, and to an extent greater than GTP; moreover,
Gpp(NH)p cooperated with hormones to further stimulate cAMP syn-
thesis. If resistance to hydrolysis made GTP more effective, they rea-
soned that hormones might regulate GTPase activity. Soon the Selinger
lab found that a GTPase activity in turkey erythrocyte membranes was
stimulated by isoproterenol, and that this stimulation was blocked by
propranolol. They proposed that cAMP synthesis depended on agonist-
stimulated binding of GTP to a component of the adenylyl cyclase com-
plex, that GTP hydrolysis terminated stimulation, and that continued
cAMP synthesis required repeated agonist-stimulated cycles of GTP
binding and hydrolysis. Their proposals were not greeted with enthu-
siasm. The Journal of Biological Chemistry rejected the first Selinger
paper, which was deemed “prejudice not science”, because “if anything,
the hormone should inhibit GTP hydrolysis” (Z. Selinger, personal com-
munication). In 1976, a respected senior investigator—perhaps a re-
viewer of the Selinger paper—admonished me to “be very cautious
about accepting such a strange interpretation”.

2 The Stimulatory Regulator of Adenylyl Cyclase

In 1972, I struck up a commute bus conversation with Gordon Tomkins,
a UCSF faculty member. Gordon told me that somatic genetics—an en-
tire field that was news to me—could furnish valuable clues to under-
standing hormone action. A postdoc in his laboratory had found that S49
mouse lymphoma cells die when exposed to a cAMP analog, and was
beginning to isolate cAMP-resistant S49 variants (Daniel et al. 1973).
cAMP resistance, Gordon suspected, resulted from mutation of a gene
encoding a key protein in the cAMP response pathway. I jumped at the
chance to join the project.

Soon I found myself working with Phil Coffino, an immensely tal-
ented postdoc in Gordon’s lab. We isolated cAMP-resistant clones car-
rying mutations that inactivated protein kinase A (Bourne et al. 1975b;
Coffino et al. 1975; Insel et al. 1975). Then we looked for an S49
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clone lacking the β-adrenoceptor (β-AR). We imagined that such cells
would die in the presence of cAMP analogs but resist killing by iso-
proterenol. To our surprise, clones that met these criteria also failed to
die, or even to accumulate cAMP, in response to two additional stimula-
tors of adenylyl cyclase, prostaglandin-E1 and cholera toxin. We called
these cells cyc–, to indicate a deficiency of adenylyl cyclase (Bourne
et al. 1975a), unaware that somatic genetics was hinting at existence of
a protein we could not then imagine.

Later in 1974, Gordon received a postdoctoral application from
a Cornell graduate student, Elliott Ross. Elliott’s letter proposed to re-
constitute hormone-sensitive adenylyl cyclase in cyc– membranes, us-
ing wild type S49 membranes as a source for purifying the component
missing in cyc–. Gordon promptly invited Elliott to join his lab, but it
was not to be: a few months later, Gordon died after a brain operation,
and Elliott joined Al Gilman’s laboratory instead. We had sent cyc– cells
to the Gilman laboratory as part of a separate collaboration, resulting in
a paper (Insel et al. 1976) whose title revealed the meager state of our
knowledge: “β-adrenergic receptors and adenylate cyclase: Products of
separate genes?” (We got the right answer, all the while ignoring the
fact that cyc– cells are not deficient in adenylyl cyclase.)

Much more important, with cyc– cells in hand Elliott could begin
to tackle reconstitution of isoproterenol-stimulated adenylyl cyclase.
It was not easy. Elliott and Al plowed through myriad detergent extrac-
tions and reconstitution strategies before they showed that cyc– can be
persuaded—by addition of a membrane extract from wild type cells—
to synthesize cAMP in response to isoproterenol (Ross and Gilman
1977a). Then came the critical observations: cyc– membranes do not
lack adenylyl cyclase, and wild type extracts supplied to the recon-
stituted mixture an activity that was neither adenylyl cyclase nor the
β-AR, both of which were already present in cyc–; instead, the wild type
extract supplied a new entity, whose thermal stability was increased by
a GTP analog (Ross and Gilman 1977b).

By 1980 painstaking efforts in the Gilman laboratory had purified
this entity, showing that the cyc– mutation inactivates a protein they
named Gs, the stimulatory regulator of adenylyl cyclase (Ross and Gil-
man 1980). Discovery of the αβγ structure of Gs led rapidly to new
insights, including the pathogenesis of three diseases. The ability of
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whooping cough (pertussis) toxin to inhibit GTP-dependent hormonal
inhibition of adenylyl cyclase and catalyze covalent modification of
a Gα protein distinct from αs (Murayama and Ui 1983) led to discovery
and purification of a second putative trimeric G-protein, which we now
call Gi (reviewed in Gilman 1987). (Now we know that this effect of
pertussis toxin inhibits Gi activation, thereby causing the bronchial irri-
tability of whooping cough.) Gαs, the target of the cyc– mutation, turned
out to be the target of two diseases. Cholera is caused by a toxin that el-
evates cAMP in gut cells by covalently modifying αs, thereby turning
off its GTPase activity and stabilizing it in its active form (Cassel and
Pfeuffer 1978; Cassel and Selinger 1977; Johnson et al. 1978). Muta-
tional inactivation of one αs allele causes the second disorder, pseudo-
hypoparathyroidism, in which patients respond poorly to hormones that
activate Gs-coupled receptors (Farfel et al. 1980).

3 Rhodopsin and Transducin

The extraordinary abundance of rhodopsin and transducin in retinal rod
cells facilitated their initial discovery, and eventually made them the
best-understood receptor-G-protein pair, at the levels of 3D structure,
biochemical properties, and downstream signals. Rhodopsin was iden-
tified as a photosensitive pigment in the 1870s (reviewed in Hsia 1965),
and in 1933 George Wald discovered retinal, rhodopsin’s covalently
bound ligand, and began to trace its light-induced chemical transfor-
mations (reviewed in Wald 1968). While the Gs and transducin sto-
ries evolved during the same time frame (Table 1), many aficionados of
adenylyl cyclase and photoreception were barely aware of each other’s
findings until about 1980.

The transducin story began with three key findings: cGMP phospho-
diesterase (PDE) was shown to be the light-activated effector (Biten-
sky et al. 1975); light increased the phosphodiesterase activity only
in the presence of GTP and photoactivated rhodopsin (Yee and Lieb-
man 1978); and light activated a GTPase activity in rod cell extracts
(Wheeler and Bitensky 1977). Then Godchaux and Zimmerman (1979)
purified from rod cell extracts a soluble guanine nucleotide binding pro-
tein that exhibited light-dependent stimulation of GTP-GDP exchange
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in the presence of membranes. They identified two polypeptide compo-
nents of the soluble protein, which we now know as the α and β subunits
of transducin, but did not mention adenylyl cyclase or GTP’s role in its
hormonal activation.

By 1981, reports from Lubert Stryer’s laboratory made it impossi-
ble to ignore striking parallels between retinal phototransduction and
hormone-stimulated cAMP synthesis. Lubert and his colleagues showed
that the photon signal is enormously amplified: a single photon, ac-
tivating a single rhodopsin, triggers binding of a hydrolysis-resistant
GTP analog to 500 GTP-binding sites in rod cell extracts (Fung and
Stryer, 1980). They then purified the GTP-binding protein, identified its
α, β, and γ polypeptides, named it transducin (hereafter, Gt), and used
it and rhodopsin to reconstitute light-stimulated binding and hydrolysis
of GTP (Fung et al. 1981).

At this point, the two previously unrelated fields of investigation be-
gan to coalesce, each providing knowledge and insights to the other. Gs
and Gt would quickly give rise to a larger family of trimeric G-proteins
as well as a growing retinue of effectors and auxiliary regulators (for
examples, see Table 1). Why then did I (and, I suspect, many of my col-
leagues) find family resemblances between Gs and Gt so surprising in
1980? One reason may be that laboratories focusing on different prob-
lems communicated less often with one another in 1980 than they do
in the 21st century. More likely, we were simply not ready to imagine
close parallels between disparate biological functions: why, after all,
should cells in the liver and retina use nearly identical machinery to de-
tect glucagon vs photons? Now such a revelation would not come as
a surprise, because we have learned that evolution makes each new sig-
naling machine by modifying and cobbling together parts of machines
already in use somewhere else. For many of us, Gs and Gt furnished the
first inkling of this principle.

4 Confusion, Error, Truth: Discovering the β-AR

By the early 1970s, investigators were beginning to transform puta-
tive hormone receptors into biochemical entities by binding radioac-
tive agonist peptides to receptors in tissue extracts. In 1948, Ahlquist
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had postulated the existence of two classes of catecholamine receptors,
which he called α and β (Ahlquist 1948). Bob Lefkowitz and Gerry Au-
rbach, among others, saw a straightforward route to identifying these
receptors: assess binding of 3H-labelled catecholamines to particulate
extracts of tissues with catecholamine-sensitive adenylyl cyclase activ-
ity. Unfortunately, a good idea may stir up confusion rather than shed
light. The β-AR story unfolded much as predicted by the pioneer of sci-
entific induction 400 years ago: “. . . truth will sooner come out from er-
ror than from confusion,” wrote Francis Bacon in his Novum Organum
(1620).

First came an era of confusion: in the early 1970s the Aurbach and
Lefkowitz laboratories found plenty of 3H-norepinephrine binding sites,
with binding that was usually reversible and competed by nonradioac-
tive catecholamine agonists (Bilezikian and Aurbach 1973a; Lefkowitz
and Haber 1971); some reports even claimed receptor solubilization,
affinity chromatography, and partial purification (Bilezikian and Aur-
bach 1973b; Lefkowitz 1973; Lefkowitz et al. 1972). These investiga-
tors also found disturbing mismatches between patterns of agonist bind-
ing and response: agents without agonist or antagonist activity, such
as inactive optimal isomers of norepinephrine or dihydroxymandelic
acid, efficiently competed against 3H-norepinephrine for binding, while
β-AR antagonists such as propranolol competed poorly, even at concen-
trations orders of magnitude greater than propranolol’s IC50 (summa-
rized in Lefkowitz 1974).

These discrepancies led to fanciful interpretations: perhaps the antag-
onist first associates with a necessary-but-not-sufficient “partial” bind-
ing site but does not activate the receptor unless it also interacts with one
or more additional sites; the first site would be detected by binding of
3H-norepinephrine, the second only by receptor activation (Bilezikian
and Aurbach 1973a; Lefkowitz 1974). One review even suggested that
perhaps there were “certain inherent limitations in relying solely on the
criteria of specificity and affinity of binding for identification of recep-
tors” (Lefkowitz 1974). The same review admitted, however, that “the
data available . . . are not . . . sufficient to prove or disprove the hypothe-
sis that these [binding] sites represent the β-adrenergic receptor binding
sites.” It was beginning to dawn on investigators that their confusion
might reflect what Francis Bacon referred to as “error.”
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This recognition allowed truth to emerge from error. Maguire and
co-workers (1974) showed that ascorbic acid and sodium metabisulfite
prevented 3H-norepinephrine binding, suggesting that the binding rep-
resented covalent attachment of oxidized radioactive products to macro-
molecules other than receptors. In the same year, three laboratories
(Aurbach et al. 1974; Lefkowitz et al. 1974; Levitzki et al. 1974) re-
ported that non-catechol β-AR antagonists bind to sites with specifici-
ties for competition by optical isomers, agonists, and other antagonists
that match those expected for the real β-AR.

Reliable binding assays for β-ARs allowed their biochemical charac-
terization and eventual purification. Because biochemistry can be hard,
the new “truth” did not make further advances easy. Undaunted, Caron,
Lefkowitz, and their colleagues eventually purified detergent-
solubilized β-AR protein by affinity chromatography (Benovic et al.
1984; Caron et al. 1979; Shorr et al. 1981). Availability of pure receptor
protein soon made it possible to reconstitute pure β-AR with Gs and
adenylyl cyclase (Cerione et al. 1984; May et al. 1985) and to iden-
tify β-AR kinase (Benovic et al. 1986). Most important, the β-AR story
was developing in the period when recombinant DNA technology was
beginning to hit its stride. Pure receptors made it possible to probe ge-
nomic DNA libraries with nucleotide probes based on receptor peptides.
Amino acid sequences of β2-ARs from hamster and from turkey ery-
throcytes led to cloning receptor cDNAs from these animals and predic-
tions of the receptors’ very similar amino acid sequences (Dixon et al.
1986; Yarden et al. 1986).

Some of us still remember the enormous excitement generated by the
obvious similarities between primary structures of rhodopsin (Nathans
and Hogness 1983) and the β2-AR (Dixon et al. 1986; Yarden et al.
1986). The seven homologous hydrophobic α helices heralded the birth
of a GPCR superfamily. Our delighted surprise paralleled the surprise
generated by the discoveries of Gs and Gt. Again we had failed to an-
ticipate evolution’s propensity to adapt a successful piece of machinery
to new uses. Delight and surprise were even greater this time, because
cDNA sequences of αs and αt had just been reported (see Table 1). For
us, the Gα and GPCR primary structures were harbingers of a torrent of
new discoveries, driven by the power of molecular biology.
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5 DNA: Revolution and Revelation

Rather than attempt a comprehensive account of the dazzling post-DNA
history of G-proteins and GPCRs, I shall end this essay with glancing
sketches of a few examples from this history, and point out how they
have altered our ways of posing and solving questions. Pre-DNA dis-
coveries contained the essential seeds of a series of new general con-
cepts (indicated below in italics). Without the DNA revolution, how-
ever, none of these would have reached its present level of explanatory
power. Now each of these ideas is an essential item of an investigator’s
intellectual furniture, necessary for designing and interpreting almost
every experiment.

One such general concept is that of the regulatory protein module.
The versatile R-G-E triad, comprising a GPCR, a trimeric G-protein,
and an effector, is one of the best-studied regulatory modules in biol-
ogy. The striking biochemical parallels between regulation of cAMP
synthesis and phototransduction, in combination with similar primary
structures of αs vs αt and of β-ARs vs rhodopsin, made R-G-E one of
the very first of these modules. This module, we now know, is responsi-
ble for the mating dance of yeast and for detecting sensory cues and in-
tercellular signals in flies, worms, mice, and humans. To see how far we
have come, contrast the puzzle of hormone-sensitive adenylyl cyclase
in the 1970s (Fig. 1) with the crystal-clear atomic structures of triad
members solved two decades later: rhodopsin’s transmembrane helices
(Fig. 2a) and a complex of αs with adenylyl cyclase (Fig. 2b).

Like MAP kinase cascades, cytokine receptor signaling via JAK/
STAT complexes, and many other modules, the R-G-E module is a set
of evolutionarily conserved proteins that uses a common mechanism to
transduce signals between different sets of inputs and outputs. From our
standpoint in the 21st century, it may seem extraordinary that the con-
cept of regulatory modules required a major shift in our way of look-
ing at the world. In essence, we rediscovered evolution. Before DNA
sequences came on the scene, scientists tended to imagine that their
question and the molecule they hoped would answer it were essentially
unique. In contrast, the R-G-E module showed us that duplication and
divergence of GPCR and GTPase genes, combined by selection of use-
ful gene products, had produced a module with interchangeable subunits
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Fig. 2a,b. Atomic structures of a GPCR and a Gα-effector complex.
a Rhodopsin, showing the seven transmembrane helices (colored and numbered
with Roman numerals), loops connecting them (extracellular at bottom, cyto-
plasmic at top), and retinal (yellow). (Reprinted with permission from Fig. 2A
of Palczewski et al. 2000, Science 289:739–745; copyright 2000 AAAS). b The
α subunit of Gs (left) interacting with the catalytic domains of adenylyl cyclase
(right). (Reprinted with permission from Fig. 4 of Tesmer et al. 1997; Science
278:1907–1916; copyright 1997 AAAS)
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Fig. 2a,b. (continued)

that can selectively link large numbers of distinct inputs to different out-
puts.

The DNA revolution also created the closely related idea of protein
families. Growing families and subfamilies of GPCRs and G-proteins
brought to light hundreds of targets for intensive research in hormone
action, vision, olfaction, neurobiology, immune responses, and embry-
onic development. A bevy of intriguing orphan GPCRs stands ready
to join their ranks. Conserved regions of primary structure in other
protein families revealed families of auxiliary proteins (e.g., RGS and
Goloco) that interact with the R-G-E module. Gα subunits share se-
quence and three-dimensional architecture with a huge superfamily of
GTPase switches, which also includes bacterial elongation factors, Ras,
a host of other small GTPases, and many others. Evolution found that
a good switch is worth conserving.

By linking R-G-E modules to other regulatory proteins (PDEs, ki-
nases, phosphatases, ion channels, and more), AKAPs and other scaf-
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folds create higher-order protein complexes, which in turn harness spe-
cific stimuli to an enormous variety of responses. In 1980, allostery and
covalent modification were recognized as the principal modes of signal
transduction. To them we now add a third, just as essential: regulated
proximity of proteins and signaling modules.

From pheromone receptors in yeast to rhodopsin and chemokine re-
ceptors in vertebrates, GPCR activation triggers densely complex reg-
ulatory circuits, replete with positive and negative feedback loops. We
can now begin to trace and manipulate such cellular signaling networks
in space and time, using recombinant fluorescent probes, mRNA arrays,
RNAi, the polymerase chain reaction, genomic sequences of many ani-
mals, and a host of other new tools. Without these it would be impossi-
ble to measure—or even to conceive—physiologically crucial temporal
or spatial changes in the interactions of GPCRs, arrestins, or effector
substrates and products (e.g., PIP2 or PIP3) with one another.

Discoveries at the atomic level include the conserved architecture
and molecular mechanism of the conformational switch common to
small GTPases and Gα subunits; interactions of G-protein subunits with
effectors and other regulators; and how one GPCR ligand, 11-cis-retinal,
nestles within the seven-helix bundle of its receptor, rhodopsin
(Fig. 2a). All but the last of these discoveries depended on modify-
ing and expressing recombinant genes. As a result, regulation at the
level of conformational change (aka allostery) is no longer confined to
a few molecules such as hemoglobin and conceptual models of other
molecules; instead, documented conformational change regularly gen-
erates testable hypotheses and experiments.

Although I have focused on G-protein and GPCR research, every
discovery I mention has myriad counterparts in virtually every field
of present-day biomedical research. Consequently, molecular biology’s
rapidly expanding toolbox and the new ideas it generates have dramati-
cally altered our laboratories, how we interact with each other, and our
goals and expectations. Laboratories are larger and depend on much
more powerful technology. Even the disposable plastic tips of today’s
ubiquitous pipette-man would have amazed experimenters who de-
pended on individually calibrated glass lambda pipettes, operated by
sucking on a rubber tube and meticulously washed with acid after each
use. For the average investigator, scientific communication is faster, and
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critically important research papers and seminars more frequent. In the
early 1970s, one meeting per year was often more than enough. Now
we are much more frequently thrilled (or disconcerted) by a new find-
ing directly pertinent to the question we are asking, and suddenly find
ourselves learning a new technology or immersed in a whole new field.

For researchers today, these exciting changes have produced two es-
pecially wide-ranging consequences. First, we justifiably expect our re-
search to produce more rapid and far-ranging discoveries. We complain
mightily, of course, about funding, bureaucracy, competition, failed ex-
periments, and threatening social or political developments, just as we
did in the 1970s. More significantly, we now feel reasonably sure that
tomorrow we will understand more than we do today.

The second consequence is closely related to these changed expecta-
tions and even more crucial: investigators now expect their discoveries
to prove relevant and even genuinely useful in the world outside the
laboratory. As compared to the days when G-proteins and GPCRs were
born, individual scientists and ideas travel much more rapidly and effi-
ciently between basic and clinical science, and between academia and
the pharmaceutical industry.

Although expectations do not tell us what the future will bring, I find
it encouraging to look back to the birth of our field. The questions sci-
entists posed in 1970 led eventually to today’s discoveries, and more
questions, none of which any of us could have imagined in our wildest
dreams.
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