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Abstract

Diffusion tensor magnetic resonance imaging (MRI) has
been applied until fairly recently to the study of the brain
microarchitecture. Muscle diffusion tensor imaging is
still in its infancy but opens a whole new area of research
in mapping microstructural organization. Diffusion arises
from random motions from thermal energy; these
random motions are referred to as ‘‘Brownian motion.’’
MRI is the only modality that allows the noninvasive
determination of diffusion (which is on the order of
microns) and provides an excellent probe into tissue
microarchitecture. Diffusion in biological tissue can be
both hindered and have a preferential direction. In the
latter case, diffusion is said to be anisotropic. In this
chapter, we start with a brief discussion of the technical
details of diffusion tensor image acquisition and the post-
processing methods. The challenges of this complex
modality can be appreciated from these technical details.
Diffusion is measured at the macroscopic level but
reflects micro-level structural organization. Diffusion
models enable one to link the microarchitecture to the
observed diffusion tensor; a brief discussion of the
diffusion models is presented here. The potential to infer
physiological status at a microscopic level from macro-
scopic measurements offers exciting possibilities for
understanding muscle physiology and changes with
disease. In order to apply this technique to detecting
changes with normal progression or disease, it is
important to establish normative values as well as the
reproducibility of the technique. The summary of normal
ranges and reproducibility of the diffusion indices is
presented and confirms that the technique can monitor
changes of the order of *8 %. Several studies using DTI
in disease condition are also presented to provide the
range of application of diffusion tensor imaging. In
addition to scalar indices of diffusion, DTI also enables
muscle fiber tracking. Fiber tracking is the most
challenging aspect of DTI and results from several
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groups are presented to demonstrate the feasibility and
utility of this method in extracting fiber architectural
parameters in a way that was not possible till now.

1 Key Points

1. Diffusion-weighted and diffusion tensor imaging of
muscle is a novel technique that allows for probing
tissue microarchitecture.

2. Image post-processing for extraction of robust diffusion
indices and fiber tracking is presented in this chapter.

3. Muscle models of diffusion are also presented in this
chapter which link microarchitecture to observed diffu-
sion indices.

4. Muscle fiber tracking and extraction offiber architecture
(length, pennation angle, curvature) is feasible.

5. Applications of DWI/DTI to monitor skeletal muscle
conditions are now evolving as clinically feasible tools.

2 Introduction

Diffusion tensor magnetic resonance imaging (MRI) is a
relatively recent advancement which allows the in vivo
study of microstructural organization (Alexander et al.
2007; Assaf and Pasternak 2008; Mukherjee and McKinstry
2006). Diffusion arises from random motions from thermal
energy and is referred to as ‘‘Brownian motion’’ (Basser and
Jones 2002; Hagmann et al. 2006). MRI is the only
modality that allows the noninvasive determination of dif-
fusion and provides an excellent probe into tissue mic-
roarchitecture. The proton is the main nucleus of interest in
whole-body MRI and the main diffusion studies referred to
in most studies is that of the water molecule. In contrast to a
pure liquid, diffusion is hindered by the presence of mac-
romolecules and other barriers in tissue, reducing the
effective diffusion length. In addition to hindered diffusion,
underlying tissue microstructure that presents regularly
oriented barriers to water diffusion will selectively limit
molecular excursions arising from Brownian motion in
specific directions. This is termed as ‘‘anisotropic diffusion
imaging.’’ Diffusion anisotropy has been identified in sev-
eral tissues: white matter, cardiac, skeletal, and lingual
muscle (Budzik et al. 2007; Gilbert and Napadow 2005;
Mukherjee and McKinstry 2006; Tseng et al. 2003). By far,
the maximum number of studies using diffusion tensor
imaging has focused on applications in the brain (Shenton
et al. 2012; Assaf and Pasternak 2008; Bennett and Rypma
2013). The relative immobility of the brain coupled with

strong anisotropy of white matter fibers and the implication
of white matter structural integrity in normal and disease
conditions have resulted in intense research in this area.

Muscle diffusion-weighted and diffusion tensor imaging
is, by contrast to brain diffusion imaging, a relatively recent
development. However, many advances have been made in
a short time. Muscle fiber direction determined from dif-
fusion tensor imaging has been validated by direct ana-
tomical examination and by optical imaging (Damon et al.
2002; Napadow et al. 2001). In vivo human DTI studies of
the calf muscle have also reported the dependency on
gender and age as well as the effect of injury (Galbán et al.
2004, 2005; Zaraiskaya et al. 2006). Recent studies have
also identified changes in the eigenvalues and fractional
anisotropy (FA) as muscle lengths change under passive and
active conditions of plantar and dorsi flexion (Deux et al.
2008; Hatakenaka et al. 2008; Okamoto et al. 2010; Sch-
wenzer et al. 2009). Models of muscle architecture have
been proposed to explain observed diffusion indices in
muscle compartments as well differences in age, gender and
changes with flexion (Galbán et al. 2004, 2005; Karampinos
et al. 2009). Model-based inferences provide an unprece-
dented way to link macroscopic tissue level findings (dif-
fusion indices from MRI) to cellular level organization
allowing the construction of hierarchical multiscale sys-
tems. Further, feasibility of tracking muscle fibers from
in vivo diffusion tensor images of the calf and forearm has
been demonstrated (Sinha et al. 2006; Lansdown et al.
2007; Froeling et al. 2012) and extended to more quanti-
tative assessment of fiber tracks such as muscle fiber length
and pennation angle (Heemskerk et al. 2009, 2010).

Imaging techniques, using both ultrasound and MRI have
provided a wealth of information related to the morphology
and functioning of skeletal muscle (Drace and Pelc 1994;
Finni et al. 2003; Hatakenaka et al. 2008; Maganaris et al.
1998; Pappas et al. 2002; Shin et al. 2008). One potential
goal for imaging is to develop subject-specific data where
muscle morphological and mechanical data may be com-
bined to develop more complete descriptions of muscle
performance, intersubject variability and changes arising
from onset of disease. One important issue in skeletal
muscle is the orientation of muscle fibers within a muscle
and the potential curvature of those fibers (Muramatsu et al.
2002). The orientation of the fibers influences the physio-
logical cross-sectional area (PCSA) and the relationship
between fiber shortening and aponeurosis shear (Azizi et al.
2008; Chi et al. 2010; Shin et al. 2008). Diffusion tensor
imaging is emerging as a promising tool for in vivo map-
ping of fiber lengths and pennation angles from true 3D
measurements and thus has the potential to advance the
understanding of muscle structure and function and enable
creation of accurate subject-specific muscle models.
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3 Diffusion-Weighted Magnetic
Resonance Imaging

Diffusion-weighted imaging refers to mapping the Brownian
motion of molecules and in the case of proton imaging, the
Brownian motion of water molecules. Brownian motion
refers to the random molecular motion due to thermal energy
of the system. This random motion called molecular diffu-
sion was first explained by Einstein (1956). It was shown
that the displacements in a liquid (e.g., water) could be
modeled as a Gaussian distribution in 3D. The width of the
Gaussian distribution depends on the type of molecule in the
medium, the temperature, as well as the time of observation
of the diffusion. The Gaussian displacement can be charac-
terized by a single variable, the variance. In one dimension,
the variance, r2, is given by the 2DT where D is referred to
as the diffusion coefficient and T is the time over which the
diffusion is observed. In water, the diffusion coefficient is
3.0 9 10-9 m2/s at 37 �C (Hagmann et al. 2006).

3.1 Isotropic and Restricted Diffusion

Consider the case of diffusion if the water molecule is
confined to be within objects that are impermeable. If the
object dimensions are small and/or the diffusion time, T is
long, the water molecule will be restricted to the object
dimension. A measurement of the displacement of the water
molecules in such a situation will exhibit a Gaussian dis-
tribution with a smaller variance reflecting the ‘‘restricted
diffusion’’ arising from the water molecule in an imper-
meable object. The value of the diffusion coefficient will be
smaller than the pure water case; restricted diffusion is
exhibited by in vivo tissue such as brain gray matter,
cerebrospinal fluid, and fat.

3.2 Anisotropic and Restricted Diffusion

In addition to restricted diffusion, molecules can also be in a
local environment that is asymmetric (Basser and Jones
2002; Mori and Barker 1999). A microenvironment where
the packing is ‘‘fiber-like’’ with impermeable/semi-perme-
able walls around the fibers will allow diffusion along the
fiber length more readily than perpendicular to the fiber.
This gives rise to the case of anisotropic, restricted diffu-
sion; this diffusion type is found in the white matter in the
brain as well as in muscle fibers.

3.2.1 Muscle Architecture
Skeletal muscle is a complex system with different com-
ponents: muscle fibers, connective tissue, and blood and

lymph vessels in addition to motor and sensor nerves.
Muscle fibers are long tubular structures with diameters in
the range 10–90 lm and lengths ranging from several
millimeters to several centimeters. Thus the length to
diameter ratio for the muscle fibers is high, ranging from
100 to 10,000. In the muscle, several fibers (few to [100
fibers) are arranged in bundles with each bundle surrounded
by a layer of connective tissue. In addition, within the
bundle, fibers are also surrounded by a network of con-
nective tissue (Fig. 1). The microarchitectural arrangement
of the muscle fibers provides a physiological basis for dif-
fusion anisotropy: diffusion of water molecules is facilitated
along the long muscle fibers while impeded in the perpen-
dicular plane by the muscle fiber cell walls.

4 Imaging Pulse Sequences for Diffusion-
Weighted Magnetic Resonance Imaging

The pulse sequences used to measure the diffusion tensor in
muscle are similar to those implemented for the brain (Basser
and Jones 2002). They are based on the spin echo, echo planar
diffusion-weighted sequence. It should be noted that muscle
imaging is challenged by the following characteristics of
muscle: low T2 (32 ms for muscle compared to 70–80 ms for
brain tissue), low FA (0.2–0.3 for muscle compared to 0.4–0.8
for white matter), and fat infiltration in the muscle (admixture
of fat and muscle in a voxel). These considerations have led to
sequences with a short TE and efficient fat suppression
methods. Approaches to increase SNR include larger voxel
sizes, increased averages, and the use of surface coils.

Fig. 1 This figure shows the arrangement of the muscle fibers as well
as the connective tissue (endomysium, perimysium, and epimysium)
surrounding the muscle fiber, bundles of muscle fiber, and the whole
muscle compartment, respectively. Diffusion anisotropy can be
understood in the context of the muscle fiber arrangement [Reprinted
from SEER training modules, ‘Structure of Skeletal Muscle’. U.S.
National Institutes of Health, National Cancer Institute. 02-09-2013
(date of access), http://training.seer.cancer.gov/anatomy/muscular/
structure.html]
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4.1 Spin Echo, Echo Planar
Diffusion-Weighted Imaging

The basic physics behind obtaining diffusion-weighted MR
images involves the use of two large balanced diffusion gra-
dient sequences, placed around the 180� refocusing pulse
(Fig. 2). The first gradient introduces a dephasing of spins that
is determined by the magnitude, G, and duration, d, of the
diffusion gradient. The second gradient will completely
rephase the phase introduced by the first gradient if the spins
are entirely static. The large diffusion gradients and long
duration, however, affect the signal from molecules undergo-
ing motion, even on the scale of diffusion-related displace-
ments. Since the sequence is sensitive to these small motions, it
is important to acquire the image in very short times in order to
freeze all physiological and other motion. This is achieved
using an echo planar readout which can acquire a 2D image in
*40–100 ms (echo planar readout not shown in the figure).

The effect of the two diffusion gradient lobes (strength,
duration, and diffusion time) is represented by a single term
called the ‘‘b-factor’’ defined as (Basser and Jones 2002):

b ¼ c2G2d2 D� d=3

� �

where the gradient parameters are defined in Fig. 2.
The signal intensity of a diffusion-weighted image,

S(b) with respect to the baseline image (all parameters the
same but without the diffusion gradient) for the general case
of anisotropic diffusion is given by (Basser and Jones 2002):

ln
S bð Þ

S b ¼ 0ð Þ

� �
¼ �

X3

i¼1

X3

j¼1

bijDij

¼ � bxxDxx þ 2bxyDxy þ 2bxzDxz þ byyDyy þ 2bxzDxz þ bzzDzz

� �

In order to extract the six components, Dij, of the diffusion
tensor, diffusion gradients have to be applied in at least six
noncollinear directions. When using greater than six directions
for the diffusion gradients, there is a tradeoff between number
of averages and diffusion gradient directions. The diffusion
tensor is diagonalized to obtain the eigenvalues (k1, k2, k3) and
eigenvectors (m1, m2, m3) of the diffusion tensor ellipsoid. The
eigenvector corresponding to the largest eigenvalue has been
validated to be along the fiber directions. The eigenvectors
define the orientation of the anisotropic diffusion ellipsoid,
while the degree of anisotropy is defined by the relative mag-
nitude of the eigenvalues. The ‘‘mean diffusivity,’’ MD,
alternately termed as the ‘‘apparent diffusion coefficient,
ADC,’’ is the average of the three eigenvalues:

MD ¼ k1 þ k2 þ k3

3

FA is a scalar measure of this anisotropy and is derived
from the eigenvalues as:

FA ¼
ffiffiffi
2
3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � kavð Þ2þ k2 � kavð Þ2þ k3 � kavð Þ2

k2
1 þ k2

2 þ k2
3

 !vuut

FA values range from 0 (isotropic) to 1 (strongly aniso-
tropic). The FA values in muscle are in the range of 0.2–0.3
which is lower than that of white matter (*0.5–0.8). Besides
the mean diffusivity and the FA, several scalar measures
derived from the tensor have been proposed. These include
other measures of anisotropy like the shape of the diffusion:
whether it is like a cigar (linear), pancake (planar), or sphere
(spherical) (O’Donnell and Westin 2011).

The eigenvectors are conveniently represented in color
and the following conventions are used in DTI visualization:
with the x-projections mapped to red, y-projections to green,
and z-projections to blue. The ultimate goal is to obtain the
fiber tracks which represent the physiological unit of the
muscle fiber bundles. Several tractography algorithms have
been proposed to connect eigenvectors; the most commonly
used is known as fiber assignment by continuous tracking,
FACT (Mori and van Zijl 2002; O’Donnell and Westin 2011).
In this algorithm, the algorithm starts from seed voxels
defined by the user or by FA thresholds and follows the
eigenvector direction in each voxel. Termination occurs
when the FA value falls below a preset threshold or the ori-
entation of the fiber changes by a larger angular threshold.
Tract selection (using anatomical ROIs) and seed placement
are highly interactive resulting in a strong operator depen-
dence of fiber tracts. Another related approach is streamline
tractography which also works by successively stepping in
the direction of the principal eigenvector. Several computa-
tional methods are used to perform basic streamline tractog-
raphy: Euler’s method (following the eigenvector or tangent

Fig. 2 Diffusion gradient sensitization with a spin echo preparation,
the echo planar readout is not shown here. The top pulse sequence
(a) is used for the baseline acquisition (without diffusion preparation)
and the bottom pulse sequence (b) includes the diffusion gradient lobes
(G) which can be applied along any direction
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for a fixed step size) and second order or fourth order Runge–
Kutta method (where the weighted average of two or four
points is used for each successive step) (Basser et al. 2000).
More advanced methods in tractography include probabilistic
tractography that provides a measure of the probabilities of
connections (Behrens et al. 2003) and tractography using
advanced models for fiber crossings (Malcolm et al. 2010).
Tractography is an area of active research and a recent review
comparing different tractography algorithms is discussed by
Lazar (2010). In muscle fiber tracking, FACT and streamline
tractography methods have been used in almost all the studies
reported so far. Muscle fibers do not cross and present simpler
geometrical constructs compared to brain white matter fibers
may be one of the reasons for the success of the simpler
deterministic algorithms. However, as seen later, muscle
tractography is still challenged by the lower FA values, lower
SNR as well as the admixture of fat in muscle voxels.

4.1.1 Simulation Studies
Simulation studies have been performed incorporating low
T2 values, % muscle fraction, DTI indices (eigenvalues, and
FA) typical values for muscle in order to obtain the optimum
acquisition parameters and SNR requirements to measure
DTI indices with a given accuracy (Damon 2008). In the
latter paper, simulations were performed with six standard
diffusion gradient directions, and identified the optimum
b value to be between 400 and 700 mm2/s, and SNR of 25
for the baseline image was required to obtain an accuracy of
5 % in the DTI indices when the voxel contained only
muscle tissue. The SNR requirements for eigenvector
directions were more stringent: SNR C25 and C45 was
required for eigenvector angular deviations of ±4.5�
uncertainty with muscle fractions of 1 and 0.5, respectively.
When considering single voxel angular uncertainty, and
SNR C60 was required for ±9� uncertainty; this can have
consequences for accurate fiber tracking. Froeling also per-
formed simulation studies and determined that at least 12
gradient directions should be employed (Froeling 2012).
Increasing the number of gradient directions does increase
the accuracy of the eigenvector but it should be balanced by
the number of averages so that the acquired diffusion-
weighted images are of sufficient image quality to permit
image preprocessing (for distortion corrections etc.). A more
recent study also considered the effect of fat infiltration/
admixture in the muscle and showed that regions must
contain at least 76 % muscle tissue to reflect the diffusion
properties of pure muscle accurately (Williams et al. 2013).
In fat-suppressed diffusion-weighted images, high values of
FA were surprisingly found in regions with high % of fat.
This was attributed to the lower SNR in these regions which
biased the value of the FA. This type of FA bias has been
shown in earlier simulation studies focused on the brain as
well (Basser and Pajevicz 2000).

It should be noted that the optimum b-value for diffusion
imaging (*400 s/mm2) is lower than that used in the brain
(*1,000 s/mm2). This allows lower TE values for the
sequence which addresses the lower T2 of the muscle.
Saupe et al. determined the optimum b-value at 1.5 T for
muscle imaging using fiber tracking quality for evaluation;
they estimated the optimum value to be 625 s/mm2 (Saupe
et al. 2009). Another important aspect is that most of the
DWI/DTI sequences for the brain use a dual 180� pulse
(twice refocused) to reduce the effects of eddy current. Most
of the muscle DWI/DTI studies reported so far do not use
the twice refocused for eddy current correction in order to
keep TE at a minimum value. Further, it should be noted
that the lower ‘b’ values used in muscle DTI do not result in
large eddy current artifacts and the smaller eddy current
distortions are corrected using post-processing methods.

Typical parameters and scan settings used in spin-echo
echo-planar imaging (SE-EPI) based DTI acquisition for the
lower leg calf muscles are listed below (Sinha et al. 2011).
The acquisition included one baseline and 13 diffusion-
weighted images (b factor: 500 s/mm2) along 13 noncollinear
gradient directions. Image acquisition parameters were as
follows: Echo Time (TE)/Repetition Time (TR)/Field-
of-View (FOV)/matrix: 48 ms/6,400 ms/24 cm/128 9 128
with parallel imaging. Images were reconstructed to a matrix
size of 256 9 256; voxel resolution was 0.94 9 0.94 mm
in-plane resolution (after reconstruction to a 256 9 256
matrix) with a slice thickness of 5 mm. The sensitivity
encoding (SENSE) method was employed in the parallel
image reconstruction and a reference scan for coil sensitivity
calculation was acquired prior to each DTI acquisition; a
parallel imaging reduction factor of two was used. The vol-
ume of interest was also shimmed prior to the DTI acquisi-
tion. A total of 29–30 slices were acquired contiguously, and
six repeats of the acquisition were magnitude averaged for a
total scan time of 9 min. A spatial spectral fat-saturation pulse
was used to suppress the fat signal.

4.2 Stimulated-Echo Planar
Diffusion-Weighted Imaging

The overwhelming number of muscle DTI studies have used
the spin echo EPI diffusion-weighted imaging. A few stud-
ies, however, have used the stimulated echo sequence since
it permits diffusion weighting at small values of TE; as
explained earlier, the latter is advantageous since muscle T2
is low. In this method, three 90� pulses are applied: the first
diffusion lobe is applied between the first two 90� pulses and
the balancing diffusion gradient is applied after the third 90�
pulse (Fig. 3). The time between the second and third 90�
pulse (*the diffusion time) can be fairly long as the mag-
netization is stored longitudinally (Fig. 3). Thus for the same
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‘b’ value in SE and STE, the gradient strength and duration
can be smaller since the diffusion time, delta, can be made
fairly large. The TE of the STE sequence depends on the
time between the first two 90� pulses: this can be made much
smaller than the SE analog. However, the SNR of the STE
signal is reduced by half compared to an SE signal and this
affects the overall image quality. Schwenzer et al. studied
the variation of muscle diffusion indices with flexion using
an STE-EPI sequence (Schwenzer et al. 2009). More
recently, Karampinos et al. combined eddy-current com-
pensated diffusion-weighted stimulated-echo preparation
with sensitivity encoding (SENSE, reduction factor 2.86) to
obtain high SNR and to reduce the sensitivity to distortions
and T(2)* blurring in high-resolution skeletal muscle single-
shot DW-EPI (Karampinos et al. 2012). The rather high
reduction factor of 2.86 certainly reduced distortions and
fat–water mismapping artifacts, but also contributes to a loss
in SNR. They were able to obtain voxel resolutions of
17 mm3 which is of the order achievable with single-shot
SE-EPI DW imaging. The TE (31 ms) is lower than that
possible with SE-EPI (*42–49 ms) but is still not low
enough to compensate for the loss in signal intensity by a
factor of 0.5 in a STEAM acquisition. The few studies, so
far, have not convincingly demonstrated that STE diffusion
preparation offers a distinct advantage over the SE diffusion
preparation (note: parallel imaging has been used with both
techniques to reduce the distortion/fat mismapping arti-
facts). A recent clinical study uses STE diffusion preparation
to study Chronic Exertional Compartment Syndrome
(CECS) of the Lower Leg Muscles (Sigmund et al. 2013).

5 Post-processing of Diffusion-Weighted
Images

Echo planar diffusion-weighted images suffer from low
signal-to-noise and from geometric distortion artifacts
arising from eddy currents as well as from B0 field

inhomogeneities. Several groups have adapted denoising
and correction techniques originally developed for brain
images to muscle DTI data.

5.1 Denoising

Froeling et al. have used a Rician linear minimum mean
square error (LMMSE) noise suppression algorithm on the
diffusion-weighted images and obtained visually improved
images (Froeling et al. 2012; Aja-Fernandez et al. 2008).
Sinha et al. evaluated log-Euclidean anisotropic filter
available from the software package, MedINRIA (Sinha
et al. 2011; Sinha and Sinha 2011; Arsigny et al. 2006). The
latter is a tensor smoothing algorithm and is based on first
transforming to the matrix logarithm L of a tensor D:
L = log(D), and running computations on L. Smoothing is
then performed on L to obtaiñ L from which the regularized
tensor is obtained by taking the matrix exponential:
D̃ = exp(̃L). The standard deviation of the lead eigenvector
orientation reduced with the smoothing (average standard
deviation of orientation in the original images: 3.1 ± 2.5�
and in the denoised tensor images: 1.01 ± 0.6�) and this
difference was also significant (paired 2-tailed, t test,
p = 0.001). Figure 4 shows eigenvector images of the
lower calf before and after denoising; the smoothing of the
fiber orientation can be readily appreciated. Incorporation of
noise reduction methods for muscle DTI clearly improves
SNR and should be employed if fiber tractography is the end
goal. A recent study reported a denoising algorithm tailored
to muscle diffusion tensor data (Levin et al. 2011). A key
feature of the algorithm is that it performs denoising of the
lead eigenvector field simultaneously with its extraction
from the noisy tensor field. This allows the vector field
reconstruction to be constrained by the architectural prop-
erties of skeletal muscles. The latter algorithm shows
promise and needs large-scale testing; however, it does
require some a priori knowledge of fiber architecture to
impose constraints on the denoising algorithm. Additional
studies need to be undertaken to compare and customize the
different denoising algorithms available and also to deter-
mine if the raw diffusion-weighted images or the tensor
should be denoised in terms extent of noise reduction and
impact on FA values.

5.2 Geometric Distortions from Eddy Currents
and Motion

The diffusion-weighted images have geometric distortions
from eddy currents arising from the large diffusion gradients
(Sinha et al. 2011; Sinha and Sinha 2011; Heemskerk et al.
2010; Froeling et al. 2012). This distortion and motion

Fig. 3 Schematic of eddy-current compensated stimulated-echo
prepared DW-EPU pulse sequence. Diffusion weighting gradients
are in black and eddy current compensating gradients are in gray
[Reprinted with permission from Karampinos et al. (2012)]
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correction is performed by an affine transform to the base-
line image volume of the diffusion-weighted data. The
affine transformation is used to reorient the b-matrix as well
(Leemans and Jones 2009).

5.3 Geometric Distortions from Susceptibility
Artifacts

This artifact arises from magnetic field inhomogeneities
primarily due to susceptibility differences in adjacent
structures. The field inhomogeneities result in a spatial mis-
mapping with regions of signal loss and signal pile-up. The
extent of distortions is the same in the baseline and in the
diffusion-weighted images. Most muscle DTI studies do not
correct for this artifact. However, it is important to correct
for these geometric distortions in order to perform accurate
fiber tractography, correlate morphological to diffusion
tensor data, and to enable image-based modeling. Methods
used in brain diffusion tensor imaging have been extended
to muscle diffusion data. One method that has been
implemented is based on acquisition of phase images which
map the field inhomogeneity; these phase values can be
used to directly assign voxels to the correct location
(Froeling 2012; Froeling et al. 2012). This approach, how-
ever, requires an additional double echo gradient echo scan
and it is not clear if it will work when parallel imaging is
used. An alternate approach is to nonlinearly deform the
baseline image of the diffusion-weighted dataset to a

geometrically accurate structural image and apply the
deformation to the diffusion tensor calculated from the
uncorrected data (Sinha et al. 2011; Sinha and Sinha 2011).
Figure 5 shows the axial slice of the lower leg from the
baseline diffusion-weighted image as acquired and the same
image after correction with a nonlinear deformation algo-
rithm. The nonlinear deformation was applied to the diffu-
sion tensor rather than to the diffusion-weighted images so
that appropriate tensor reorientation can also be performed.
The better geometrical match of the corrected data to the
structural images can be readily appreciated by the better
match of the contours.

6 Muscle Model of Diffusion

Tseng et al. analyzed diffusion tensor data in myocardial
muscle and concluded that the eigenvectors corresponding
to the leading, second, and third eigenvalues correspond to
the directions along the long axis of the fibers, parallel to
the myocardial sheets, and normal to the sheets (Tseng et al.
2003). This myocardial muscle model has been confirmed
by histological examination as well (Scollan et al. 1998).
Damon et al. were the first to confirm that the pennation
angle of the lateral gastrocs fibers in a rat model estimated
from DTI is close to that measured by direct anatomical
inspection, DAI (Damon et al. 2002). However, the ana-
tomical correlates of the second and third eigenvector of
muscle fibers have not yet been conclusively established.

Fig. 4 The leading eigenvector is shown in both images as arrows
with the color indicating vector direction with the following color map
(blue superior-to-inferior direction, red medial to lateral direction, and
green anterior to posterior direction). The left image (a) is unsmoothed
and the right image (b) is the corresponding smoothed image. Large

eigenvectors outside the muscle (indicated by white arrowheads)
correspond to fat regions and show erroneous fractional anisotropy and
eigenvector directions [Reprinted with permission from Sinha et al.
(2011)]
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Galbán et al. were the first to suggest a model to explain
the observed diffusion tensor eigenvalues in skeletal muscle
(Galbán et al. 2004). They proposed that since the lead
eigenvector was along the long axis, the second and third
eigenvectors are in a plane orthogonal to the long axis. The
second eigenvector is hypothesized to run along the sheets
of individual muscle fibers within the endomysium, the
region between the fibers. The eigenvector associated with
the third eigenvalue is then related to transport pathways
with the muscle in this model. They verified the model
prediction that PCSA is proportional to the third eigenvalue
in the lower leg muscles.

An extension of this model was advanced to account for
gender-based differences in DTI indices: the extended model
includes the muscle fiber volume fraction in a well-defined
arbitrary muscle volume (Galbán et al. 2005). The extended
model predicts that a larger volume fraction of skeletal
muscle in males is muscle fibers (anisotropic hindered dif-
fusion) compared to females who have a larger fraction of
endomysium (isotropic, less hindered diffusion); this was
verified in their study as females had a larger ADC values
while males had higher FA values (Galbán et al. 2005).

Karampinos et al. proposed an interesting diffusion ten-
sor model which took into account the cross-sectional
asymmetry of muscle fiber geometry (Karampinos et al.
2007, 2009). In their model, diffusion occurs in a space
composed of the space within the muscle fiber and the
extracellular space. The muscle fibers themselves were
modeled as cylinders of infinite length with an elliptical
cross-section with dimensions derived from histological
studies of excised muscle. In the model, k2 and k3 (the
second and third eigenvalues) reflect the principal diameters
of the elliptical cross-sectional area of the myofibrils.

Though there is no complete validation as yet for the second
and third eigenvector directions, the elliptical cross-
sectional model has some support since the second eigen-
vector has been tracked in a recent study (Gharibans et al.
2011).

It is also possible to infer the link between the eigen-
values and the fiber microarchitecture by looking at changes
on flexion. Consistent changes have not been reported for
plantarflexion, but most studies show that k3 increases. This
is in line with the models relating k3 to muscle diameter. In
the elliptical cross-sectional model, if there is isotropic
deformation in the fiber cross-section, similar increases in
k2 should be expected. However, evidence from other
studies such as strain rate tensor (Englund et al. 2011; Sinha
et al. 2012), show that fiber cross-sectional deformation is
highly anisotropic. This suggests that if deformation is only
along one direction, k2 should not change as much as k3.
Experimental evidence of small changes in k2 with flexion
comes from Hatakenaka et al. (2008) and Sinha et al.
(2011). However, other studies have reported both decrea-
ses and increases in k2 (Deux et al. 2008). More studies
using robust acquisition and post-processing techniques are
required to document changes in the diffusion indices with
flexion; such studies may help elucidate the diffusion model
in the musculoskeletal (MSK) system.

7 Diffusion Tensor Indices in the Normal
MSK System

Detailed analysis of the DTI of the forearm muscles have
been reported by Froeling et al. (2012). The eigenvalues,
MD, and FA were calculated for six muscles of the forearm

Fig. 5 Top row Corrected baseline images after nonlinear deforma-
tion to an image volume acquired using a gradient echo sequence with
fat saturation. Bottom row Original baseline images of the diffusion-
weighted series. The yellow contour superposed on both image

volumes was obtained from the corresponding slice in the gradient
echo image. The improvement in geometric fidelity is clearly apparent
by a comparison of the contour matching for the two sets
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as well as for the whole muscle volume. Typical values for
the MD in the whole muscle of the forearm were
1.49 ± 0.09 9 10-9 m2/s and FA values were 0.30 ± 0.02.
Values reported for the MG of the lower leg are
1.32 ± 0.06 9 10-9 m2/s and FA values were 0.23 ± 0.04
(Sinha and Sinha 2011). The same group also extracted the
diffusion indices for the different compartments of the
soleus (Sinha et al. 2011): MD and FA of posterior soleus:
1.47 ± 0.06 9 10-9 m2/s and 0.20 ± 0.04; MD and FA of
anterior soleus: 1.60 ± 0.08 9 10-9 m2/s and 0.20 ± 0.04.
Heemskerk et al. reported the values in anterior tibialis
(TA) for the mean diffusivity as 1.64 ± 0.05 9 10-9 m2/s
and for the FA as 0.23 ± 0.04 (Heemskerk et al. 2010).
Heemskerk et al. also determined the coefficient of variation
(CV) for the diffusion indices, fiber orientation, and lengths.
They report CV of\3 % for the eigenvalues and MD,\8 %
for the FA, and the repeatability coefficients of the fiber
pennation angle and length to be less than 10.2 and 50 mm,
respectively. The above measurements of normal diffusion
indices in skeletal muscle were performed at 3 T. A com-
parison of 1.5 and 3 T scanners based on two subjects
scanned on 3 days to calculate the coefficient of variability
(CV) showed that the values for the DTI indices as well as
for the fiber orientation were in a similar range (\3 % for
the eigenvalues,\8 % for the FA, and 8–12 % for the fiber
orientation). Given the widespread availability of 1.5 Tesla
scanners, this opens the possibilities for using DTI to
monitor muscle architecture in normal and diseased states
(Sinha and Sinha 2011).

The repeatability studies allow one to determine if the
measurement precision is sufficient to detect changes with
disease state. DTI indices are known to change in the range
of 10–20 % in diseased or damaged tissue (Heemskerk et al.
2006, 2007; Qi et al. 2008). The RC of the DTI indices
(eigenvalues, FA) in the lower leg muscles is reported to be
less than 10 %, and thus the DTI sequences should be
capable of detecting changes in muscle DTI indices with
disease/damage. Changes in muscle architecture arising
from changes in ankle positions or from contraction can be
as small as 3–5�, so that repeatability coefficients for fiber
orientations should be in this range. The average RCs of the
fiber orientations in prior reported studies is *8�, which is
more than the anticipated changes in fiber orientation with
ankle position or from contraction. However, it should be
noted that muscle architecture changes are typically moni-
tored without any change in patient position, so that these
measurements (same session, no subject repositioning) will
have a higher reproducibility than that measured on separate
days with subject repositioning. This is probably the reason
that fiber orientation changes of the order of 8� could be
detected even when the RC value was in the same range
(Sinha et al. 2011; Sinha and Sinha 2011).

7.1 Diffusion Tensor Imaging Under Passive
and Active Muscle Contraction

There have been varying reports on the changes under pas-
sive and active muscle contraction. Hatakenaka reported that
in the medial gastrocnemius (mGM) passive contraction
resulted in a decrease in k1, no change in k2 and an increase
in k3 which lead to a lower FA value (Hatakenaka et al.
2008). The opposite effect was seen in the TA. Duex et al.
reported that in the mGM, the three eigenvalues and ADC
increased while FA decreased during an active contraction
from neutral to plantarflexion (Deux et al. 2008). The
reverse trend was observed in the TA. Okamoto et al. also
performed DTI under active contraction and found higher
values for k1 and k2 as well as FA in the mGM with an
opposite effect for the TA and attributed some of the changes
to changes in focal temperature and perfusion (Okamoto
et al. 2010). Schwenzer et al. measured orientation changes
in the soleus under neutral and plantarflexed ankle positions
(Schwenzer et al. 2009). For the soleus, they report increase
in k2 and k3, no change in k1, a decrease in FA, and a small
change of 4� in the fiber orientation with respect to the
z-axis. Sinha et al. report much larger changes in the soleus

Fig. 6 Fiber trajectories for subject three before (a) and after
(b) quantitative assessment. Note the yellow fibers in both compart-
ments in a. The aponeurosis is indicated in blue and fibers originating
from the deep aspect of the aponeurosis are indicated in shades of
yellow, while fibers originating from the superficial aspect of the
aponeurosis are indicated in shades of green. Color variations within
the tracts exist only for contrast [Reprinted with permission from
Heemskerk et al. (2009)]
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when the foot is in the neutral and plantarflexed states (*60�
in the posterior soleus) (Sinha et al. 2011).

Hatakenaka have built on diffusive models in skeletal
muscle in the literature to propose a model for contraction
(Hatakenaka et al. 2008). Sarcomeres (2 lm length) are
shortened on contraction, while muscle fiber cross-sectional
diameter (40–120 lm), as well as that of myofibrils (3 lm),
increase. Since myofibril dimensions are of the order of the
observed diffusion lengths (10 lm), the diffusion in the
radial direction increases due to increase in myofibril
diameter; this is confirmed by observations on k3. Hatake-
naka also suggested that sarcomere shortening may con-
tribute to a decrease in k1 (Hatakenaka et al. 2008). Other
models propose that k1 should not change with contraction
as whole muscle fiber lengths are far greater than diffusion
lengths, resulting in k1 being insensitive to muscle fiber
length changes (Schwenzer et al. 2009). The increase in k3

seen in several studies can be attributed to an increase in

muscle fiber diameter as the muscle contracts on plantar-
flexion. However, both experimental data and models are
not consistent and more studies on flexion may help identify
consistent changes in diffusion indices and may ultimately
provide clues to the correct diffusion model.

8 Fiber Tractography

The ultimate aim of muscle DTI is tracking the muscle fibers
to determine the microarchitecture: pennation angles, fiber
lengths, and curvature. Damon et al. showed that fibers
tracked in rat muscle at 4 T correlated well with direct
anatomic imaging (Damon et al. 2002). Sinha et al. reported
some of the earliest fiber tractography in human in vivo calf
muscle (Sinha et al. 2006). They showed the feasibility of
fiber tracking in several muscle compartments of the in vivo
calf muscle. Lansdown et al. established an automated

Fig. 7 Fiber tractography of the
whole human forearm. Muscle
fibers are shown on top of
orthogonal cross-sections and
surface renderings of the T1-
weighted images. a,
c Tractography before
displacement and diffusion tensor
shear corrections. b,
d Tractography after corrections.
Regions where T1-weighted data
and fiber tracts were severely
misregistered are indicated with
red arrows. After postprocessing
the misregistration virtually
disappeared and denser fiber
tracking continued toward the
proximal end of the forearm as
indicated by the red asterisk. e,
f Segmented Flexor digitorum
profundus of all five subjects
before (e) and after
(f) postprocessing [Reprinted
with permission from Froeling
et al. (2012)]
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method for fiber tracking; in their approach, seed points were
not manually placed (as in most other fiber tracking studies)
but were automatically generated from the aponeurosis
surface for the muscle of interest (Lansdown et al. 2007).
They determined pennation angles automatically from seed

points close to the aponeurosis of origin for the deep and
superficial compartment of the TA. They report that the
pennation angle decreased from 16.3� (SD: 6.9) to 11.4�
(SD: 5.0) along the muscle’s superior-to-inferior direction.
The mean value of the pennation angle was greater in the

Fig. 8 Coronal view of the soleus. The coronal morphological image
at rest (a), an image at a approximately corresponding location from
the Visible Human dataset (b), leading eigenvector images corre-
sponding to the coronal morphological image at rest (c), and in
plantarflexion (d). In the Visible Human image (b), the soleus is
outlined in solid green, the blue dotted lines correspond to the anterior
soleus. The compartments identified in the visible human are posterior
soleus (arrow 1), the medial anterior soleus (arrow 2), the median

septum (arrow 3), and the lateral anterior soleus (arrow 4). These
compartments are also identified on the eigenvector image at rest
(c) with the same arrow labels as in b. On plantar flexion there are
large fiber orientation changes in both compartments of the anterior
soleus and in the posterior soleus visualized as a change of colors in
d. Short arrowheads (solid for posterior soleus and unfilled for anterior
soleus indicate the respective regions in the rest and plantarflexed
state)
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deep than in the superficial compartment. In an extension of
this work, Heemskerk et al. used quantitative criteria to
assess fiber tracking in the deep and superficial compart-
ments of the TA (Heemskerk et al. 2009). Quantitative cri-
teria for fiber tracking included the presence and similarity
of fibers to neighboring tracts, length of fibers including only
those that terminated close (within two voxels) to the muscle
border (Fig. 6). They also evaluated SNR requirements and
optimized the fiber tracking parameters including termina-
tion criteria of FA (0.15 \ FA \ 0.75) and curvature
(\45�). They conclude that SNR levels of 106 and 147 in the
superficial and deep compartments were sufficient for gen-
erating fibers that covered 89.4 ± 9.6 % and 75.0 ± 15.2 %
of the aponeurosis area in the superficial and deep com-
partments, respectively. A more recent paper by the same
group deals with the reproducibility of fiber tracts in the TA
(Heemskerk et al. 2010). They determined that while the
repeatability of the diffusion indices (MD, FA, eigenvalues)
is very good, the repeatability of the architectural measure-
ments (pennation angle and fiber length) is acceptable. This
emphasizes the fact that fiber tracking is challenging and
extraction of quantitative architectural parameters should be
approached with a robust acquisition scheme (high SNR,
good fat suppression, low distortions) and rigorous post-
processing algorithms.

The importance of optimized image acquisition and post-
processing to reduce noise, correct for eddy current, and
susceptibility-induced distortions has also been emphasized
by Froeling et al. (2012). The latter study showed that
significant improvements in forearm fiber tracking as well
as in diffusion indices resulted from the post-processing
corrections. They employed several post-processing steps
including signal-to-noise improvement by a Rician noise
suppression algorithm, image registration to correct for
motion and eddy currents, and correction of susceptibility-
induced deformations using magnetic field inhomogeneity
maps. Fibers were generated using a custom built tool, the
DTITool program (http://bmia.bmt.tue.nl/software/dtitool)
from 1 to 5 seeding ROIs per muscle (van Aart et al. 2011).
The angular change per integration step was limited to\5�
per step, which restricts fiber curvature rather severely.
Figure 7 shows the marked improvements in fiber tractog-
raphy with the implementation of the post-processing tools.

Sinha et al. reported on the complex architecture within
the soleus; this study also identified the potential for DTI
studies to map fibers under rest and plantarflexion conditions
(Sinha et al. 2011). It should be noted that compared to the
TA and the muscles of the forearm, the soleus architecture is
much more complex and presents additional challenges in
fiber tracking. The soleus has posterior and anterior

Fig. 9 Coronal color map of the
lead eigenvector at neutral
(a) and at plantar flexion (b) with
arrows showing the anterior
soleus medial and lateral
subcompartments (arrows 1 and
2, respectively) separated by the
median septum. A vertical dotted
line is placed at the location of
the median septum. Fibers (in red
for neutral and in blue for
plantarflexed ankle positions)
tracked from seed points located
in the lateral and medial
subcompartments of the anterior
soleus in the neutral (c) and in the
plantarflexed positions (d). Fiber
colors are assigned by the user so
as to maximize the contrast with
the underlying eigenvector
images
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compartments; 3D cadaveric analysis had shown that the
anterior soleus is bipennate with the fiber bundles joining the
median septum and the anterior aponeurosis (Agur et al.
2003). Figure 8 shows lead eigenvector DTI images from the
soleus under rest and plantarflexion states. A qualitative
comparison to the 3D cadaveric analysis by Agur et al.
identifies three muscle compartments: posterior, anterior,
and marginal soleus (Agur et al. 2003). The eigenvector
directions and compartments from the DTI data (Fig. 8)
agreed with the fiber directions inferred earlier using the
Visible Human dataset by Hodgson et al. (Hodgson et al.
2006). In the latter paper, fibers were identified indirectly
from the direction of the fascicles and can thus be only
considered as rough indicators of fiber direction. Agur et al.
identify the posterior soleus fiber bundles as attaching to the
posterior surface of the anterior aponeurosis and to the
anterior surface of the posterior aponeurosis. The fiber bun-
dles are directed from anterosuperior to posteroinferior. This

direction is confirmed in the eigenvector images (Fig. 8).
Agur et al. also identify the anterior soleus as bipennate
where the fiber bundles join the median septum and the
anterior aponeurosis (Agur et al. 2003). The median septum
is a tapering vertical sheet of aponeurosis with fiber bundles
attaching to the medial and lateral surfaces and directed su-
peromedially and superolaterally. The bipennate structure,
the median septum as well as the superomedial and supero-
lateral directions of the anterior soleus are confirmed by the
eigenvector visualization (Fig. 8) and the fiber tracts (Fig. 9).
Fiber tracking in the compartments in the posterior soleus
under rest and plantarflexion are shown in Fig. 10. In both the
anterior and posterior soleus, fiber orientation changes are
such that fibers oriented primarily along the proximal–distal
(superior–inferior) directions in the neutral position change
to either a medial–lateral (anterior soleus) or an anteropos-
terior (posterior soleus) direction. As the aponeurosis runs
approximately parallel to the proximal–distal direction, the
directional change seen in both the posterior and anterior
soleus translates to larger pennation angles.

Figure 11 shows fiber tracks generated in all the lower
calf muscles using DTITool. The diffusion tensor was
smoothed using a log anisotropic diffusion filter prior to
tracking and post processing included eddy current and
motion correction algorithms. This figure shows that with
optimized image acquisition and post-processing methods,
robust delineation of fibers is possible.

8.1 Fiber Pennation Angles and Fiber Lengths

The report by Heemskerk et al. is a comprehensive evalu-
ation of fiber lengths and pennation angles (Heemskerk
et al. 2009). They divided the aponeurosis surface of the
deep and superficial compartments of the TA into 15 seg-
ments and reported the average values of the fiber lengths
and pennation angles in each segment. Fiber lengths ranged

Fig. 10 Sagittal color map at
rest (a) and at plantar flexion
(c) with arrow showing the
posterior soleus. The color maps
show that the posterior soleus has
a stronger anterior–posterior
orientation at plantarflexion.
Fibers (in blue) tracked from seed
points located along the length of
the posterior soleus run
anterosuperior to posteroinferior
in both rest (b) and plantarflexion
(d); in the latter the fibers are
shorter with larger pennation
angles (d)

Fig. 11 Fibers tracked from seed points in each muscle compartment
using DTITool. Fibers in each compartment are shown in different color
to facilitate visualization. Fibers are overlaid on the color FA map to
provide an anatomical reference. Fibers are colored as follows: yellow
(superficial anterior tibialis), blue (deep anterior tibialis), purple (lateral
gastrocnemius), brown (soleus), green (medial gastrocnemius)

Diffusion-Weighted and Diffusion-Tensor Imaging 81



from 60 to 120 mm in the superficial compartment with
longer fiber occurring more distally and the pennation angle
(18–20�) peaked in the mid-portion along the length of the
TA. Similar patterns were seen for the deep compartment of
the TA with the exception of the pennation angle which had
the lowest value in the mid-section of the muscle.

Sinha et al. report a preliminary estimate of fiber lengths
(averaged over three subjects) in the neutral and plantar-
flexed positions for the soleus: posterior soleus:
21.8 ± 2.7 mm (neutral) and 17.7 ± 3.1 mm (plantar-
flexed); anterior medial soleus: 19.31 ± 3.4 mm (neutral)
and 20.04 ± 2.9 mm (plantarflexed); anterior lateral soleus:
10.69 ± 2.6 mm (neutral) and 14.47 ± 2.8 mm (plantar-
flexed). As anticipated, the posterior soleus fibers decrease
in length on contraction. However, the changes in the
anterior soleus are contradictory as the fiber length increa-
ses on contraction. This can be explained by the fact the
anterior soleus cross-section increases (at the location
where the fibers were tracked) in the plantarflexed ankle
position (Fig. 8). The soleus fiber lengths in the neutral and

plantarflexed positions from this study are lower than that
reported by Martin et al. using ultrasound measurements
(Martin et al. 2001). One reason advanced by the authors for
lower fiber lengths is that a very low threshold was set for
angular changes of successive fiber orientations to prevent
fibers being tracked across the different muscle subcom-
partments. This low threshold may have prevented fibers
from tracking across voxels with even moderate changes in
curvature, leading to shorter fiber lengths.

Sinha et al. have also reported on fiber architecture for
the mGM, MG in the neutral and plantarflexed state (Sinha
and Sinha 2011). They found fiber tracking to be most
robust from seed points positioned (on coronal images)
45–55 mm from the most distal aspect of the MG and just
adjacent to the aponeurosis of insertion in a coronal view.
Seed voxel selection influenced fiber lengths more than the
fiber orientation since many seed voxels lead to early ter-
mination of correctly oriented fibers. This was true espe-
cially for the most distal regions of the MG. The mean fiber
length and fiber orientation of the tracked fibers in the MG

Table 1 Reproducibility of medial gastrocnemius fiber architecture at 1.5 T

Fiber length (mm) X (�) Y (�) Z (�)

N PF N PF N PF N PF

Mean 44.56 29.86 79.88 71.78 99.88 98.40 16.13 26.33

STD 3.71 5.26 2.24 5.94 3.69 4.80 3.58 5.68

CV-av 6.34 10.35 2.80 8.20 3.94 4.78 22.59 16.57

RC-av 7.68 8.83 6.19 16.27 10.92 12.98 10.18 12.69

Reprinted with permission from Sinha and Sinha (2011)

Fig. 12 T2-weighted MRI and
DTI in a healthy volunteer
(a) and a CECS patient (b). Right
calf muscle before (pre) and after
(post) treadmill exercise
[Reprinted with permission from
Sigmund et al. (2013)]
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(Table 1) compare well with the ultrasound measurements
on MG fiber length and pennation angles in the relaxed and
contracted state (Muramatsu et al. 2002). The latter study
reported the fiber length in the relaxed/contracted state as
43.6 ± 8.6 mm/27.7 ± 5.6 mm which is comparable to the
values in Table 1.

9 Diffusion-Weighted and Diffusion
Tensor Imaging in Muscle Injury

DWI and DTI have been used to monitor muscle injury in
animal models and humans. Bley et al. have a recent review
on diffusion-weighted imaging applied to MSK trauma,
tumors, and inflammation (Bley et al. 2009). Line scan
diffusion imaging of denervated rat muscle showed the
potential of early detection of peripheral nerve injury before
changes can be detected on T2 weighted MRI or electro-
myography (Yamabe et al. 2007). Heemskerk et al. have
monitored dynamic changes in T2 and DTI indices after
femoral artery ligation (Heemskerk et al. 2007). ADC
increased immediately after ischemia was induced and then
recovered to baseline values as muscle regeneration
occurred. DTI was also performed on healthy and dystro-
phic skeletal muscle after lengthening contractions on
mouse models at 7 T. The latter study found greater
increases in ADC and decreases in FA in dystrophic than
normal muscle which reflected the larger loss in torque in
the dystrophic muscle (McMillan et al. 2011). Esposito
et al. recently reported that multiparametric MRI can be
used to monitor inflammatory and structural muscle chan-
ges in mice models (7 T); increases in T2 and FA were
observed in response to inflammatory infiltration and mus-
cle regeneration in the transient response of the tissue to
acute injury and in age-related sarcopenia (Esposito et al.
2013).

ADC and FA have been shown to increase after
lengthening contractions in human skeletal muscle (Nakai
et al. 2008). Zaraiskaya et al. were one of the first to report
on DTI evaluation of human muscle injury. They reported
an increase in ADC and marked decrease in FA in the
soleus and gastrocnemius muscles after calf muscle injury
(Zaraiskaya et al. 2006). A recent report showed that
DT-MRI (ADC and FA) can detect changes in muscle
structure after eccentric exercise; DTI changes correlated
with histological indices obtained by muscle biopsy (Cer-
mak et al. 2012). The utility of DWI in monitoring
inflammatory myopathies has also been reported (Qi et al.
2008). Sigmund et al. recently reported DTI measurements
in CECS of the Lower Leg Muscles; they found that all
diffusivities significantly increased (P \ 0.0001) and FA
decreased (P = 0.0014) with exercise (Fig. 12). In normal

the increase in MD was significantly less than that in sub-
jects with CECS (Sigmund et al. 2013).

10 Conclusion

Diffusion-weighted and diffusion tensor imaging of the
muscle are emerging as potential tools to characterize muscle
structure and relate to functional status. The methodology to
extract diffusion indices is now well established and has been
shown to have sufficient reproducibility to track changes that
occur with disease states. There have been relatively few
applications of this powerful method in the clinical setting.
However, the technology is mature enough for application to
monitor conditions such as sarcopenia, compartmental syn-
drome, myopathies, and disuse atrophy.

While diffusion indices can be extracted rather reliably,
fiber tracking is a more challenging task. In order to
establish fiber architecture from diffusion tensor imaging on
a clinical footing, more large-scale studies on reproduc-
ibility of these parameters needs to be established. This will
include further technical improvements in acquisition and in
postprocessing. However, many of the tools are already
available and a focused effort at establishing the guidelines
for tractography may enable clinical studies using this
method. In summary, DWI and DTI of muscle open a range
of possibilities for assessing muscle structure and its
changes with normal aging and in disease conditions.
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