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Abstract

One of the goals of personalized medicine is to utilize
biomarkers to sub-classify patients into risk groups that
can be used to guide recommendations for therapy. In
addition to classical risk factors, gene signatures and
genomics are being developed as a means to biologically
characterize tumors and to stratify patients according to
the risk associated with the specific molecular aberrations
present in their disease. Gene signatures and genomics
are currently being investigated as a personalized med-
icine strategy for many cancers, but have been studied
most extensively in breast cancer. In this disease, the
results of genetic signatures have come to influence
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Cancer often exhibits both inter-patient and intra-tumoral
genetic heterogeneity, even among patients with the same
primary malignancy (Schilsky 2010; De Palma and Hana-
han 2012). In order to assess an individual patient’s prog-
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assessment (BRCA mutation analysis), screening (PSA),
prognosis (Oncotype DX), and prediction of response to
therapy (HER2 amplification) (Henry and Hayes 2012). In
addition, several biomarkers, such as CEA, PSA, and CA
15-3, can be used to monitor response to therapy and to
detect recurrent disease. An important distinction should be
made regarding the difference between prognostic and
predictive biomarkers. Prognostic biomarkers provide
information on patient outcome, independent of treatment.
Predictive biomarkers, however, can be used to predict the
likelihood of a response to a given therapy. While prog-
nostic biomarkers may be useful to determine the natural
history of disease, predictive biomarkers may be better
suited to provide a means to personalize therapy (La
Thangue and Kerr 2011).

As many key regulators of cellular processes have been
identified, including oncogenes and tumor suppressor genes,
it was anticipated that normal cellular function might be
restored by counteracting a specific genetic abnormality.
However, the complexity of the dysregulation that develops
during carcinogenesis is perhaps greater than was originally
anticipated. In addition, the frequent crosstalk between
pathways has sometimes hindered development of novel
cancer therapies that have meaningful clinical efficacy (De
Palma and Hanahan 2012; Mendelsohn et al. 2012).

The concept of personalized medicine, at first glance,
might seem to imply that each individual patient would
receive a unique combination of therapies specific to the
genetic aberrations present in his/her malignancy. However,
as a practical matter, personalized medicine in oncology often
uses predictive biomarkers to identify subgroups of patients
who are likely to benefit from a specific targeted therapy. With
many of the recently developed targeted therapies, often only
a small proportion of patients, on the order of 10—20 %, will
harbor the specific molecular aberration and be expected to
respond to the targeted therapy. Instead of exposing a large
population of patients to additional systemic therapy, treat-
ment efficacy could be maximized by administering this
therapy only to those most likely to derive a benefit. In this
way, patients who are unlikely to benefit from the therapy can
avoid the additional side effects and cost. The overall goal of
this strategy of personalized medicine is to define specific
subgroups of patients and to tailor therapy accordingly (La
Thangue and Kerr 2011). It should be emphasized that risk
stratification in personalized medicine using biomarkers is
currently only additive in the context of clinical/anatomic
staging. Gene expression profiling is one method that has been
used clinically to define patient subgroups and to administer
personalized medicine. We will next review the methods and
statistical issues related to gene expression profiling.

2 Introduction to Gene Expression

Profiling and Associated Technologies
2.1 Methods of Gene Expression Profiling
Gene expression is the formation of a functional gene
product that is created from the information contained
within a gene. Gene expression profiling involves assess-
ing the relative amounts of mRNA produced from various
genes. The first step of gene expression profiling involves
isolation and purification of the mRNA from the test
sample. In the case of tumor samples, this is often
obtained from formalin-fixed paraffin-embedded (FFPE)
tissue, such as biopsy or surgical resection specimens.
Although this method is feasible, formalin-fixation and
processing of a tissue specimens results in chemical
modification and degradation of RNA (Medeiros et al.
2007). Therefore, when possible, frozen specimens or
fresh specimens stored in special RNA-preserving solution
are desired, as they yield more intact RNA. Regardless of
the method of preservation, delays between tissue har-
vesting and specimen fixation should be minimized, in
order to reduce RNA degradation. Once the mRNA is
isolated and purified, it is converted to complementary
DNA (cDNA) by reverse transcription.

The microarray technique utilizes an array of gene-spe-
cific DNA probes or oligos, spotted onto a slide (Quac-
kenbush 2006; Tefferi et al. 2002; Hamilton 2012). Each
spot contains a specific DNA sequence corresponding to a
gene. The relative level of gene expression for each gene
can be determined for a sample by fluorescently-labeling
the cDNA and then hybridizing the labeled cDNA with the
DNA microarray. The relative fluorescence intensity, which
corresponds to the level of gene expression, can then be
determined for each gene (Fig. 1). The Mammaprint is an
example of a microarray-based test designed to assess a
woman’s risk of metastasis from breast cancer, and will be
discussed in more detail later in this chapter (Kim et al.
2009).

Alternatively, gene expression can be assessed with a
quantitative PCR (qPCR) based approach, in which the
cDNA obtained from a sample is amplified using gene-
specific primers and labeled probes. This method requires
creation of specific primers and probes for each gene of
interest, and logistically this limits the number of genes that
can be analyzed. Oncotype DX is an example of a qPCR-
based test which can be used to assess recurrence risk for
women with ER-positive, lymph node-negative breast
cancer. The Oncotype DX assay will be discussed further
later in this chapter (Kim et al. 2009).
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Fig. 1 Overview of microarray analysis. Reprinted with permission from Quackenbush (2006)

2.2 Validation of Gene Expression Profiling

Prior to clinical application, the use of a specific biomarker
or a panel of biomarkers must be thoroughly studied and
validated (Simon et al. 2009). Teutsch et al. outline three
key components to evaluation of a genetic test: analytic
validity, clinical validity, and (Henry and Hayes 2012;
Teutsch et al. 2009). The first component, analytic validity,
is defined as the ability of a test to accurately and reliably
measure the genotype of interest. The analytic validity
includes assessment of the sensitivity, specificity, precision
(reproducibility), and assay robustness (resistance to small
changes in assay parameters). The second component,
clinical validity, is defined as the ability of a test to accu-
rately and reliably predict the clinical event. This includes
determination of the positive and negative predictive values
of the test. Clinical validity requires analysis of an inde-
pendent cohort to validate the original findings. This is often
performed with an initial analysis of a “test set” and con-
firmation with an independent “validation set”, which may
be an independent cohort of patients at the same institution
or, alternatively, patients at another institution. The third

component in evaluating a new biomarker is clinical utility,
which is defined as evidence of improved measurable
clinical outcome, and added value to patient management
decision-making compared with current management. In
other words, does the use of the new biomarker provide
additional information that changes patient management?
Also, the extent of the effect of the biomarker is considered.
For example, does the biomarker status correspond to a
small percentage change in outcome or does it confer a
large, several-fold difference? Is this difference enough for
clinicians to change management?

Microarray data analysis enables us to monitor the
expression level of genes and changes in the expression
patterns with respect to pathologic conditions at a genome
scale. There are two approaches to analyze the data—
supervised or unsupervised analysis. In supervised analysis,
distinct groups of genes or samples (i.e. patient vs. normal)
are identified and differences in expression profiles between
the groups are evaluated. On the other hand, in unsuper-
vised analysis, sets of genes or samples with similar
expression profiles are grouped, and their common clinical
and physiological and/or biological features are identified.
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If there are pre-existing clusters (patients and normal or
different known tumor types), supervised analysis is more
appropriate. However, unsupervised analysis is a powerful
method for identifying new clusters (uncharacterized path-
ways of dysregulated gene expression, new tumor subtypes
etc.) Clustering analysis generates distinct groups of genes
or samples based on their similarity of expression profiles
and may be hierarchical or non-hierarchical. In hierarchical
clustering, the relationships among objects within and
between groups are specified and represented as dendro-
grams (Hastie et al. 2009). In this way, samples with similar
expression patterns are grouped together within branches of
a sample dendrogram, and in like manner, genes with
consistent expression patterns within sample groups cluster
in gene dendrogram branches. These results indicate cel-
lular and molecular features differentiating groups of sam-
ples, which may be important for diagnosis or prognosis,
and furthermore identify key transcriptional and signaling
pathways that may be targeted by new or existing therapies.
One pitfall with microarray data analysis is the issue of
multiple hypothesis testing. By definition, microarray
experiments simultaneously test the expression of thousands
of genes, often assessing gene expression using a much
lower number of individual patient samples. This creates a
statistical problem known as multiple hypothesis testing.
Data analysis solutions to this problem exist, but extreme
caution should be used in interpreting the results of a
microarray study with relatively low numbers of patient
samples (<25), thousands of gene probes and a single
patient/tumor data set. The false discovery rate (FDR),
which is a modified p value used to adjust for multiple
comparisons, is often reported when groups of patient
samples are compared for gene expression using micro-
arrays. In general, FDR values <0.05 are acceptable for
statistical significance in microarray studies, and most
current studies employ additional methods to reduce the
false positive rate (Benjamini and Hochberg 1995; Storey
and Tibshirani 2003). In addition, a number of more
advanced statistical methods are currently available for data
analysis, many of which evaluate biologically meaningful
gene sets or pathways (Hastie et al. 2009; Tseng et al.
2012).

In summary, prior to implementation of a new biomarker
or gene signature into clinical practice, it must be evaluated
for analytic validity, clinical validity, and clinical utility.
Large validation studies are required. The highest level of
evidence for a new genetic signature would be a prospective
clinical study that is designed with assessment of the bio-
marker as the primary objective of the trial (Henry and
Hayes 2012). This would minimize bias in subject selection
and standardize sample handling and assay conditions.
Gene expression profiling has been perhaps most exten-
sively studied in breast cancer. We will next review the

development and implementation of personalized medicine
in breast cancer on the basis of gene expression.

3 Defining Patient Subgroups in Breast
Cancer on the Basis of Gene Expression

3.1 Classical Studies of Global Gene

Expression in Breast Cancer

In 2000, a seminal paper by Perou et al. characterized the
gene expression patterns for 42 women with breast cancer
(Perou et al. 2000). Most of the specimens analyzed were
breast cancer, but a few samples of normal breast tissue
were also examined. Some patients had multiple specimens
studied, such as the primary tumor and a lymph node
metastasis, and in some cases samples were obtained before
and after chemotherapy administration. Microarrays were
performed, with over 8,000 genes analyzed. Using a hier-
archical clustering method, genes were grouped based on
the similarity of their patterns of expression. The authors
found that there was significant variation in gene expression
patterns among the tumor specimens. Interestingly, samples
from the same patient, such as from a primary tumor and a
lymph node, or before and after chemotherapy, were more
similar to each other than to any other sample, in terms of
their gene expression pattern. The “intrinsic” gene subset is
a subset of 496 genes which showed greater variation
between unrelated samples than was seen between samples
from the same patient. This subset of genes includes specific
clusters of genes, such as the luminal cluster, HER2 (Erb-
B2) cluster, proliferation cluster, and basal cluster. The
“molecular portraits” of gene expression examined in this
study led to identification of the intrinsic subtypes of breast
cancer. In the first publication, the subtypes identified were
ER+/luminal-like, basal-like, Erb-B2+, and normal breast
(Perou et al. 2000). Further investigation led to the finding
that the luminal subtype could potentially be divided into
two or three subgroups, termed luminal A, luminal B, and
luminal C, each with a unique gene expression pattern
(Sorlie et al. 2001). Alternatively, two luminal subgroups,
luminal A and luminal B, could be described. Importantly,
the clinical outcome of patients was evaluated for each of
the subtypes, including luminal A, luminal B, luminal C,
normal breast-like, Erb-B2+, and basal-like. Significant
differences were seen in both relapse-free survival and
overall survival, with basal-like and Erb-B2+ subtypes
having the worst outcome and luminal A subtype showing
the best outcome (Fig. 2). In a subsequent analysis of 115
breast cancers, the subtypes were further refined (Sorlie
et al. 2003), to include the luminal A, luminal B, basal, Erb-
B2+, and normal breast-like subtypes. The cluster dendro-
gram for tumors, when divided into these five subtypes
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Fig. 2 Clinical outcome for patients based on tumor subtype. Kaplan-
Meier survival curves demonstrate the relapse-free survival (RFS) for
breast cancer patients, as classified by tumor subtype. Reprinted with
permission from Hu et al. (2006)

(luminal A, luminal B, normal breast-like, Erb-B2+, and
basal-like), can be seen in Fig. 3. Also, the full cluster
diagram and gene expression patterns can be seen in Fig. 4.
Subtype characterization was confirmed by cluster analyses
performed on independent data sets of cohorts of patients
from other institutions. The clinical outcomes of different
subtypes were assessed and revealed differences in overall
survival and time to distant metastases. One other inter-
esting finding from this work was that BRCA I mutation was
strongly associated with predisposition to the basal tumor
phenotype.

More recently, a new breast cancer intrinsic gene list
containing 1300 genes was evaluated and validated in
independent data sets (Hu et al. 2006). This analysis strat-
ified patients into five subtypes, luminal A, luminal B,
basal-like, HER2+, and normal breast-like, using a 105
tumor training set and validation set of 311 tumor samples
(compiled from three independent studies). Clinical out-
comes for the subtypes were significantly different in terms
of relapse-free and overall survival. Multivariate analysis
demonstrated that tumor subtype was prognostic of relapse-
free, disease-specific, and overall survival, independent of
standard clinical factors such as tumor size, lymph node
status, and tumor grade.

3.2 Implications of Breast Cancer Subtype

for Systemic Therapy Selection

Determination of breast tumor subtype is clinically valu-
able, as the subtype (often clinically defined by immuno-
histochemical profile) frequently guides decisions for
systemic therapy. For example, women with luminal A or
luminal B (ER positive) breast cancer, are known to derive
benefit from adjuvant hormone therapy (Davies et al. 2011),
and therefore most will receive anti-estrogen therapy in the
form of tamoxifen or an aromatase inhibitor. Patients with

the Erb-B2+(HER2+) subtype will often receive Herceptin
(trastuzumab), which is a monoclonal antibody against the
HER2/neu receptor. Women with HER2-positive breast
cancer who are either lymph node-positive or high-risk
node negative have been found to benefit from Herceptin
therapy (Smith et al. 2007; Perez et al. 2011) and many
current studies are exploring combinations of anti-HER2
targeted therapies for these patients (Gianni et al. 2012).
The basal subtype or the overlapping subtype known as
“triple negative breast cancer” continues to receive signif-
icant research attention due to its relative poor prognosis
and lack of targeted therapeutic strategies. Information
provided by the intrinsic subtypes (using an immunohisto-
chemical approach) has been adopted by 2011 St. Gallen
Consensus Conference (Goldhirsch et al. 2011) (Table 1).

4 Gene Signatures and Clinical Decision
Making in Breast Cancer

Fortunately, the majority of women diagnosed with breast
cancer do not have metastatic disease at the time of diag-
nosis, and are in a clinically curable situation. However,
after surgery, all women have some degree of risk of
relapse, at local, regional, and distant sites. The magnitude
of the risk of relapse can be quite different depending on the
individual woman, and can be assessed using clinical,
pathologic, and treatment-related variables. Over the past
decade, gene signatures for women with breast cancer have
provided significant additional prognostic information. The
greatest clinical impact of these assays has been risk strat-
ification in relatively low risk patient populations (ER
positive and node negative). Specifically, Mammaprint is a
commercially available gene expression assay that has been
used to predict recurrence in patients with node negative
cancers. Oncotype DX is a commercially available, clini-
cally validated gene expression assay that is used to guide
recommendations for the use of systemic chemotherapy in
addition to anti-estrogen therapy for patients with ER
positive, node negative disease. It is important to note that
clinical use of any gene signature should be considered only
for independently validated assays performed on large
datasets, and care should be taken to apply use of the sig-
nature only to patients for whom the assay has been vali-
dated. Currently, clinical use of Oncotype DX in node

positive and/or ER negative disease is considered
experimental.
4.1 Mammaprint

One of the earliest gene signatures for breast cancer was
the Mammaprint, or the Amsterdam 70-gene prognostic
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Table 1 2011 St Gallen consensus recommendations of systemic treatment

Definition
HR+/HER2-/Ki67 low

IHC Subtype Type of adjuvant therapy

Luminal A Endocrine therapy alone®

Luminal B
HER2-positive

Triple-negative

HR+/HER2—/Ki67 high
HR-/HER2+
HR—/HER2—

Endocrine therapy =+ cytotoxic therapy
Cytotoxics + anti-HER2 therapy

Cytotoxics

* A few patients require cytotoxics (such as high nodal status or other indicator of risk)
HR hormone receptor
Source This table reprinted with permission from Prat et al. (2011) summarizes current treatment recommendations for systemic therapy based

upon breast cancer subtype
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signature. This signature was initially characterized in a
cohort of 98 primary breast cancer patients, which included
34 women that developed distant metastatic disease within
5 years and 44 women who did not (van’t Veer et al. 2002).
There were also 20 patients with BRCA1 or BRCA2
germline mutations included in the analysis. For the spo-
radic cases, all women were <55 years old, had a tumor size
<5 cm, and were lymph node negative. RNA was isolated
from frozen tumor samples and supervised analysis of the
microarray data identified a set of 70 genes that allowed
discrimination between patients with good and poor prog-
nosis, with an accuracy of 83 %. The Mammaprint allows a
binary classification, either a good prognosis or poor
prognosis signature (Fig. 5). Women in the poor prognostic
group based on this signature have a significantly increased
risk of developing distant metastatic disease within 5 years
(odds ratio, OR = 28). On multivariate analysis including
classical prognostic factors, the Mammaprint signature was
an independent predictor of outcome.

Further validation of the Mammaprint gene signature
was performed in a cohort of 295 patients (van de Vijver
et al. 2002). All patients were less than 53 years old, had a
primary tumor size of less than 5 cm, and in this cohort 151

were lymph node negative, while 144 were lymph node
positive. Overall survival at 10 years was 95 % for those
with good prognosis signature and was 55 % for those with
poor prognosis signature. Probability of remaining free of
distant metastases was 85 % for those with good prognosis
signature and 51 % for those with poor prognosis signature.
However, it should be noted that 61 patients in this study
were also members of the original cohort used to develop
the signature. Independent validation studies were subse-
quently conducted, including an analysis of 302 patients
from five European centers (Buyse et al. 2006). Patients
included in this analysis were <61 years old, lymph node
negative, tumor size <5 cm, and did not receive adjuvant
systemic therapy. Median follow-up was 13.6 years. The
70-gene prognostic signature remained an independent
prognostic factor for development of distant metastases and
overall survival, with unadjusted hazard ratios of 2.32 and
2.79, respectively.

There is also interest in assessing risk of distant meta-
static disease in older women, who may not tolerate che-
motherapy well. Identification of older women that have a
low risk of distant metastatic disease might allow avoidance
of the considerable toxicity associated with chemotherapy
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in this group of women. The Mammaprint gene signature
has also been evaluated for women between the ages of 55
and 70 (Mook et al. 2010). In this analysis, frozen tumor
specimens from 148 women, aged 55—70 years old with
tumor size <5 cm and negative lymph nodes, were analyzed
and assigned either good or poor prognosis based on their
70-gene signature. The 70-gene prognosis signature was
prognostic of breast cancer-specific survival (P = 0.036).
Distant metastasis-free survival at 5 years was 93 % for
patients with a good prognosis signature and 72 % for those
with poor prognosis signature, but this difference was not
statistically different in this cohort (P = 0.07).

Currently, there are several ongoing clinical trials
designed to further characterize the utility of Mammaprint.
MINDACT (Microarray In Node-negative and 1—3 positive
lymph node Disease may Avoid ChemoTherapy; EORTC
10041), is a Phase III prospective randomized study com-
paring Mammaprint with clinical-pathological assessment
(Adjuvant! Online) in selecting patients with 0—3 positive
lymph nodes for adjuvant chemotherapy. In the trial,
women with discordant prognostic assessment on Mam-
maprint and Adjuvant! Online will be randomized for the
decision of adjuvant chemotherapy based on either Mam-
maprint or Adjuvant! Online risk status. All women with
high risk scores on both Mammaprint and Adjuvant! Online
will receive chemotherapy and all women with low risk
scores on both will not receive chemotherapy. Accrual of
6,600 patients has been achieved, with results currently
pending.

Other ongoing trials include PROMIS, which is a pro-
spective registry study to assess the impact of Mammaprint
on systemic therapy decision making for patients with an
intermediate Oncotype DX score. NBRST, is a prospective
registry study designed to measure outcomes based on
molecular subgroups, determined by Mammaprint and other
profiles, for patients undergoing neoadjuvant chemotherapy
or endocrine therapy. Similarly, MINT I, is a study designed
to test the ability of Mammaprint (in combination with other
factors) to predict response to neoadjuvant chemotherapy.
Of note, initial studies using Mammaprint were conducted
on frozen tissue, but currently the assay can be performed
on fresh, frozen, or formalin-fixed paraffin-embedded
specimens.

4.2 Oncotype DX

The Oncotype DX is a real-time quantitative reverse-
transcriptase-polymerase-chain-reaction (RT-PCR) assay of
21 prospectively selected genes designed for use in fixed,
paraffin-embedded tumor specimens. Paik and colleagues
first developed a real-time RT-PCR assay to quantify gene
expression of 250 candidate genes and subsequently
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Fig. 6 Stratification of patient outcome based on Oncotype DX risk
group. The freedom from distant recurrence is shown for patients in
the low, intermediate, and high risk groups. Reprinted with permission
from Paik et al. (2004)

analyzed the relation between breast cancer recurrence and
gene expression in a preliminary inquiry of 447 patients
(Paik et al. 2004). From this analysis, they selected a panel
of 16 cancer-related genes and five reference genes. The
cancer-related genes included those involved in prolifera-
tion and invasion, among others. An algorithm was
designed to calculate a Recurrence Score (RS) based on the
levels of expression of these genes. The RS ranged from 0
to 100, with higher scores reflecting greater likelihood of
distant recurrence. Patients were divided into three risk
categories based on their RS: low-risk (RS < 18), inter-
mediate-risk (RS 18—30), and high-risk (RS > 30). Paik
et al. demonstrated the ability of the Oncotype DX assay to
predict the likelihood of distant recurrence for women with
ER-positive, lymph node-negative breast cancer (Paik et al.
2004). In this analysis, tumor samples from 668 women
treated with tamoxifen on NSABP B-14 were evaluated.
NSABP B-14 was a clinical trial of ER-positive, node-
negative breast cancer, in which women were randomized
to tamoxifen versus placebo. The rate of distant recurrence
at 10 years was 7 % for those with low-risk RS, 14 % for
intermediate-risk RS, and 31 % for high-risk RS (Fig. 6).
Recurrence score was found to be an independent prog-
nostic factor on multivariate analysis. RS was also predic-
tive of overall survival. The risk of distant recurrence can be
predicted using the RS as a continuous function (Fig. 7).
Determination of the RS from the Oncotype DX assay
was also found to predict the magnitude of benefit from
chemotherapy. An analysis was performed of tumor sam-
ples from the NSABP B-20 trial, in which women with ER-
positive, node negative breast cancer were randomized to
tamoxifen with or without chemotherapy. RT-PCR was
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successful in the majority (97 %) of blocks that had suffi-
cient remaining specimen and were therefore included in
this analysis (n = 651). In NSABP B-20, there was a ben-
efit with the addition of chemotherapy, in terms of local,
regional, and distant recurrence. In the current study, the
magnitude of benefit from chemotherapy was greatest
among patients with high risk RS, and patients in inter-
mediate or low risk groups demonstrated no significant
benefit from chemotherapy (Paik et al. 2006). In another
study, the Oncotype DX-derived RS was found to be pre-
dictive of pathologic complete response (pCR) in patients
receiving neoadjuvant chemotherapy (Gianni et al. 2005).
Patients with higher RS had a greater probability of having
a pCR after completion of neoadjuvant chemotherapy.
Based on the findings above, the randomized Phase III
TAILORKX trial for women with ER-positive, node-negative
breast cancer was designed. Women enrolled on this trial
with an Oncotype DX RS <11 receive hormone therapy
only, and those with a RS >25 receive chemotherapy fol-
lowed by hormone therapy. Women with RS of 11-25 are
randomized to either hormone therapy alone or in combi-
nation with chemotherapy. Enrollment has been completed
and results are currently pending.

Two preliminary studies have reported on the utility of
the Oncotype DX assay in lymph-node positive patients
(Dowsett et al. 2010; Albain et al. 2010). Dowsett et al.
evaluated the Oncotype DX assay on specimens from the
ATAC (Arimidex, Tamoxifen, Alone or in Combination)
trial (Dowsett et al. 2010). The ATAC trial compared the
efficacy of arimidex, tamoxifen, or both for post-meno-
pausal women. In this analysis, Oncotype DX assay was
performed for samples of patients on the single agent arms

(arimidex only or tamoxifen only; n = 1,372). Prognostic
value of Oncotype-based RS was seen both in patients
treated with tamoxifen and confirmed for patients treated
with arimidex. In addition, RS was predictive of distant
recurrence for lymph node negative (n = 872) and also for
lymph node positive patients (n = 306). Similarly, Albain
et al. investigated the utility of the Oncotype DX assay for
post-menopausal women with node-positive, ER-positive
breast cancer (Albain et al. 2010). In this retrospective
analysis, 367 samples from the Phase III SWOG-8814 trial,
in which women were randomized to tamoxifen with or
without the addition of chemotherapy, were analyzed.
Patients with high-risk RS showed a significant benefit in
disease-free survival with the addition of chemotherapy,
whereas those with intermediate- or low-risk RS did not. An
ongoing Phase III trial, SWOG RxPONDER (S1007), has
been initiated to prospectively evaluate the benefit of che-
motherapy for women with 1—3 positive lymph nodes, ER-
positive, HER2-negative breast cancer with RS of 25 or
less. Women meeting eligibility criteria will be randomized
to receive endocrine therapy with or without the addition of
chemotherapy. The primary endpoint is disease-free sur-
vival and enrollment is ongoing.

Oncotype DX assessment is incorporated in the ASCO
recommendations for use of tumor markers in breast cancer
and in NCCN guidelines to predict the risk of recurrence for
women with ER-positive, HER2-negative, node-negative
breast cancer treated with tamoxifen. The NCCN panel
considers Oncotype DX an option, to be taken into con-
sideration only in the context of other elements of patient
risk stratification. Other applications at this time are
investigational and require further validation prior to
inclusion in clinical decision-making.

Recently there has been interest in molecular character-
ization of ductal carcinoma in situ, DCIS. DCIS is a non-
invasive form of breast cancer that has the potential to
develop into invasive disease over time. Adjuvant radiation
therapy has been shown to decrease the risk of both non-
invasive and invasive recurrence after partial mastectomy
for DCIS. There is ongoing interest in identifying women
with DCIS with a low risk of recurrence after surgery who
would likely derive a small absolute benefit from adjuvant
therapy. However, the use of clinical and pathologic factors
to identify women with low risk DCIS is not entirely
straightforward. Even patients with low or intermediate
grade DCIS and negative margins have a measurable risk of
recurrence. Solin et al. reported DCIS risk stratification
utilizing 12 of the 21 genes in the Oncotype DX assay
(Solin et al. 2012). In data presented at the San Antonio
Breast Cancer Symposium in 2011, the Oncotype DX assay
has been proposed as a means to stratify risk of recurrence
in patients with DCIS who have undergone partial mas-
tectomy alone. For this analysis, the Oncotype DX was
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performed for 327 women (approximately 50 % of patients)
enrolled on the ECOG E-5194 study. Women in this study
had relatively low risk DCIS, with either low or interme-
diate grade DCIS < 2.5 cm or high grade DCIS < I cm.
The “DCIS Score” was determined and women were
grouped into three categories: high, intermediate, and low.
They found that the DCIS Score obtained from the Onco-
type DX assay was a significant independent predictor of
ipsilateral breast events (either invasive or DCIS) on mul-
tivariate analysis. It was proposed that the DCIS Score
could be used to estimate a woman'’s risk of recurrence after
partial mastectomy for DCIS and potentially guide indi-
vidual recommendations for adjuvant therapy. However,
even the low risk group had a 12 % risk of any breast event
(either invasive or non-invasive recurrence). Also, further
validation is necessary before this is applied to routine
clinical practice.

4.3 Other Novel Gene Signature Assays

Other gene signatures are being developed, including the
Breast Cancer Index (BCI), MapQuant DX Genomic Grade
Index (GGI), among others (Prat et al. 2011). The Breast
Cancer Index (BCI) is an assay for women with ER-posi-
tive, node-negative breast cancer, which may assist in pre-
diction of the risk of distant recurrence. Two prognostic
quantitative real-time PCR assays, the HOXB13:IL17BR
two-gene ratio and the molecular grade index (MGI), are
incorporated in the BCI. HOXBI3 is an antiapoptotic gene
associated with increased risk of recurrence and the IL-17
receptor B is associated with decreased risk of recurrence.
The combination of the HOXB13:IL17BR and MGI were
found to be prognostic of outcome (Ma et al. 2008). Map-
Quant DX, also known as Genomic Grade Index or GGI, is
a microarray based assay that defines two molecular sub-
groups that have distinct clinical outcomes (Loi et al. 2007).
Early comparisons of the various gene signatures show high
rates of concordance in predicting outcome (Fan et al.
2006).

4.4 Gene Expression and Radiation Therapy

The primary purpose and utility of the previously discussed
gene signatures was to stratify patients based on risk of
distant recurrence. There are several questions regarding
gene expression in breast cancer that are more relevant to
radiation therapy, and we will review the existing data for
each of these questions here. Haffty and Buchholz (2010)
have recently written an excellent editorial on recent pub-
lications concerning gene expression and local recurrence in
breast cancer, and interested readers are encouraged to

review their findings (Haffty and Buchholz 2010). In brief,
the authors define the following questions regarding gene
expression and radiation therapy: (1) Is there a group of
women at sufficiently low risk of local recurrence after
lumpectomy alone that can be spared radiation therapy? (2)
Alternatively, can gene expression signatures be used to
identify a group of women at sufficiently high risk of local
or regional recurrence after breast conservation (BCT)?
Would these patients be better served with dose escalation
or the use of radiosensitizers? (3) As breast conservation
treatments evolve to include accelerated regimens, hypo-
fractionation and partial breast volumes, can the results of
gene expression assist in selection of patients for altered
radiotherapy regimens? (4) With respect to postmastectomy
irradiation, are our current guidelines oversimplified with
respect to tumor biology? Can gene expression profiling be
used to identify patients at risk for local regional recurrence
after mastectomy?

Over the past few years, several groups have assessed the
Oncotype DX and other gene expression signatures for their
association with risk of locoregional recurrence. In one
study the Oncotype DX RS was shown to predict risk of
locoregional recurrence in a cohort of women with node-
negative ER-positive breast cancer (Mamounas et al. 2010).
In contrast, a similar study evaluated the RS for patients
treated with breast conserving surgery, chemotherapy, and
radiation therapy on ECOG E2197 (Solin et al. 2012). In
this analysis, RS was determined for patients with 1-3
positive lymph nodes or negative lymph nodes with tumor
size greater than 1.0 cm. Neither the intrinsic biologic
subtype nor the RS was predictive of local or regional
recurrence in this cohort, suggesting inability to define a
subset of patients that may not require adjuvant radiation as
part of breast conservation. Voduc et al. (2010) used an
immunohistochemical panel (ER, PR, HER2, EGFR, CK5/6
and Ki-67) and a tissue microarray to classify 2,985 tumors
into intrinsic subtypes (luminal A, luminal B, luminal-
HER2, Her2 enriched, basal-like or triple negative pheno-
type non basal) (Voduc et al. 2010) (Fig. 8). A multivariate
analysis was then performed to determine the risk of local
or regional relapse associated with the intrinsic subtypes
after adjusting for standardized risk factors. Luminal A
tumors were found to have the lowest risk of locoregional
recurrence, and 10-year local relapse-free survival after
breast conserving surgery was 92 % (95 % confidence
interval (CI) 90—95 %) for this patient population. For
patients with HER2-enriched and basal subtypes, the 10-
year local relapse-free survival after breast conserving
surgery was reduced to 79 % (95 % CI 69—89 %) and
86 % (95 % CI 80—93 %), respectively. Haffty and Buch-
holz noted that these data were generated prior to the
trastuzumab era, and caution that the HER2-enriched data
may not be as clinically relevant today as recent data have
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Fig. 8 Local (a) and regional (b) relapse rates, by intrinsic subtype.
Violet line, luminal A; light blue, luminal human epidermal growth
factor receptor 2 (HER2); dark blue, luminal B; yellow, five-marker
negative phenotype; red, basal; beige, HER2 enriched. Reprinted with
permission from Voduc et al. (2010)

shown that the addition of trastuzumab is associated with a
significant improvement in local control (Haffty and
Buchholz 2010). Perhaps the most useful piece of data from
this analysis is the fact that luminal A tumors have an
excellent prognosis and very low rates of local recurrence
after breast conservation treatment.

More recently, Abdulkarim et al. (2011) reported that
patients with T1-T2 triple negative breast cancers treated
with breast conserving surgery followed by irradiation had a
5-year actuarial locoregional recurrence rate of 4 % com-
pared to 10 % after mastectomy alone (P = 0.027) (Ab-
dulkarim et al. 2011). These results suggest that in field

effects of local irradiation are important for control of triple
negative breast cancer and provide clinical evidence that
tumor biology may influence response to local radiation
(Pignol et al. 2011). Most importantly, these results call into
question our previous assumption that breast conservation
and mastectomy are equivalent treatments for biologically
aggressive breast cancer. In this patient population, it
appears that minimal surgery followed by local radiother-
apy is more effective than a more radical surgery. Finally,
we must also revisit our recommendations regarding post-
mastectomy radiation. These results suggest that our
guidelines should be modified to include intrinsic subtype.
Additional study will be needed to determine whether
postmastectomy radiation can improve local control for
triple negative breast cancers (Pignol et al. 2011).

Do we need to develop new gene expression signatures
to directly address response to radiation in breast cancer?
Initial studies showed relatively little difference in global
gene expression profiles from primary breast tumors that
recurred locally after breast conservation therapy versus
tumors that did not (Kreike et al. 2006). Based on the
hypothesis that gene expression patterns related to wound
healing would be important for cancer invasion and
metastasis, Chang et al. developed the “core serum
response” (CSR) gene signature in vitro and then tested the
ability of this gene signature to predict outcome in 295
patients treated for early breast cancer (Chang et al. 2004,
2005). In this patient population, the increased expression
of the CSR genes (also known as the “wound response
signature”) was associated with decreased overall and dis-
tant metastasis-free survival. Nuyten et al. then trained
(n = 81) and validated (n = 80) a classifier for local
recurrence after breast conservation therapy (BCT) using
the wound response signature (Nuyten 2006). Most
recently, Kreike et al. have compared gene expression
profiles from 56 primary breast cancers that recurred after
BCT versus 109 primary breast cancers that did not recur
after BCT (Kreike et al. 2009). Both supervised and unsu-
pervised methods of classification were used to separate
patients based on local recurrence after treatment. In addi-
tion, the authors tested many other published gene signa-
tures for the ability to predict local recurrence, including
their previously developed wound response signature. In
this analysis, the five molecular subtypes [as most recently
defined by Hu et al. (2006)] were associated with local
recurrence after BCT. Luminal B type and HER2-like
tumors had significantly increased local recurrence after
BCT versus the other subtypes including the basal/triple
negative subtype. Repeat testing of the wound response
signature in this data set did not accurately predict local
recurrence, emphasizing the importance of multiple vali-
dation studies prior to clinical implementation. In a super-
vised analysis, the authors developed a new 111 gene
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signature for the prediction of local recurrence after BCT
and subsequently validated this signature using separate
dataset of 161 patients. The results of these studies are
compelling and could potentially allow for treatment
intensification for patients at a high risk of local recurrence
after BCT. Although these results are promising, rigorous
clinical validation studies will be needed before we can
consider incorporating these results into clinical practice.
It has been hypothesized that gene expression profiling
could be used to develop a signature predictive of response
to radiotherapy, although the genetic diversity observed in
solid tumors may obscure these effects. Numerous studies
have analyzed gene expression patterns before and after
radiotherapy, and most of these studies have used in vitro or
in vivo model systems (Ogawa et al. 2007). Not surpris-
ingly, many categories of genes are upregulated in response
to radiation treatment, and many of these genes regulate
cellular responses to stress, cell cycle progression and DNA
repair. Torres-Roca et al. (2005) developed a gene signature
for radiosensitivity using a panel of 35 cancer cell lines and
the results of clonogenic survival assays after 2 Gy (SF2)
(Torres-Roca et al. 2005). Gene selection was based upon
an fit to a linear regression model of gene expression versus
cellular radiosensitivity. Genes selected were then used to
build a multivariate model to predict SF2. The initial study
identified novel genes implicated in the radiation response
(RBAP48 and RGS19). The same group then integrated gene
expression and cellular radiosensitivity data from 48 cell
lines and used a systems-biology based approach to develop
a 10 gene network (AR, cJun, STATI, PKC, RelA, cABL,
SUMOI, CDKI, HDACI, and IRFI) associated with cel-
lular radiosensitivity (Eschrich et al. 2009a, b). The radio-
sensitivity index (RSI) is a linear function of expression of
the ten genes. The RSI is inversely proportional to the
radiosensitivity of the tumor (i.e. a low RSI indicates a more
radiosensitive tumor). The RSI has been clinically tested in
three datasets (rectal, esophageal, head and neck) for total
of 118 patients (Eschrich et al. 2009a, b). Eschrich et al.
(2012) recently published the results of RSI testing in two
breast cancer datasets that included patients treated with
breast conservation and mastectomy (Eschrich et al. 2012).
In the first dataset, patients treated with radiotherapy and
predicted to be radiosensitive (RS) on the basis of RSI were
found to have improved 5-year relapse-free survival versus
patients predicted to be radioresistant (RR) (95 vs. 75 %,
n = 77). In the second data set, patients treated with
radiotherapy and RS on the basis of RSI were found to have
improved 5-year distant metastasis free survival versus RR
patients (77 vs. 64 %), and RSI was found to be an inde-
pendent predictor of outcome in ER positive patients treated
with radiotherapy. Piening et al. developed a gene signature
for radiation induced (RI) and radiation repressed (RR)
genes using 12 human lymphoblast cell lines exposed to

5 Gy (Piening et al. 2009). The RI and RR gene sets were
then compared to published gene signatures and used to
predict outcome after treatment in two published breast
cancer patient data sets. The authors note that while many
RR genes overlap with the previously well characterized
proliferation signature, the RI genes add prognostic infor-
mation, and the combination of RR and RI genes was able
to predict outcome in the published data sets tested. Addi-
tional study, including clinical validation and clinical utility
studies, will be needed to determine whether RR and RI
genes can be used independently to predict outcome to
radiotherapy in breast cancer.

Very few studies have explored gene expression differ-
ences before and after irradiation in breast cancer using
clinical samples. Helland et al. analyzed gene expression
from tumor samples from 19 stage III/IV breast cancer
patients before and after radiotherapy with 20 Gy (Helland
et al. 2006). In that study, several genes were upregulated in
irradiated tumors including GPXI, DDB2, GDFI5 and
CDKNIA. The authors noted that the tumor suppressor gene
TP53 was mutated in 39 % of their samples, and gene
expression profiles were, not surprisingly, influenced by
TP53 mutational status. It should also be noted that this
relatively small patient dataset was quite hetereogeneous for
biomarker expression (ER/PR/HER?2) and instrinsic subtype
analysis was not performed.

In summary, recent studies have shown that intrinsic
breast cancer subtypes do influence local control after
radiation treatment in breast cancer. In general, the luminal
A subtype has the lowest risk of local recurrence after
radiotherapy. Patients with early stage triple negative breast
cancers have improved local control when radiation is used
as part of breast conserving therapy compared to similar
patients treated with mastectomy. In the research setting,
several groups have developed gene signatures associated
with radiation response in breast cancer. Additional vali-
dation and utility studies will be needed before we can use
these signatures in the clinic.

5 Genetic Variation in Cancer
and Targeted Therapy

5.1 Nature of Genetic Variation in Cancer

Cancer is classically considered to be a genetic disorder
which develops as an evolutionary process, consisting of
serial acquisition of somatic mutations and subsequent
natural selection. Clones of abnormal cells arise from this
process and continue to evolve during oncogenesis. With

successive cell divisions, subclones with varying capabili-
ties of proliferation, survival, invasion, and metastasis
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develop. Some subclones will emerge as dominant, while
others will acquire deleterious mutations and are outcom-
peted by more dominant clones. Depending on the severity
of the deleterious mutations, these clones may die or con-
tinue to exist as small remnants of the evolutionary history
of the malignant process. The somatic mutations may
include insertions, deletions, base substitutions, rearrange-
ments, copy number alterations, or epigenetic changes.

Somatic mutations are acquired over one’s lifetime and
are randomly distributed in the genome. In addition,
germline mutations can also affect one’s susceptibility to
cancer. There is some variation in genome sequence among
humans, representing approximately 0.1 % of the genome.
This genetic variation may range from single nucleotide
changes to gross karyotype alterations. Single nucleotide
polymorphisms (SNPs) are the most common type of var-
iation representing approximately 90 % of human genome
variation, but there are also structural variants (insertions,
deletions, inversions, copy number variations), rare vari-
ants, and epigenetic differences. One’s risk of cancer may
be influenced both by the inherent genetic variation and
germline mutations as well as the somatic mutations that
occur over one’s lifetime, which may be modulated by
lifestyle and environmental factors (Stratton 2011; Stratton
et al. 2009).

Although mutations occur throughout the genome, those
that by chance occur in certain regions of the genome may
be more likely to promote oncogenesis. “Driver mutations”
are those that tend to occur in a subset of genes known as
the “cancer genes”. Driver mutations confer a growth
advantage to the cell and directly contribute to cancer
development. Passenger mutations, on the other hand, are
those that happen along the way but do not give the cell a
growth advantage. Passenger mutations may be detected in
a cancer genome, but have not contributed to oncogenesis
(Stricker et al. 2011). Some estimates suggest that several,
perhaps approximately five, key mutations are required to
generate cancer (Stratton 2011; Stratton et al. 2009).

Cancer genes may be functionally classified as dominant
or recessive, in terms of their behavior at the cellular level.
Dominant cancer genes, or oncogenes, require only one
allele to be mutated and often result in constitutive activa-
tion. Oncogenes promote cell survival and proliferation.
The majority (>80 %) of known of cancer genes are dom-
inantly acting. Recessive cancer genes, or tumor suppressor
genes, require both alleles to be altered in order for an effect
to be seen. Tumor suppressor genes often play a role in cell
cycle regulation, DNA repair, and apoptosis. If only one
copy of the tumor suppressor gene is mutated or lost, the
other copy can function normally. Examples of tumor
suppressor genes include retinoblastoma protein RB1, TP53,
BRCAI, and BRCA2. Mutations that affect the DNA repair
process may result in an increase in the rate of somatic

mutations in the cancer cell lineage (Stratton 2011; Stratton
et al. 2009).

5.2 Methods Used to Study Genetic Variation
Initial studies of the genetics of cancer involved cytogenetic
studies of chromosomes, with characterization of chromo-
somal translocations and abnormalities of chromosome
copy number. The development of recombinant DNA
technology later provided the ability to isolate and sequence
portions of the genome associated with frequent rear-
rangements. In 2000, a draft sequence of the human genome
was completed (Lander et al. 2001; Venter et al. 2001). This
was a monumental step, which has facilitated further
sequencing of cancer genomes, including whole gene
families and most protein-coding exons. Nearly one decade
after the human genome sequence was announced, the first
completely sequenced cancer genomes were published in
January 2010 (Pleasance et al. 2010a, b). Many more cancer
genomes are being sequenced, and it is estimated that tens
of thousands of cancer genomes will be sequenced over the
next several years (Fig. 9). Efforts are being led by the
International Cancer Genome Consortium and the Cancer
Genome Atlas project in the United States.

The primary techniques used to study cancer genomics
include: whole genome sequencing, targeted genome
sequencing, cancer genotyping, and genome-wide associa-
tion studies . Whole genome sequencing, as the name
implies, determines the entire DNA sequence of a genome.
First generation DNA sequencing techniques included
Maxam-Gilbert chemical sequencing (Maxam and Gilbert
1977) and Sanger (chain-termination) sequencing (Sanger
et al. 1977). Sanger sequencing is very accurate, but is
limited by its high cost and low throughput. Newer
sequencing methods, termed next-generation sequencing
(NGS), have since been developed that have higher
throughput and are more economical. Examples of next-
generation sequencing techniques include massively paral-
lel signature sequencing (MPSS), pyrosequencing, Illumina
sequencing (sequencing by synthesis), SOLiD sequencing,
ion semiconductor sequencing, and single molecule real-
time (SMRT) sequencing (Tran et al. 2012). With these and
other novel sequencing techniques, whole genome
sequencing is becoming more affordable and feasible to
perform. We have come a long way from the sequencing of
the first human genome which cost nearly $3 billion and
took a decade to complete, with current cost of approxi-
mately $10,000 per genome (Fig. 10).

Targeted genomic sequencing uses a similar approach,
but limits sequencing efforts to specific regions or genes of
interest. By sequencing only specific portions of the
genome, targeted genomic sequencing is both efficient and
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Fig. 10 Cost of genome sequencing over time. Reprinted with permis-
sion from Wetterstrand, http://www.genome.gov/sequencingcosts

cost-effective. The regions of interest may be a limited
number of genes, the whole exome (portion of the genome
formed by exons), or the cancer genome (portion of the
genome containing the cancer genes). Data analysis is also
simplified, as only segments of the genome are sequenced
and subsequently analyzed (Tran et al. 2012). Our institu-
tion is among the institutions that now offer targeted

genomic sequencing of multiple cancer genes available for
clinical use.

Cancer genotyping refers to a method of determining
whether a specific known cancer gene mutation is present in
a tumor. As common mutations of cancer genes are con-
tinually being identified, it can be relatively straightforward
to assess whether these specific mutations are present in a
patient’s tumor. Genotyping of clinical specimens is per-
formed with high-throughput genotyping platforms, such as
Tagman OpenArray Genotyping, Affymetrix genotyping
arrays, and MassARRAY (Tran et al. 2012).

Another method of studying genetic variation is through
genome-wide association study (GWAS). In this type of
analysis, typically two cohorts are studied, those with the
disease of interest (cases) and those without the disease
(controls). GWAS looks for associations between single-
nucleotide polymorphisms (SNPs) and a disease (Manolio
2010). A SNP is considered to be associated with a disease
if it is more common in those with the disease than in the
control population. GWAS data is often displayed in a
Manhattan plot, which shows the relative association for
various SNPs across the genome (Fig. 11). GWAS analysis
has some limitations, including the issue of multiple
hypothesis testing and the fact that most SNPs identified by
GWAS thus far have been typically associated with only a
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Fig. 11 Genome-wide association studies (GWAS). A sample Man-
hattan plot is shown, which displays the P values for all genotyped
single-nucleotide polymorphisms (SNPs). Reprinted with permission
from Manolio (2010)

small increase in the risk of disease, with a median odds
ratio of 1.33 (Manolio 2010).

5.3 Clinical Cancer Genomics

A human breast cancer genome was sequenced and pub-
lished in April 2010, only a few months after the first cancer
genomes were published (Ding et al. 2010). In this publi-
cation the investigators sequenced four samples from a
patient with metastatic basal-like breast cancer, including
the primary tumor, peripheral blood, a brain metastasis and
a xenograft derived from the primary tumor. Several
interesting findings were reported, including a number of
mutations contained in the primary tumor that were found to
be enriched in the metastatic tumor.

Several publications in Nature in 2012 highlighted breast
cancer genomics studies, demonstrating considerable pro-
gress in our understanding (Comprehensive Molecular
Portraits of Human Breast Tumours 2012; Ellis et al. 2012;
Curtis et al. 2012; Stephens et al. 2012; Shah et al. 2012;
Banerji et al. 2012). Stephens and colleagues examined
somatic mutations in 100 breast cancer genomes. They
found driver mutations in several known cancer genes and
also identified several new cancer genes based on non-
random clustering of mutations (Stephens et al. 2012). Shah
and colleagues studied mutations in 104 triple negative
breast cancers (Shah et al. 2012). They found that the most
frequently mutated gene was TP53, which had mutations in
62 % of patients with basal triple negative breast cancer,
and 43 % of non-basal triple negative disease. Other genes
with frequent mutations included PIK3CA, USH2A, PTEN,
and RBI. Interestingly, they discovered that for most
tumors, mutations in tumor suppressor genes such as 7P53
tended to occur in the highest clonal frequency, suggestive
of an early event in the clonal evolution of the tumor. By
comparing RNA sequencing with the genome data, they

also found that only 36 % of single nucleotide variants were
expressed. Curtis et al. (2012) examined the genomes and
transcriptomes of nearly 2,000 breast cancers and based on
joint clustering of copy number and gene expression data,
identified 10 patient subgroups with a range of breast cancer
outcomes. Banerji and colleagues determined the sequence
of whole exomes for 103 breast cancer patients in Mexico
and Vietnam, as well as whole genome sequences for 22
breast cancer/normal pairs. They found frequent mutations
in many known breast cancer genes, as well as identified
mutations in the CBFB transcription factor gene and a
MAGI3-AKT3 fusion which results in constitutive AKT
activation (Banerji et al. 2012).

Koboldt et al. from The Cancer Genome Atlas Network
studied several hundred patients, 463 of whom were eval-
uated on five different platforms, including mRNA expres-
sion microarrays, DNA methylation chips, SNP arrays,
miRNA sequencing, and whole-exome sequencing (Com-
prehensive Molecular Portraits of Human Breast Tumours
2012). Somatic mutations in only three genes (TP53,
PIK3CA and GATA3) occurred at >10 % incidence across
breast cancers. Characteristic mutations were found within
breast cancer subtypes, including common mutations in
GATA3, PIK3CA and MAP3KI in the luminal A subtype.
TP53 was mutated in 84 % of basal-like breast cancers, and
copy number analysis demonstrated many similarities
between basal-like breast cancers and serous ovarian can-
cers, including widespread genomic instability, common
gains of 1q, 3q, 8q and 12p, and common losses of 4q, 5q
and 8p. Integrated analysis of protein phosphorylation and
mRNA data identified two subgroups within the
HER2+ group. Only 50 % of HER2+ cancers were cate-
gorized as HER2 overexpressing by mRNA analysis; the
remaining 50 % of HER2+ cancers were within the luminal
subtypes. When both HER2 protein and mRNA were
overexpressed, increased expression of EGFR, pEGFR,
HER2 and pHER2 was observed. Ellis and colleagues
conducted either whole exome or whole genome sequenc-
ing for 77 patients with ER positive breast cancer from two
trials of neoadjuvant aromatase inhibition (Ellis et al. 2012).
In patients with aromatase inhibitor resistance, some path-
ways including 7P53, DNA replication, and mismatch
repair, were found to be enriched relative to patients sen-
sitive to aromatase inhibition.

In summary, genomics has provided additional insight
into the molecular mechanisms that drive breast cancer
development. Only a very few genes are mutated at a high
frequency across all breast cancers. Characteristic mutations
are common within breast cancer subtypes and may help to
guide targeted therapy in the future. Many of these muta-
tions are within pathways that regulate the radiation
response. Additional study will be needed to determine if
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individual gene mutations can serve as biomarkers for
breast cancer response to radiation.

6 Conclusion

Through remarkable scientific innovation, we have wit-
nessed elaborate gene expression profiling studies as well as
the sequencing of entire cancer genomes over the past
decade, which provides intricate knowledge about onco-
genesis and the drivers of this process. As we gain further
understanding of the molecular processes involved, novel
therapeutics may be developed and subsequently utilized
for the patients most likely to derive a benefit. Considerable
progress has been made in this regard in the fields of breast
cancer, non-small cell lung cancer, and melanoma, among
others, and will likely play an increasing role in the treat-
ment of these and other malignancies in the future.
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