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Abstract

Metabolomics is an expanding field of systems biology that is gaining significant
attention in respiratory research. As a unique approach to understanding and
diagnosing diseases, metabolomics provides a snapshot of all metabolites present
in biological samples such as exhaled breath condensate, bronchoalveolar lavage,
plasma, serum, urine, and other specimens that may be obtained from patients
with respiratory diseases. In this article, we review the rapidly expanding field of
metabolomics in its application to respiratory diseases, including asthma, chronic
obstructive pulmonary disease (COPD), pneumonia, and acute lung injury, along
with its more severe form, adult respiratory disease syndrome. We also discuss
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the potential applications of metabolomics for monitoring exposure to aerosolized
occupational and environmental materials. With the latest advances in our under-
standing of the microbiome, we discuss microbiome-derived metabolites that
arise from the gut and lung in asthma and COPD that have mechanistic
implications for these diseases. Recent literature has suggested that metabolomics
analysis using nuclear magnetic resonance (NMR) and mass spectrometry
(MS) approaches may provide clinicians with the opportunity to identify new
biomarkers that may predict progression to more severe diseases which may be
fatal for many patients each year.

Keywords

Acute lung injury · Acute respiratory distress syndrome (ARDS) · Asthma ·
Chronic obstructive pulmonary disease (COPD) · Pneumonia

1 Introduction

Metabolomics is an established field of systems biology that has generated substan-
tial new findings in respiratory research. The ability of metabolomics to produce a
“snapshot” of small molecules within a given sample from the body provides a
powerful tool for temporal analyses to follow the distribution and concentration of
these molecules (Patti et al. 2012). Small molecules of interest include chemicals
(such as drugs) and metabolites (including waste products of metabolism). These
small molecules are a distinct group of compounds from the larger proteins and
nucleic acids (RNA, DNA), and their measurement provides a valuable complement
to other fields of systems biology (transcriptomics, genomics, proteomics, and
others). Further, metabolomics informs other areas of systems biology as it lies
downstream of proteins, RNA, and genes. Because of its ability to detect small
molecules, metabolomics has the potential to discover novel biomarkers of disease
as well as environmental and occupational exposure (Madsen et al. 2010; Robertson
et al. 2011). To understand the relevance of metabolomics in respiratory diseases, it
is important to establish how the metabolome is defined and how this aligns with
other approaches in systems biology.

The metabolome of an organism reflects events that occur in the proteome,
transcriptome, and genome. Changes in proteins, RNA, and genes result in
alterations of metabolite concentrations in biological fluids and tissues. Perhaps
unsurprisingly, measurement of metabolites in human samples is not a new proce-
dure, since metabolites have been used for millennia to aid in the diagnosis of
disease. For example, diabetes mellitus has been diagnosed since ancient times
based on the taste of glucose, a small molecule metabolite, in urine from patients
with type I diabetes. While this may be an unappetizing and perhaps unsafe practice
these days, this was essentially the first diagnostic test for a metabolite in urine
samples. The recognition that urine contains important biomarkers of disease led to
the development of analytical tools to measure these in a variety of samples from the
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body today. Today, the measurement of small molecules in human samples forms
the basis of clinical chemistry, established to assist health professionals in diagnosis
of illnesses.

Most clinical chemistry tests rely on the measurement of handful of metabolites,
and often these are only qualitative (positive or negative) rather than quantitative
tests. Because most metabolites measured using clinical tests are abundant and not
specific to any one disease, their detection must always be taken into consideration
with other clinical descriptors. Thus, the focus of clinical chemistry on such a small
group of metabolites is a significant limitation that prevents the applicability of
metabolite detection in the specific diagnosis of many diseases.

The limitations of traditional clinical chemistry highlight the advantages of
metabolomics. Recent improvements in the sensitivity and specificity of metabolite
detection using metabolomics have allowed the characterization and quantification
of complex metabolic profiles resulting in concurrent analysis of hundreds of
metabolites in a single sample. Metabolomics seeks to quantitatively assess complex
metabolic patterns in patient samples and is coupled with computational
technologies to allow the interpretation of data in the context of known metabolic
pathways. The complexity of the metabolome in a patient sample is further aug-
mented by the presence of metabolites that derive from the microbiome, which is
present in almost all samples obtained from the human body. The microbiome
generates metabolites that are unique to prokaryotic organisms and may be distin-
guished from the host’s own metabolome, thus providing another possible approach
for enhancing the diagnosis and prognosis of disease.

Despite substantial investments in genome analysis in diseases, genetic mutations
that result in the manifestation of disease are rare. Only 1–2% of disease risk for a
spectrum of conditions including asthma, chronic obstructive pulmonary disease
(COPD), and acute respiratory distress syndrome (ARDS) can be explained by
genetic mutations. Transcriptomic and proteomic analysis has generated more
insight into their potential as biomarkers, but these too have not developed into
standard disease indicators. In contrast, metabolomics and clinical chemistry repro-
ducibly demonstrate that metabolites are highly predictive for a large proportion of
complex diseases (Xia et al. 2013). Samples may be used from a broad range of
sources including saliva, nasal lavage, exhaled breath condensate (EBC), bronchial
washings, sweat, blood (plasma and serum), urine, feces, among others. Examples of
established metabolic biomarkers include glucose for diabetes, as mentioned above,
creatinine to detect kidney disease, cholesterol and triglycerides to evaluate the risk
of developing cardiovascular disease, uric acid for gout detection, and thyroxine for
hypo/hyperthyroidism. There are undoubtedly other metabolites that may be used to
serve as biomarkers in a range of diseases.

These findings indicate that the metabolome is a much more dynamic group of
analytes than the proteome, transcriptome, or genome, as it can change immediately
in response to environmental or physiological changes (Fig. 1) (Wishart 2005). To
appreciate the contribution that metabolomics may make to diagnosis of disease, it is
useful to compare the impact of environmental and physiological impact on proteins,
RNA, and genes. Environmental and physiological changes have negligible impact

Metabolomics of Respiratory Diseases 341



on somatic gene expression, while some transcriptomic and proteomic changes have
been detected. In contrast, metabolomic changes in response to environmental and
physiological factors closely correlate with these events and can be altered within
seconds of exposure (Fig. 1b). Therefore, significant changes in metabolites may be
measurable in samples over far shorter time scales than by other systems biology
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Fig. 1 The systems biology pyramid and time scales of responses to environmental influences. (a)
Over 25,000 genes have been identified in human genomics, compared with a smaller number of
enzymes and even smaller number of metabolites. The responsiveness to physiological and
environmental insults of each of these components increases as we go from genomics to
metabolomics. (b) While metabolomics shows rapid changes in multiple metabolites in a short
period of time, proteomics shows smaller changes in abundance while genomics shows negligible
changes over the same period
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approaches. This allows for a powerful approach for detection of changes in
biomarkers in real time and provides an opportunity to use metabolomics as a
biomonitoring tool in health and disease. Historically we have adhered to the
concept of a single biomarker for each disease, but this limits the accuracy, precision,
and sensitivity of the assay. New and developing metabolomics approaches suggest
that we may use a pattern of metabolites to describe a given disease. However, by
using multiple biomarkers for each disease, techniques become more sophisticated,
and the computing power used to analyze the data becomes much more complicated.

In this article, we review the expanding field of metabolomics in its application to
respiratory diseases, including asthma, chronic obstructive pulmonary disease
(COPD), pneumonia, acute lung injury/acute respiratory distress syndrome, and
occupational and environmental lung diseases. We also discuss the metabolomics
associated with the lung microbiome in asthma and COPD. These findings show that
there remains a considerable amount of experimental work to be done to understand
the role of the metabolome in respiratory diseases, and how this may be applied to
the diagnosis and/or prognosis of illness. Recent findings have shone some light onto
the relationship between the gut and lung microbiome metabolites in generating
metabolic signatures that may provide mechanistic insights into various lung
diseases, as well as deliver potential biomarkers associated with specific lung
conditions.

2 Respiratory Diseases with Metabolomic Signatures

2.1 Asthma

Asthma is an inflammatory disease of the airways that is often triggered by exoge-
nous perturbations. The recent Global Burden of Disease report stated that an
estimated 262 million people were affected by asthma in 2019, and 461,000 people
died from this disease in that year (Vos et al. 2020). Asthma is a highly heteroge-
neous disease with different phenotypic variations, as well as multiple causative
agents, etiology, and complex inflammatory and pathophysiological features. Thus,
it is proposed that significant metabolic changes are associated with different
phenotypes of disease.

Metabolic profiling has demonstrated significant variations in serological
and urinary metabolomic pathways that are distinct in various phenotypes of
asthma and provides valuable information about the accuracy and precision of
asthma diagnosis, disease progression, and response to treatment (Fig. 2) (Kelly,
“Pharmacometabolomics of Asthma as a road map to Precision Medicine”). Using
technologies such as nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS), several metabolomic studies have demonstrated comprehensive
evidence of metabolic alterations in asthma. In Table 1, we have summarized some
of the recent reports of metabolomic studies in asthma.

Studies conducted on asthma patients with varying degrees of disease severity,
ages, or obesity have been reported. Interestingly, all these studies showed a high
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Fig. 2 Metabolites and metabolic pathways in childhood asthma. Heatmap of Spearman’s rank
correlation coefficients between metabolites associated with lowly and highly sensitized asthma (a)
and metabolic pathways of metabolites associated with atopic and non-atopic asthma (b). Red color
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correlation among specific metabolites with disease. Park et al. (2017) showed that
in severe asthma in children (≤15 years of age) exhibiting corticosteroid resistance,
tyrosine metabolism, degradation of aromatic compounds, and glutathione metabo-
lism were suggested to be significant pathways related to corticosteroid resistance
based on urine metabolites. A targeted LC-MS-based study for the presence of a
unique biomarker in asthmatic children showed a combination of 2-isopropylmalic
acid and betaine can classify children with asthma and controls. It was also shown in
the same study that asthmatics had lower relative concentrations of serum ascorbic
acid, 2-isopropylmalic acid, shikimate-3-phosphate, 6-phospho-D-gluconate, and
reduced glutathione. In the case of overweight children, niacin concentrations
were elevated in serum samples (Checkley et al. 2016). Loureiro et al. showed that
lipid peroxidation-related metabolites in urine samples are associated with asthma
severity and lung function, along with eosinophilic inflammation in nonobese
asthmatic patients (Loureiro et al. 2016). In other studies, it was shown that meta-
bolic pathways and pathway components like arginine, proline, taurine, hypotaurine,
glyoxylate, and dicarboxylate in serum and urine samples were closely related to
acute exacerbations of asthma as well as the choice of corticosteroid treatment
(Quan-Jun et al. 2017). It was also found that a set of 15 volatile carbon compounds
may discriminate between controlled and uncontrolled asthma and that 7 of these
compounds detected in exhaled breath samples could predict exacerbation within the
next 14 days with 88% sensitivity and 75% specificity (van Vliet et al. 2017).

Lipids have also been correlated with the diagnosis of asthma. Kang et al. showed
that certain metabolites, primarily lipid biomolecules in bronchoalveolar lavage
(BAL) fluid, could be markedly elevated in asthma compared to non-asthmatic
healthy individuals (Kang et al. 2014). This observation, supported by other studies
(Loureiro et al. 2016; Ghosh et al. 2020), indicates that lipid metabolism is altered in
asthma, potentially as a result of increased oxidative stress. Such altered lipid
metabolism was also associated with asthma severity, reduced lung function, and
higher eosinophilic inflammation in asthmatic individuals (Loureiro et al. 2016).
While asthma and obesity are known to share common systemic manifestations,
Maniscalco et al. showed that methane, pyruvate, and glyoxylate and dicarboxylate
metabolic pathways in EBC also greatly vary between obese and nonobese asthma
patients (Maniscalco et al. 2017), which indicates more complex crosstalk between
asthma and obesity than previously recognized.

Other recent studies have reported intriguing results of altered profiles of struc-
tural lipid molecules in asthma compared to healthy individuals (Kang et al. 2014;
Ghosh et al. 2020; Reinke et al. 2017; Pang et al. 2018; Jiang et al. 2021). Bian et al.
reported that some derivatives of serum arachidonic acid that serve as potential
mediators for allergic responses were significantly elevated in asthma (Bian et al.

⁄�

Fig. 2 (continued) represents positive correlations; blue color represents negative correlations; red
arrow represents increase; blue arrow represents decrease. + symbol means a P-value < 0.05; +
+ symbol means a P-value < 0.01. [Reproduced from Chiu et al. (2021)]
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Table 1 Metabolomics studies – asthma

Study
Study population
(adult/children) Sample/method Summary of results

Kang et al.
(2014)

Adults
(38 asthmatics and
13 healthy)

Quadrupole time-
of-flight (QTOF)
MS of
bronchoalveolar
lavage fluid
(BALF)

• " Lysophosphatidylcholine
(LPC), triglyceride (TG),
phosphatidylcholine (PC),
phosphatidylglycerol (PG),
phosphatidylserine (PS), and
sphingomyelin (SM) in
non-steroidal bronchial asthma
NSBA) compared to healthy
subjects

• No difference was observed
between steroid-treated bronchial
asthma (SBA) and healthy subjects

Loureiro
et al. (2016)

Adults
(57 asthmatics)

Targeted solid
phase
microextraction
(SPME) with
two-dimensional
gas
chromatography
and time-of-flight
MS (GCxGC-TOF/
MS) of urine

Metabolites related to lipid
peroxidation were associated with
" asthma severity, # lung function,
and " eosinophilic inflammation in
nonobese patients with asthma

Ghosh et al.
(2020)

Adults
(34 asthmatics,
30 COPD, 35 ACO,
33 healthy)

GC-MS of serum " 2-Palmitoylglycerol, cholesterol,
serine, threonine, ethanolamine,
glucose, stearic acid, linoleic acid,
D-mannose, succinic acid in
asthma than healthy
# Lactic acid, 2-palmitoylglycerol
in asthma than healthy

Maniscalco
et al. (2017)

Adults (25 obese
patients with asthma,
30 obese patients
without asthma,
30 lean patients with
asthma and 72 adults
in the external
validation set)

Untargeted LC-MS
of EBC

Participants with asthma, obesity,
and obesity + asthma showed
distinct variations in respiratory
metabolic fingerprint

Reinke
et al. (2017)

Adults
(54 asthmatics,
22 healthy)

Untargeted LC-MS
of serum

" Ceramide (C16:0, C18:0, C20:0,
C22:0, C24:0, C24:1),
sphingomyelin (C18:0, C18:1),
hexosylceramide (C18:0, C24:1),
and cysteinyl leukotriene E4

(LTE4) in asthma than healthy
# 14,15-
Dihydroxyeicosatetraenoic acid
(DiHETE), 19,20-
Dihydroxydocosapentaenoic acid
(DiHDPA) in asthmatics than
healthy

(continued)
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Table 1 (continued)

Study
Study population
(adult/children) Sample/method Summary of results

Pang et al.
(2018)

Adults
(29 asthmatics,
15 healthy)

Ultra-performance
liquid
chromatography-
tandem MS
(UPLC-MS) of
serum

" Monosaccharides, LysoPC(o-18:
0, 18:1), Retinyl ester, PC(18:1/2:
0), PC(16:0/18:1), arachidonic
acid, PE(18:3/14:0) in asthma
# Glycerophosphocholine, PS(18:
0/22:5), cholesterol glucuronide,
Phytosphingosine, Sphinganine,
LysoPC(p-18:1), retinols, PC(20:
4/16:1)

Jiang et al.
(2021)

Adults
(33 asthmatics,
28 healthy)

LC-MS/MS of
plasma

" Phosphatidylethanolamine
(PE) (18:1p/22:6), PE (20:0/18:1),
PE (38:1), sphingomyelin
(SM) (d18:1/18:1), triglyceride
(TG) (16:0/16:0/18:1) in
asthmatics than healthy
# Phosphatidylinositol (PI) (16:0/
20:4), TG (17:0/18:1/18:1),
phosphatidylglycerol (PG) (44:0),
ceramide (d16:0/27:2), lysoPC
(22:4) in asthma

Chiu et al.
(2020,
2018)

Adults
(30 asthmatics,
30 healthy)

NMR of urine " Guanidoacetate
# 1-Methylnicotinamide, allantoin

Chiu et al.
(2021)

Children
(28 asthmatics,
25 healthy)

NMR of plasma " Lysine, isovalerate, histidine,
tyrosine, glycine, citric acid,
ethanol, acetic acid, pyruvic acid in
asthma

Chang-
Chien et al.
(2021)

Adults
(92 asthmatics,
73 healthy)

NMR of EBC " Lactate, formate, butyric acid,
isobutyrate in asthma

Bian et al.
(2017)

Adults
(15 asthmatics and
15 healthy)

Ultra-high
performance liquid
chromatography
quadrupole time-
of-flight (UHPLC)-
Q-TOF- MS of
serum

" 5(S)-Hydroxyeicosatetraenoic
acid (HETE), 8(S)-HETE, 11(S)-
HETE, 12(S)-HETE, 15(S)-HETE,
15(S)-Hydroxyeicosapentaenoic
acid (HEPE), prostaglandin
(PG)A2, PGB2, PGF1a, PGF2a,
PGJ2, 15-keto-PGF2a in asthma
compared to healthy
# Palmitic acid, Lauric acid in
asthma than healthy

Checkley
et al. (2016)

Children
(50 asthmatics and
49 healthy between
9 and 19 years)

Targeted liquid
chromatography-
MS (LC-MS) of
serum

# Relative concentrations of serum
ascorbic acid, 2-isopropylmalic
acid, shikimate-3-phosphate,
6-phospho-D-gluconate, and
reduced glutathione in asthmatics
than healthy

(continued)
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Table 1 (continued)

Study
Study population
(adult/children) Sample/method Summary of results

Kelly et al.
(2017)

Children
(380 asthmatics)

Targeted LC-MS
(complementary
methods) of plasma

• Metabolites (primarily
glycerophospholipid, linoleic acid,
and pyrimidine) were associated
with airway hyperreactivity, and
pre- and postbronchodilator FEV1/
FVC

• Distinct metabolites showed
moderate but important signatures
between disease severity

Tao et al.
(2019)

Children
(80 asthmatics,
29 healthy)

GC-MS of urine " Aspartic acid, Xanthosine,
hypoxanthine,
N-acetylgalactosamine
# Stearic acid, Heptadecanoic acid,
uric acid, D-threitol

Li et al.
(2020)

Children
(30 asthmatics,
30 healthy)

GC-MS of urine " Azelaic acid, citraconic acid
4, D-altrose 1, D-erythro-
sphingosine 1, gentiobiose
2, 2-hydroxybutanoic acid,
L-allothreonine 1, leucine, stearic
acid, succinic acid, tyramine in
asthmatics than healthy
# 3,4-dihydroxycinnamic acid,
methionine 1, purine riboside,
malonic acid 1, cysteine, erythrose
1, lactamide 1, uric acid, valine in
asthma

Matysiak
et al. (2020)

Children
(13 asthmatics,
17 healthy)

LC-MS/MS of
blood

" L-arginine, Β-alanine, Ƴ-amino-
N-butyric acid, L-histidine,
Hydroxy-L-proline in asthma
# D,L-Β-Aminoisobutyric acid,
taurine, L-tryptophan, L-valine in
asthma

Ferraro
et al. (2020)

Children
(26 asthmatics,
16 healthy)

UPLC-MS of EBC " 9-amino-nonanoic acid,
12-amino-dodecanoic acid, lactone
of PGF-MUM, N-linoleoyl taurine,
17-phenoxy trinor PGF2α ethyl
amide, lysoPC (18:2(9Z,12Z)) in
asthma

Van Vliet
et al. (2017,
2016)

Children
(96 asthmatics)

Targeted GC-TOF/
MS for VOCs in
EBC

• 7 VOCs (3 aldehydes,
1 hydrocarbon, 1 ketone,
1 aromatic compound, and
1 unidentified VOC) in exhaled
breath could predict asthma
exacerbations
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2017). They described that some saturated fatty acids such as palmitic acid and lauric
acid levels were decreased in asthma. In addition, metabolites derived from protein
or carbohydrate metabolisms were found altered in asthma compared to
non-asthmatic healthy individuals in EBC, plasma, and urine (Chang-Chien et al.
2021; Chiu et al. 2018, 2020). However, in adults, the asthmatic response can be
caused, triggered, or aggravated by different risk factors such as allergy, environ-
mental exposures, active or passive smoking, and workplace conditions. Therefore,
more studies on different adult asthma phenotypes are required to better understand
those metabolic alterations.

On the other hand, asthma in children is mostly caused by allergic conditions or
genetic predisposition (such as parental atopy or asthma) and, to some extent,
pregnancy-related issues such as gestational smoking. In a group of asthmatic and
non-asthmatic children, Checkley et al. showed lowered relative concentrations of
serum ascorbic acid, reduced glutathione (GSH), and some carbohydrate derivatives
in asthma (Checkley et al. 2016). Kelly et al. further showed association between
certain plasma metabolites (glycerophospholipid, linoleic acid, and pyrimidine) and
airway hyperreactivity in asthmatic children (Kelly et al. 2017). They were able to
demonstrate moderate but clinically important signatures of distinct metabolites in
accordance with the disease severity (Kelly et al. 2017). Several other reports have
demonstrated distinct metabolomic profiles in asthmatic children compared to
non-asthmatic healthy individuals (Tao et al. 2019; Li et al. 2020; Matysiak et al.
2020; Chiu et al. 2021).

Recently, breath analysis has suggested some intriguing metabolic alterations in
asthma, particularly related to volatile organic compounds (VOCs) in the EBC that
could predict asthma exacerbations in children (van Vliet et al. 2017; Ferraro et al.
2020; Van Vliet et al. 2016). However, most of those analyses did not consider
potential risk factors or confounding factors as mentioned earlier. Therefore, clinical
correlations between metabolites and symptoms/severity are important to consider
while inferring those results into clinical practice.

2.2 Chronic Obstructive Pulmonary Disease (COPD)

COPD is a major lung disease worldwide that causes significant morbidity and
mortality and is among the top causes of death in many countries (Keogh and
Mark 2021). COPD is a chronic inflammatory disease of the lungs that is progressive
and irreversible in nature (Devine 2008). Although cigarette smoking is the most
common major risk factor for COPD, occupational or environmental insults are also
known to be prominent triggers for the onset and progression of this debilitating lung
condition.

Recent studies have demonstrated that COPD is a variable condition with multi-
modal phenotypic variants, particularly because of the differences in causal agents,
course, and progression of the disease. Although many metabolic alterations of
COPD were unknown until the beginning of the twenty-first century, these have
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so far exhibited an intriguing panorama based on what has been discovered to date
(Fig. 3). In this section, we briefly describe some of the important findings from
metabolomic research in COPD.

Several studies have identified metabolites that are distinctive in COPD (Turano,
“NMR-based metabolomics to evaluate individual response to treatments”).
Novotna et al. (2018) examined 10 COPD patients and 10 healthy individuals and
observed that two amino acids, alanine and phenylalanine, were significantly lower
in the peripheral blood of COPD patients than healthy individuals, while
pyroglutamate level was higher in COPD patients. They also observed that the
free carnitine to acylcarnitine ratio was significantly lower in COPD patients than
the healthy individuals. Another report by Diao et al. (2019) further demonstrated
that COPD patients had reduced serum levels of creatine, glycine, histidine, and
threonine compared to non-COPD smokers. Although these findings indicate a
possible subclinical malnutrition in the context of respiratory disease, results are
still inconclusive regarding the association of these specific metabolites with COPD.

Body composition is greatly affected in COPD as the disease progresses (Schols
et al. 2005). Chronic bronchitis and emphysema are the two distinct phenotype

Fig. 3 Distinct metabolites identified in COPD-associated metabolomics studies. Metabolic
pathways analysis based on distinct metabolites published in chronic obstructive pulmonary disease
(COPD)-associated metabolomics studies performed by applying the Metabo-Analyst 4.0 platform.
The names of 44 disturbed metabolic pathways were marked in the pathway figure, which mainly
involved dysfunctions of amino acid metabolism, lipid metabolism, energy production pathways,
and imbalance of oxidation and antioxidation. [Reproduced from Ran et al. (2019)]
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variations of COPD and patients with these diseases have different body silhouettes,
presumably due to difference in lipid metabolic pathways. Some reports have
suggested that perturbation of lipid metabolism occurs in COPD (Chen et al. 2019;
Rafie et al. 2018). In the Subpopulations and Intermediate Outcomes in COPD Study
(SPIROMICS) cohort, Halper-Stromberg et al. (2019) observed that phosphatidyl-
ethanolamine, phosphatidylcholine, phosphatidylinositol, leucine, and lysine from
BAL fluid in COPD patients were associated with higher odds of developing
emphysema. Liang et al. (2019) identified that serum metabolites such as glutamine,
glycine, histidine, hypoxanthine, α-N-phenylacetyl-L-glutamine, L-pipecolic acid,
P-chlorophenylalanine, pseudouridine, and L-citrulline levels were markedly differ-
ent between asthma and COPD.

There is an increasing body of evidence suggesting that sphingolipids, which that
play crucial roles in the structure and function of plasma membranes and signal
transduction, also have roles in the pathogenesis of COPD, asthma, and other lung
conditions (Vlahos 2020). Lipidomic studies have shown that COPD patients have
higher plasma concentrations of very low density lipoprotein (VLDL) compared to
healthy individuals, which strongly correlates with higher central and peripheral
airway resistance (Rafie et al. 2018). Nambiar et al. (2021) found that blood
palmitoleic acid, linoleic acid, and dihydrotestosterone were lower in COPD patients
than healthy controls. Similarly, another study showed that the levels of serum
lysophosphatidylcholine (LPC) 18:3, lysophosphatidylethanolamine (LPE) 16:1,
and phosphatidylinositol (PI) 32:1 were markedly reduced in acute exacerbations
in COPD, thus highlighting the role of glycerophospholipids in the pathophysiology
of COPD (Gai et al. 2021).

Another recent report reiterated these findings in the context of disease onset
and stages in COPD where the authors observed that phosphatidylcholine and LPC
were key indicators of COPD onset and that phosphatidylserine and diacylglycerol
could potentially indicate the various COPD stages (Zhou et al. 2020). In line
with these observations, polyunsaturated acid metabolites were found to be
associated with reduced lung function and disease severity in COPD (Ran et al.
2019; Yu et al. 2019; Xue et al. 2020). Pinto-Plata et al. identified plasma lipid
metabolites that may predict survival differences in COPD patients (Pinto-Plata et al.
2019). Using the Karolinska COSMIC cohort, Naz et al. (2017) found that the
autotaxin-lysophosphatidic acid axis may be dysregulated due to oxidative stress
in COPD and that sex-regulated phenotypes are influential in the pathophysiology of
disease. However, despite several reports demonstrating associations between
metabolites with disease progression and severity in COPD, it is still not clear
whether these metabolites may influence pathophysiological mechanisms. Further-
more, there may be several residual confounders that influence the dysregulation of
metabolic pathways in disease conditions. Therefore, any interpretation and
conclusions made from these metabolic outcomes should be made cautiously (Kilk
et al. 2018).
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2.3 Pneumonia

Community-acquired pneumonia remains a major cause of morbidity and mortality
around the world, with over a million hospitalizations each year in the USA prior to
COVID-19 (Griffin et al. 2013). Among the most common bacterial strains involved
in community-acquired pneumonia are Streptococcus pneumoniae and Staphylococ-
cus aureus, which are also found as commensal bacteria in healthy humans. The
challenge in controlling the incidence of pneumonia is to determine the etiological
process by which it occurs in individual patients. Using systems biology approaches,
it is hoped that diagnosis and monitoring of disease may be enhanced to allow for
more accurate prescription of drugs in pneumonia and similar inflammatory lung
diseases (Wheelock et al. 2013).

Application of NMR analysis of pneumonia patient urine suggests that definitive
metabolic profiles could be applied to infection with S. pneumoniae (Fig. 4). The
pattern of urinary metabolites detected in pneumococcal pneumonia could be distin-
guished from pneumonia associated with viruses and other bacterial strains (Slupsky
et al. 2009a). An animal model of pneumonia also demonstrated that distinct
metabolic profiles could be detected in the urine of mice infected with
S. pneumoniae or methicillin-resistant S. aureus, a major cause of antibiotic-resistant
pneumonia (Fig. 5) (Slupsky et al. 2009b). These studies indicate that metabolomics
has potential for the diagnosis, monitoring, and clinical management of pneumococ-
cal diseases.

2.4 Acute Lung Injury/Acute Respiratory Distress Syndrome
(ARDS)

Acute lung injury and its more severe form, ARDS, is characterized by infiltration of
an inflammatory, fibrin-rich exudate into the pulmonary interstitium and alveolar
spaces (Gattinoni et al. 2014; Martin and Matute-Bello 2011; Ware and Matthay

Fig. 4 Differentiating between different types of pneumonia in human patients. Urinary
metabolites were found to be distinct in pneumonia caused by S. pneumoniae and other pathogens.
These graphs show OPLS-DA models based on 61 measured metabolites found in the urine from
S. pneumoniae patients compared with those found in viral pneumonia and other bacteria (including
Mycoplasma tuberculosis, Legionella pneumophila, S. aureus, and others). Reprinted with permis-
sion from Slupsky et al. (2009b) J. Proteome Res. 8:5550–5558. Copyright 2009 American
Chemical Society
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2000; Li et al. 2011). This influx leads to impaired lung function and diminished gas
exchange (Ware and Matthay 2000). First described in 1967 by Ashbaugh et al.
(1967), ARDS is precipitated by many different causes, with the most common
being sepsis, pneumonia, severe trauma, and more recently, severe COVID-19
(Huang et al. 2020). ARDS is accompanied by an extraordinarily high mortality
rate (approximately 30% of patients die upon diagnosis of ARDS), and to date there
have been few effective pharmacotherapies for its treatment that mainly serve to
shorten the duration of illness rather than reverse it entirely. In addition, no effective
predictive or prognostic biomarkers are available to indicate the likelihood of a
patient developing ARDS. This has prompted a search for biomarkers of ARDS,
which has been led by genomics and proteomics, although neither field has yielded
suitable markers, and no candidate has progressed beyond the initial discovery phase
(Serkova et al. 2011; Rogers and Matthay 2014; Meyer 2013, 2014). This is likely

Fig. 5 Metabolic profiles in mice infected with S. pneumoniae. An inbred strain of mice (C57BL/
6), maintained in specific virus antigen-free housing with autoclaved bedding and identical dietary
supplies, was infected intratracheally with a clinical isolate of S. pneumoniae, serotype 14. After
24 h of infection, bronchoalveolar lavage (BAL) samples were analyzed for cell counts (a) and
histology was carried out on lung sections (b) to confirm inflammation arising from infection. At the
same time, urine samples were collected from animals that were subjected to NMR analysis and a
PCAmodel of urinary metabolite concentrations was generated (c). Reprinted with permission from
Slupsky et al. (2009a) J. Proteome Res. 8(6):3029–3036. Copyright 2009 American Chemical
Society
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due to the heterogeneity of disease, and much of the variation could lie beyond the
proteome or genome, possibly in the metabolome (Serkova et al. 2011; Rogers and
Matthay 2014). Thus, metabolomics presents itself as a potentially valuable tool for
analysis in ARDS.

A challenge with understanding mechanisms associated with ARDS is that there
are no translational animal models that accurately mimic human disease (Martin and
Matute-Bello 2011; Matute-Bello et al. 2011; Matute-Bello and Downey 2013).
Despite this limitation, there have been several metabolomic studies carried out in
rodent models that demonstrate changes in metabolites (Stringer et al. 2016). In early
experimental models, mechanical ventilation-induced ARDS in rodents generated
metabolic profiles in serum, lung tissue, and BAL samples (Izquierdo-Garcia et al.
2014). Putative metabolites of ARDS were reported to be increased lactate and
decreased glucose and glycine in lung tissues, together with increased glucose,
lactate, acetate, 3-hydroxybutyrate, and creatine in BAL samples. NMR-detected
metabolites in lung samples were associated with markers of ARDS phenotype (peak
inspiratory pressure, PaO2, and lung histology), but there was no association
between these ARDS indices and serum metabolites. In one of the first studies
examining the metabolomics of experimental ARDS, a cytokine-induced lung injury
model was tested to determine the temporal association between inflammation in the
lungs and changes in lung metabolome (Serkova et al. 2008). Cytokine-induced lung
injury resulted in decreased ATP, energy balance, and energy charge levels,
suggesting a decreased energy state. Together with this there was a significant
increase in glycolytic activity, measured as elevated lactate-to-glucose levels that
normalized 24 h after the induction of injury. Collectively these findings indicate that
a shift in cell energy metabolism occurs in lung tissues in ARDS. The benefit of this
study was that it demonstrated an association between phenotypic and metabolic
changes, an important first step in biomarker discovery. To date, biomarkers have
not been found that can differentiate between the two extremes of mild interstitial
edema and extensive cellular injury in the spectrum of acute lung injury. However,
continued analysis by magnetic resonance imaging and metabolic NMR spectros-
copy may enhance the development of more robust and predictive longitudinal
processes of experimental lung injury. Other animal models have shown significant
metabolic shifts in ARDS induced by a variety of stimuli, reviewed in detail in
Stringer et al. (2016).

Few clinical studies have reported metabolomics analysis of patients with ARDS.
Several studies suggest that the use of BAL samples could provide insight into the
metabolomic profile associated with ARDS. In one study, at least 26 and 18 endoge-
nous metabolites, respectively, could be used to differentiate ARDS from healthy
BAL samples using liquid chromatography-MS analysis (Evans et al. 2014). These
included lactate and other energy metabolism-associated metabolites such as citrate,
creatine, and creatinine which are increased in the plasma of patients with ARDS
(Stringer et al. 2011). These findings demonstrate the utility of BAL as a biofluid for
metabolomics analysis.

354 S. Moitra et al.



In addition, some reports have demonstrated the utility of exhaled breath as a
vehicle for metabolomics analysis (Schubert et al. 1998; Bos 2018). For example,
Schubert et al. demonstrated the utility of exhaled breath as a sample for
metabolomics analysis (Schubert et al. 1998). This was furthered in a study by
Bos et al. (2014) which found that three metabolites, octane, acetaldehyde, and
3-methylheptane, were able to discriminate ARDS from non-ARDS patients. Octane
is an end-product of lipid peroxidation, one of the degenerative processes caused by
oxidative stress (Riely et al. 1974; Horvat et al. 1964).

Interestingly, a recent study examining EBC from patients on mechanical venti-
lation due to severe COVID-19 or non-COVID-19 ARDS showed a characteristic
“breathprint” for COVID-19 (Grassin-Delyle et al. 2021) that could be distinguished
from non-COVID-19 ARDS. In this study, the four most prominent volatile
compounds in COVID-19 patients were methylpent-2-enal, 2,4-octadiene,
1-chlorohelptane, and nonanal, suggesting that real-time metabolomics analysis of
exhaled breath may identify patients with COVID-19. Nonanal is a sub-product of
oxidative stress-mediated destruction of the cell membrane (Rahman 2003).

In summary, the metabolomics data generated from experimental and clinical
studies of ARDS demonstrate that a disturbance in oxidative stress metabolism and
energy levels occur in this disease, which is consistent with what has been described
for the pathology of ARDS. To date, there appears to be no multi-center prospective
studies done for metabolomics analysis of ARDS. Our understanding of ARDS
metabolomics has been based on small studies that demonstrate feasibility for
evaluation of ARDS phenotypes and for determining lung injury severity. Going
forward, we will need to establish clinical trials aimed at testing prevention and
treatment strategies in ARDS patients by applying metabolomics analysis to the
spectrum of disease that presents in this population.

2.5 Occupational and Environmental Lung Diseases

Occupational exposure is one of the major risk factors associated with respiratory
illnesses, and the incidence of occupational lung diseases is increasing due to
expanding populations and consumer needs (Moitra et al. 2015). According to the
report of the International Labour Organization, nearly two million people die each
year due to workplace accidents, of which over 30% die due to lung cancer or other
lung diseases as a result of workplace exposure (Cullinan et al. 2017). In many cases,
occupational lung diseases are improperly recorded or detected, often due to a lack
of causal evidence, all of which contributes to a significant underestimation of the
true burden of these diseases. Although several biomarker-related reports have been
published in the context of occupational exposure, metabolomic studies have been
very limited to date. We discuss some of the few studies below on occupational and
environmental lung diseases.

Among a group of workers employed in carbon-coating friction systems,
Maniscalco et al. (2018) found that the concentrations of VOCs, including
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1,2-propanediol, phenylalanine, 3-hydroxybutyrate, and isopropanol, were signifi-
cantly elevated in the EBC of the workers who did not wear a mask at the work,
compared to those who routinely wore masks.

Other markers such as polycyclic aromatic hydrocarbons (PAH) have been found
to be associated with occupational exposure. Wei et al. studied the joint effects of
arsenic exposure, smoking, and physical exercise on lung function changes among a
group of coke-oven workers and found that urinary concentrations of PAH were
significantly higher in coke-oven workers than office workers in the same industry
who were not directly exposed to the ovens (Wei et al. 2021). Using a nationwide
biomonitoring survey of the Korean National Environmental Health Survey, Koh
et al. collected measurements of urinary 1-hydroxypyrene (1-OHP) as a metabolite
of interest for PAH exposure at workplace. They found that the level of urinary
1-OHP was highest among people engaged in construction and mine-related
occupations. Although that study did not explicitly study associations between
urinary metabolites and respiratory health, the effect of PAH on respiratory health
is already well known and therefore, urinary 1-OHP could potentially be a marker of
PAH-associated respiratory dysfunctions.

The collapse of the World Trade Center (WTC) on 9/11 introduced a novel and
unprecedented exposure scenario in which hundreds of thousands of New Yorkers
were affected in the ensuing years. Firefighters and all first responders were exposed
to huge amounts of dust containing numerous fibrous, chemical, and hazardous
substances. To date, several reports have been published on the respiratory health of
the workers who were exposed to WTC dust, resulting in a condition known as WTC
lung disease (also known as WTC sarcoid-like granulomatous pulmonary disease).
For example, a recent study provided novel insights into metabolic syndrome as a
risk factor for lung function decline in a cohort of firefighters exposed to materials
arising from the collapse of the WTC (Kwon et al. 2021). They also proposed that
regulating metabolic syndrome, particularly dyslipidemia, could also help to
decrease the risk of developing WTC lung disease. This group also showed previ-
ously that the serum metabolome, particularly the sphingolipid cluster containing
sphingosine-1-phosphate, a pleiotropic inflammatory mediator, was low in WTC
lung diseases, suggesting decreased bioavailability and increased risk of
compromised vascular integrity in WTC lung disease (Crowley et al. 2018). A
mouse model of WTC particulate matter exposure was also investigated and showed
that several prominent metabolic pathways were affected, including advanced
glycation end-products and lipids (including sphingolipids), that correlated with
inflammatory changes and attenuation of antioxidant potential (Veerappan et al.
2020). However, despite these interesting outcomes, correlations between
metabolomics and clinical evaluation in occupational lung diseases remain limited,
and therefore more studies are required to elucidate the crosstalk between these two
aspects.
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3 Metabolomics of Lung Microbiome in Respiratory Diseases

3.1 Asthma

The lung microbiota and metabolome are likely to play a pivotal role in the onset of
disease in the case of asthma (Barcik et al. 2020). It is now emerging that metaboli-
cally active microbiota that reside in the lung under normal conditions maintain a
complex network of crosstalk with the host in a symbiotic manner. In disease
conditions, however, this symbiosis is transformed into dysbiosis that can alter the
host immune response, which influences the overall lung health (Loverdos et al.
2019). The composition of normal lung microbiota consists of Bacteroidetes and
Firmicutes (the most abundant two genera), and apart from these two,
Proteobacteria, Actinobacteria, and Fusobacteria have also been found by 16S
rRNA sequencing in endobronchial brushing samples (Charlson et al. 2011; Bassis
et al. 2015). Although normal lung microbiota consists of a relatively small bacterial
population, estimated to be around 103 to 105/cm2, their intensely intricate crosstalk
is thought to be primarily responsible for the conduct of most of the host-microbiome
interplay (Charlson et al. 2011; Bassis et al. 2015; Hilty et al. 2010; Mathieu et al.
2018; Denner et al. 2016; Goleva et al. 2013).

In asthma, the bacterial pattern of the pulmonary microbiome has been
characterized in several studies. It is evident that some bacterial species become
elevated in nasopharyngeal swabs from asthmatics, such as Haemophilus influenzae,
Streptococcus pneumoniae, Staphylococcus aureus, and Moraxella catarrhalis,
compared to healthy controls. These bacteria are well-known pathogens that can
cause infectious exacerbations (Dickson et al. 2016). Interestingly, Huang et al.
showed in patients with severe asthma, Actinobacteria is present at high abundance
in correlation with elevated sputum leukocytes and eosinophils in bronchial biopsies
(Huang et al. 2015). It has been also shown that elevated eosinophil numbers in
lavage, along with reduced FEV1, correlate with bacterial α-diversity (based on
comparison of different species present in same sample) in endobronchial brushings
of asthmatic subjects. Bacterial species associated with lower airway obstruction
show distinctive features associated with FEV1 levels. For example, patients with
asthma exhibiting FEV1 < 60% had low α-diversity but high β-diversity compared
to asthma patients with FEV1 > 80% (Denner et al. 2016).

Interestingly, the gut microbiome is an important component of asthma patho-
physiology which has not been explored in detail. The human gut possesses a surface
area of 150–200 m2, which harbors 100,000 to 100 billion bacteria per mL of
sample, depending on the region of sample collection (Sender et al. 2016). A
relationship between the gut and lung was discovered upon the observation that
different lung diseases may be influenced by changes in the gut microflora and vice
versa. The microbiota in these two sites is therefore connected by a gut-lung axis that
is important in relation to asthma (Marsland et al. 2015). Among many different
metabolites produced by the gut microbiome, short-chain fatty acids (SCFAs), such
as acetate, propionate, and butyrate, have been found to regulate physiological and
immunological responses in humans. It is well known that not only do SCFAs
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provide a source of energy, but they also function as signaling molecules. SCFAs
have been shown to have multiple signaling effects: they inhibit histone deacetylases
(HDACs) that increase cytokine gene expression by promoting an anti-inflammatory
cell phenotype to maintain homeostasis, suppress transcription factors (nuclear
factor κ-light-chain-enhancer of activated B cells (NF-κB)), and reduce tumor
necrosis factor-α (TNF-α) production (Durack et al. 2017; Chambers et al. 2018;
Tan et al. 2014). Depletion of SCFA-producing bacteria as a mechanistic link
between the microbiome and asthma susceptibility or severity has been suggested
by Cait et al. (2018). Hence, SCFAs derived from the metabolic activity of gut
microbiota inhibit proinflammatory responses in the lungs. Although the mechanism
underlying this pathway is unclear, the most likely mechanistic explanation is that
the hepatic system may weaken innate immune responses by SCFAs binding to G
protein-coupled receptors and/or inhibition of the mevalonate/isoprenoid pathway
through HMGCoA reductase (Young et al. 2016). The specific mediators that make
up the communication between gut and lung is still unclear, but it has been
speculated that gut epithelial cells and immune cells absorb signals from the
endothelium to form local cytokine microenvironments, and eventually this alters
the immune response in distal sites such as the lung (Budden et al. 2017).

Overall, these studies demonstrate that the gut and lung microbiome, and its
associated metabolome, have an enormous impact on patient outcomes in asthma.
Findings from these reports could contribute to the discovery of mechanisms and
novel biomarkers for asthma and its associated exacerbations.

3.2 Chronic Obstructive Pulmonary Disease (COPD)

Recent evidence suggests an association between the lung microbiome and COPD,
suggesting a contribution of the lung bacterial community to disease progression in
the form of dysbiosis (Hilty et al. 2010; Erb-Downward et al. 2011; Zakharkina et al.
2013; Pragman et al. 2012). Phylogenetic analysis of microbial populations in
samples collected from the oropharynx and bronchial brushings from COPD patients
and healthy controls showed increased populations of pathogenic Proteobacteria
(Haemophilus spp.) over Bacteroidetes (Prevotella spp.), with the latter being
especially reduced (Hilty et al. 2010). Other studies also demonstrated that healthy
individuals commonly exhibit higher populations of Firmicutes, Bacteroidetes,
Proteobacteria, Fusobacteria, and Actinobacteria, in contrast to pathogenic
Haemophilus, Streptococcus, Klebsiella, Pseudomonas, and Moraxella in COPD
patients (Wu et al. 2014; Murphy et al. 2005). In addition, several reports have
described that exposure to tobacco smoke can modify bacterial populations in the
mouth and lungs. Though studies are limited in the context of COPD, numerous
reports indicate an alteration of the oral and respiratory bacterial microbiome as an
effect of tobacco smoking (Morris et al. 2013; Zhang et al. 2018; Huang and Shi
2019). In COPD patients, commensal colonization of H. influenzae, S. pneumoniae,
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Pseudomonas, and Moraxella are frequently observed in the lungs (Simpson et al.
2016).

The gut-lung axis also features prominently in COPD (Young et al. 2016). Fecal
microbiota derived from COPD patients have been demonstrated to contribute to the
development of COPD in a mouse model (Li et al. 2021). The fecal microbiota of
COPD patients were found to contain lower levels of SCFAs, which could contribute
to the manifestation of COPD.

In another recent study comparing the metabolomic profiles of COPD patients
with healthy humans (Bowerman et al. 2020), it was found that COPD patients and
healthy individuals manifest significantly different sets of microbial and metabolic
signatures in fecal samples. As many as 146 bacterial species differ in between these
two groups, along with a group of the top 50 indicator metabolites that distinguished
between healthy and COPD individuals, consisting of mostly lipids (46%), amino
acids (20%), and xenobiotic compounds (20%). Hence, it can be deduced that the
intricate mechanisms associated with the gut-lung axis and the host’s microbial
community play a crucial role in the manifestation and progression of COPD.

4 Conclusive Remarks

Taken together, we have reviewed some of the literature associated with
metabolomics analysis of biological fluids obtained from patients and experimental
animal models with a range of respiratory diseases. Metabolomics is a fundamental
part of systems biology analysis that has enormous clinical potential in discovering
novel biomarkers as well as understanding disease pathophysiology. Because of its
rapidly changing properties in health as well as disease, metabolomics has the power
to generate snapshots of metabolites from a given sample that can be followed over
time with repeated sampling. Several high-throughput systems have the ability to
capture the identities and qualities of metabolites in a rapid manner using NMR or
MS-based techniques. Challenges remain with the application of NMR in complex
biological samples, which is less sensitive to small amounts of metabolites in many
cases than MS. An important distinction to make is that analysis of metabolites in
lung-specific samples is predicted to provide greater sensitivity to the tissue-specific
metabolome over that of blood-derived (plasma, serum, or whole blood) or urinary
metabolites. This is especially evident in the case of analysis of the metabolomics of
the lung microbiome. Variability of NMR-measured metabolites is also an issue,
with differing results found within a single facility as well as multiple locations
(Lacy et al. 2014). In addition, a substantial number of unknown metabolites have
been detected by MS that await more detailed identification in biological samples.
We look forward to a future where we can implement increasingly sophisticated
analyses of biological samples using systems biology approaches in respiratory
diseases.
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