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Abstract

Functional characterization of endolysosomal ion channels is challenging due to
their intracellular location. With recent advances in endolysosomal patch clamp
technology, it has become possible to directly measure ion channel currents
across endolysosomal membranes. Members of the transient receptor potential
(TRP) cation channel family, namely the endolysosomal TRPML channels
(TRPML1-3), also called mucolipins, as well as the distantly related two-pore
channels (TPCs) have recently been characterized in more detail with
endolysosomal patch clamp techniques. However, answers to many physiological
questions require work in intact cells or animal models. One major obstacle
thereby is that the known endogenous ligands of TRPMLs and TPCs are anionic
in nature and thus impermeable for cell membranes. Microinjection, on the other
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hand, is technically demanding. There is also a risk of losing essential co-factors
for channel activation or inhibition in isolated preparations. Therefore, lipophilic,
membrane-permeable small-molecule activators and inhibitors for TRPMLs and
TPCs are urgently needed. Here, we describe and discuss the currently available
small-molecule modulators of TRPMLs and TPCs.
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1 Introduction

Transient receptor potential (TRP) channels represent potential targets for the treat-
ment of various diseases. Several members of the TRP channel family have been
investigated as potential targets for the treatment of neuropathic and other pain
conditions and more than 20 drugs targeting TRPV1, TRPV2, TRPM8, or TRPA1
are still under active clinical development (Weyer-Menkhoff and Lotsch 2018;
Dietrich 2019). Other disease areas with TRP channels as potential drug
targets are: bladder dysfunctions (Birder 2007), inflammatory bowel disease
(Zhang and Li 2014), pulmonary oedema (TRPV4) (Thorneloe et al. 2012), hyper-
keratosis, inflammatory skin disorders with itch and/or pain (TRPV3) (Imura et al.
2009; Yoshioka et al. 2009; Lin et al. 2012), prostate cancer (TRPM8) (Zhang and
Barritt 2006), inflammation, infection (Parenti et al. 2016), ischaemia reperfusion
(Ma et al. 2017), Alzheimer’s disease (TRPM2) (Jiang et al. 2018a), chronic cough
and asthma (TRPA1) (Belvisi and Birrell 2017), lysosomal storage disorders and
neurodegenerative diseases (TRPML1; (Huang and Szallasi 2017)).

In the past decade, remarkably many highly potent and efficacious agonists and
antagonists for TRP channels have been developed by the pharmaceutical industry.
Meanwhile, many of these compounds have become commercially available. Some
of them, e.g. PF-4840154 (TRPA1 agonist) (Ryckmans et al. 2011), GSK1016790A
(TRPV4 agonist) (Thorneloe et al. 2008), WS-12 (TRPM8 agonist) (Sherkheli et al.
2008), AMG9810 and AMG517 (TRPV1 antagonists) (Gavva et al. 2005, 2008),
GSK2193874 (TRPV4 antagonist) (Cheung et al. 2017), ML204 and HC-070
(TRPC4/5 antagonists) (Miller et al. 2011; Just et al. 2018) are presented in Fig. 1.

For the endolysosomal TRPML channels (TRPML1-3; mucolipins 1-3) and the
distantly related two-pore channels (TPCs) no agonists/antagonists, albeit under
development have been released by the pharmaceutical industry so far. Several
compounds are however available as a result of high-throughput screening (HTS)
efforts by academic institutions. Here, we describe and discuss in the first part the
currently available TRPML channel agonists and antagonists and give an overview
of the general characteristics of the three TRPML channel subfamily members. In the
second part, we focus on general characteristics of the endolysosomal TPCs (TPC1
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and TPC2) and present small molecules, which are currently available for their
activation or inhibition.

2 Small-Molecule Tools for the Modulation of TRPMLs

The TRPML subfamily of TRP channels comprises three members in mammals.
Loss or mutation of TRPML1 in humans and mice results in severe
neurodegeneration as well as corneal clouding and retinal degeneration, which
eventually leads to blindness (mucolipidosis type IV phenotype; (Bargal et al.
2000)). Gain-of-function mutations in TRPML3 cause deafness and circling
behaviour in mice (varitint-waddler phenotype; (Di Palma et al. 2002; Xu et al.
2007; Nagata et al. 2008; Kim et al. 2007; Grimm et al. 2007, 2009)). TRPML2
enhances viral entry, viral trafficking, and thus infection with viruses such as yellow
fever virus, Dengue virus, influenza A virus, or equine arteritis virus. The mutation
K370Q within TRPML2 is found at higher frequencies in African populations
compared to other geographic populations and leads to a loss of viral enhancement
(Rinkenberger and Schoggins 2018).

The phosphoinositide phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2; Fig. 2), a
major constituent of endolysosomal membranes has been described in 2010 as the
first endogenous activator of TRPML channels (Dong et al. 2010). In contrast,
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2; Fig. 2), which mainly occurs in
the plasma membrane, was identified as an inhibitor of TRPML channels (Zhang
et al. 2012); Tables 1, 2, and 3.

Fig. 1 Small-molecule modulators of TRP ion channels. (a) Agonists of TRPA1 (PF-4840154),
TRPV1 (GSK1016790A), and TRPM8 (WS-12). (b) Antagonists of TRPV1 (AMG9810,
AMG517), TRPV4 (GSK2193874), and TRPC4/5 (ML204, HC-070)
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PI(3,5)P2 is present in both Rab5 positive early endosomes (EE) as well as Rab7
positive late endosomes (LE) and lysosomes (LY; (Takatori et al. 2016)). Defects in
PI(3,5)P2 signalling are linked to human diseases such as Charcot–Marie–Tooth
disease and amyotrophic lateral sclerosis. Cryo electron microscopy (Cryo-EM)
revealed that PI(3,5)P2 and PI(4,5)P2 bind to the extended helices of transmembrane
domains S1, S2, and S3 of TRPML1. The phosphate group of PI(3,5)P2 induces
amino acid Y355 to form a π–cation interaction with R403, moving the S4–S5
linker, thus allosterically activating the channel (Fine et al. 2018). This is different
from the PI(3,5)P2 binding observed in TPC1. Here PI(3,5)P2 binds to the first S6
domain (She et al. 2018).

In addition to phosphoinositides in the membrane of endo-lysosomes, the proton
concentration in the lumen of endo-lysosomes controls TRPML channel activity.
TRPML1 activity is enhanced by protons (acidic pH; (Dong et al. 2008; Chen et al.
2014)), while TRPML2 and TRPML3 activity is reduced by protons (Kim et al.
2008; Grimm et al. 2012; Miao et al. 2015; Lev et al. 2010; Plesch et al. 2018).
Further regulators of TRPML1 channel activity are sphingomyelin, which inhibits
TRPML1 activity in NPC1 (Niemann Pick type C1) cells (Shen et al. 2012),
adenosine (Zhong et al. 2017), reactive oxygen species (ROS; (Zhang et al.
2016)), and TOR kinase via phosphorylation of the TRPML1 channel (Onyenwoke
et al. 2015).

Several synthetic ligands have become available in recent years for TRPML1,
2, and 3 as a result of high-throughput screening (HTS) and medicinal chemistry
efforts, which have been discussed in detail before (Grimm et al. 2010, 2012, 2014a;
Yamaguchi and Muallem 2010; Saldanha et al. 2011; Shen et al. 2012; Cuajungco
et al. 2014; Chen et al. 2014; Kilpatrick et al. 2016). TRPML channel activators
identified in the HTS belong to different substance families including (hetero)-
arylsulfonamides (e.g. SN-1, SF-11, SF-21, SF-22, and MK6-83; (Chen et al.
2014)), phthalimidoacetamides (SF-51 and ML-SA1; (Shen et al. 2012)), isoxazol
(in)es (e.g. SN-2, ML2-SA1, EVP-21), and others (Grimm et al. 2010, 2012, 2014a;
Saldanha et al. 2011, 2013; Cuajungco et al. 2014; Kilpatrick et al. 2016); Fig. 3).

Besides their structural differences, these activators also differ in activity and
selectivity. While the tetrahydroquinoline ML-SA1 activates all human TRPML

Fig. 2 Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2, left) and phosphatidylinositol
4,5-bisphosphate (PI(4,5)P2, right). Inositols are substituted with two phosphate residues in 3,5 or
4,5 positions and carry phosphate glycerol ester and various fatty acids in 1 position (e.g. n¼ 16 or
18)
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channel isoforms, and TRPML1 and TRPML3 in mouse, its dehydro analogue
SF-51 preferentially activates TRPML3 (Grimm et al. 2010). A small modification
of SF-22 (from 2-chlorothiophene in SF-22 into 2-methylthiophene in MK6-83)
results in strongly increased activity. Nevertheless, both SF-22 and MK6-83 activate
mouse and human TRPML1 and TRPML3 (Chen et al. 2014).

Although the structural differences between SN-2 and ML2-SA1 are rather small,
they result in this case in very different selectivities within the TRPML family. SN-2,
however, is preferentially activating TRPML3, while ML2-SA1 (EVP-22) is a
selective agonist of TRPML2. All modifications are a result of systematic analysis

Table 1 Summary of the characteristics of TRPML1

TRPML1 (MCOLN1)

Associated
phenotypes

Loss of function: Mucolipidosis type IV (MLIV), neurodegenerative
lysosomal storage disease in humans. Knockout mouse model shows
pathology similar to human mucolipidosis IV phenotype (Micsenyi et al.
2009; Grishchuk et al. 2014, 2015, 2016)

Expression
pattern

Ubiquitous; highest in brain, kidney, spleen, liver, and heart

Subcellular
localization

Lysosomal, by virtue of dileucine sorting motif

Endogenous
regulation

Channel activation: PI(3,5)P2 (direct); luminal H+; ROS; TFEB
(transcriptional)
Channel inhibition: PI(4,5)P2; sphingomyelin; adenosine; mTOR (debated)

Functions • Non-selective cation channel
• Lysosomal ion homeostasis

– Cation and heavy metal (iron/zinc) homeostasis
– Lysosomal pH regulation (debated)

• Lysosomal trafficking
– Calcium-dependent lysosomal recruitment of motor proteins
– Lysosomal exocytosis
– Lysosomal lipid and cholesterol trafficking

• Phagocytosis

Available
agonists

• ML-SA1 (commercially available); not isoform selective
• MK6-83 (commercially available); not isoform selective
• SF-22, SF-51 (>30 μM); not isoform selective
• ML-SA3; isoform selectivity unclear
• ML-SA5; isoform selectivity unclear
• ML1-SA1 (EVP-169); isoform selective (TRPML1 selective) (Spix

et al. 2022)

Available
antagonists

• ML-SI1; not isoform selective; stereochemistry of the active isomer
not yet elucidated; dependent on activator
• ML-SI2 (structure not published)
• ML-SI3 (racemic trans-isomer commercially available; both

enantiomers available by enantioselective synthesis (Kriegler et al. 2022);
not isoform selective
• EDME (17β-estradiol methyl ether); isoform selective (Rühl et al.

2021)
• PRU-10; isoform selective (Rühl et al. 2021)
• PRU-12; isoform selective (Rühl et al. 2021)
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of structure–activity relationships (Plesch et al. 2018; Grimm et al. 2010; Chen et al.
2014). MK6-83 has an EC50 of 0.1 μM for hTRPML1 in calcium imaging
experiments (i.e. in intact cells), while ML2-SA1 has an EC50 of 1.2 μM for
hTRPML2, and SN-2 showed an EC50 of 1.8 μM for hTRPML3 (Grimm et al.
2010, 2014a; Chen et al. 2014). A further modified congener of the isoxazoline
SN-2, which selectively activates hTRPML3, is the isoxazole EVP-21, an aromatic
analogue of SN-2 with an annulated cyclohexane moiety instead of a bicycloheptane
moiety (Plesch et al. 2018). Although EVP-21 has a higher EC50 (4.3 μM in calcium
imaging experiments), it shows an increased efficacy and selectivity on human
TRPML3 over human TRPML1 and human TRPML2 compared to SN-2. EVP-21
can elicit TRPML3 currents in both LE/LY and EE (Fig. 4).

Very recently, new selective agonists for TRPML1 and mouse TRPML3 were
published (Spix et al. 2022). Thus, EVP-169 (ML1-SA1) selectively activates
human and mouse TRPML1. EVP-77 (ML3-SA1) selectively activates mouse
TRPML3 (Spix et al. 2022) (Fig. 3).

Wang et al. (2015) further published a TRPML activator, the aryl-bis-sulfon-
amide ML-SA3 with increased potency compared to ML-SA1. However, the stereo-
chemistry of this compound on the cyclohexane ring was not further specified. More
recently, another TRPML activator, ML-SA5, another aryl-bis-sulfonamide, was
described ((Yu et al. 2020), Fig. 5).

Besides TRPML channel agonists, synthetic small molecules for TRPML chan-
nel inhibition named ML-SI1, ML-SI2, and ML-SI3 were reported (Samie et al.

Table 2 Summary of the characteristics of TRPML2

TRPML2 (MCOLN2)

Associated
phenotypes

No identified phenotypes in human nor mice beyond impaired chemokine
secretion (Gerndt et al. 2020a)

Expression
pattern

Restricted to myeloid and lymphoid organs (thymus, spleen, lymph nodes)
and kidney

Subcellular
localization

Recycling endosomal and lysosomal

Endogenous
regulation

Channel activation: PI(3,5)P2 (direct); LPS endotoxin (macrophages,
transcriptional)
Channel inhibition: Luminal H+

Functions • Non-selective cation channel
• Chemokine secretion (various chemokines; CCL2 best characterized)
• Enhances viral infection, viral entry, virus trafficking (yellow fever

virus, dengue virus, influenza A virus, equine arteritis virus)
• Acceleration of endosomal trafficking

– Endocytic transferrin processing
– ARF6-dependent endocytosis of CD59
– Recycling of GPI-APs

Available
agonists

• ML-SA1 (commercially available); not isoform selective
• ML2-SA1 ¼ EVP-22 (published (Plesch et al. 2018), not

commercially available); isoform selective

Available
antagonists

• ML-SI1 and 3; not isoform selective
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2013; Chen et al. 2014; Wang et al. 2015; Zhang et al. 2016; Kilpatrick et al. 2016).
Only for two of these three compounds (ML-SI1 and ML-SI3) the chemical
structures have been released (Wang et al. 2015). Unfortunately, it remained unclear
from the original publication which of the stereoisomers of ML-SI1 and ML-SI3 are
functionally active. Possible diastereomers would have cis or trans configuration and
each of them can further occur in two enantiomeric forms (R,R or S,S for trans; R,S
or S,R for cis) for its absolute configuration. We have synthesized both compounds,
compared them with commercially available variants and analysed their activity on
the TRPML isoforms.

ML-SI1, as published by Wang et al. (2015), is based on an indoline moiety and
cannot be purchased from commercial providers. In contrast, commercially available
GW405833 (CAS number: 18002-83-9), which was formerly (erroneously) offered
as ML-SI1, is based on a fully aromatic indole framework (Fig. 6a). To elucidate
which one of the two structures is able to block TRPML channels, we synthesized
the indoline version of ML-SI1 and purchased the indole version (GW405833) of
ML-SI1. ML-SI1 was synthesized as a racemic mixture of diastereomers, containing
four different stereoisomers (cis/trans and enantiomers of each). Calcium imaging

Table 3 Summary of the characteristics of TRPML3

TRPML3 (MCOLN3)

Associated
phenotypes

No identified phenotypes in man, but TRPML3 gain-of-function mutations
(A419P; I362T) cause the varitint-waddler (Va and VaJ) phenotype in mice,
characterized by deafness, circling behaviour, head bobbing, and coat
colour dilution (Di Palma et al. 2002; Nagata et al. 2008; Xu et al. 2007;
Kim et al. 2007; Grimm et al. 2007, 2009)

Expression
pattern

Hair cells of the inner ear, organ of Corti, utricle, stria vascularis, skin
melanocytes, kidney, bladder, lung, liver, olfactory bulb, nasal cavity,
thymus, colon, trachea, brain, and thymus

Subcellular
localization

Early endosomal and lysosomal

Endogenous
regulation

Channel activation: PI(3,5)P2 (direct)
Channel inhibition: PI(4,5)P2 (direct); luminal H+, Na+

Functions • Non-selective cation channel
• Endosomal maturation
• Endosomal trafficking

– EGF/EGFR trafficking
• Lysosomal trafficking

– Expulsion of pathogen-infected vesicles

Available
agonists

• ML-SA1 (commercially available); not isoform selective
• MK6-83 (commercially available); not isoform selective
• SN-2 (commercially available); isoform selective
• EVP-21 (not commercially available); isoform selective (human

TRPML3 selective)
• ML3-SA1 (EVP-77); isoform selective (mouse TRPML3 selective)

(Spix et al. 2022)

Available
antagonists

• None
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experiments confirmed blocking effect of indoline ML-SI1 on TRPML1 (32%
inhibition) and TRPML2 (33% inhibition) after activation with ML-SA1, whereas
TRPML3 could not be blocked. Further experiments showed different blocking
activities after activation with MK6-83. While ML-SI1 can block 45% of
TRPML1 activity after stimulation with ML-SA1, the blocking effect after activation
with MK6-83 is only around 20%. These results indicate that the antagonistic effect
of ML-SI1 depends on the mode of activation. The commercially available indole
analogue GW405833 showed no effect in patch clamp experiments on TRPML1

Fig. 3 Small-molecule TRPML activators. (a) TRPML3 activators with the structural motif of
(hetero)arylsulfonamides (highlighted in pink). SN-1, SF-11, and SF-21 only share an aryl sulfon-
amide moiety, whereas SF-22 and MK6-83 only differ in the substituent at the thiophene residue.
(b) The dihydroquinoline SF-51 and the tetrahydroquinoline ML-SA1 both sustain
phthalimidoacetamide moieties (blue) and only differ in one double bond. ML1-SA1 (¼
EVP-169) contains a tetrachlorophthalimidoacetamide moiety instead of a phthalimidoacetamide
moiety in SF-51 and ML-SA1. ML-SA1 activates all human TRPML isoforms while SF-51
preferentially activates TRPML3 and ML1-SA1 selectively TRPML1. (c) The isoxazoline (green)
SN-2 and selective TRPML2 activator ML2-SA1 (¼ EVP-22) differ merely in the substitution
pattern of the phenyl ring. ML3-SA1 (¼ EVP-77) is a selective activator for mouse TRPML3 and
contains a fused oxane ring instead of a fused norbornane ring in SN-2. (d) Selective TRPML3
activator EVP-21 with an isoxazole (orange) as structural motif (selective for human TRPML3)
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after activation with ML-SA1 (Fig. 6). There are, up to now, no data for the four
single stereoisomers of the active indoline ML-SI1 available.

The second TRPML inhibitor published by Wang et al. (2015) is the aryl-
sulfonamide ML-SI3. Commercially available ML-SI3 (CAS No.: 891016-02-7)
was identified as racemic mixture of trans-isomers by NMR spectrometry. Further
confirmation of the stereochemistry was provided by independent synthesis of (�)-
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endolysosomal patch clamp experiments. (a) Structures of SN-2 and its analogous compound
EVP-21. (b) Concentration-effect curves (CEC) obtained from Fura-2-AM calcium imaging
experiments after application of EVP-21 at different concentrations. CEC shows the effect of
EVP-21 on hTRPML1, 2, and 3. (c, d) Results of whole-LE/LY patch clamp recordings and
(e, f) whole-EE patch clamp recordings using ramp protocols (�100 to +100 mV in 500 ms,
every 5 s, holding potential 0 mV). For measurement, organelles (LE/LY (YM201636-enlarged)
and EE (wortmannin/latrunculin B-enlarged)) were isolated from hTRPML3-YFP stably expressing
HEK293 cells. Shown are representative EVP-21 stimulated TRPML3 currents in LE/LY (c) and
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Student’s t test, unpaired
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trans-ML-SI3 in our laboratory (Leser et al. 2021). Inhibitory effects of ML-SI3
were analysed via calcium imaging and endolysosomal patch clamp experiments.
Like ML-SI1, ML-SI3 is inhibiting ML-SA1 activated TRPML1 and 2 channels
(55% and 66% inhibition), but not TRPML3. Also, in endolysosomal patch clamp
experiments, ML-SI3 showed strong inhibitory effect on hTRPML2 after activation
with the TRPML2 specific agonist ML2-SA1. Furthermore, no difference in the
inhibitory effect was observed after activation with different TRPML activators.
ML-SI3 was able to block hTRPML1 after activation with both ML-SA1 and
MK6-83 (Fig. 7). Furthermore, an activating effect of the racemic mixture of
trans-ML-SI3 on hTRPML2 could be observed. Separation of the enantiomers of
trans-ML-SI3 by chiral HPLC showed that exclusively the (+)-trans-ML-SI3 is
responsible for this activation, which in enantiopure form activates hTRPML2
(EC50: 2.8 μM) and hTRPML3 (EC50: 11 μM) whereas it inhibits hTRPML1
(IC50: 5.6 μM). Very recently, we assigned the (R,R)-configuration to the active
(+)-trans enantiomer by unambiguous chiral synthesis and single-crystal X-ray
structure analysis (Kriegler et al. 2022). The (�)-trans-ML-SI3 has, however, a
pure inhibitory effect on all three subtypes (IC50 (hTRPML1):1.4 μM; IC50

(hTRPML2): 2.2 μM; IC50 (hTRPML3):11 μM) and is also the eutomer on
TRPML1 (IC50 of the racemic mixture: 2.7 μM). The racemic mixture of cis-ML-
SI3 has a weaker inhibitory effect on hTRPML1 (IC50: 19 μM) and activates
TRPML2 (EC50: 8.9 μM) and TRPML3 (EC50: 27 μM). All EC50 and IC50 values
were determined by a Fluo-4 calcium-imaging based FLIPR (Fluorescence Imaging
Plate Reader) system using ML-SA1 as activator (Leser et al. 2021).

Comparing the two TRPML inhibitors, ML-SI3 seems more potent, as its
blocking effect on hTRPML1 is about 55% while the blocking effect of ML-SI1
on hTRPML1 is around 32%. Drawbacks of these compounds are their lack of
selectivity and the activator-dependent effects.

Ou et al. (2020) have used a not further specified TRPML(1) inhibitor named
“130” without disclosing its structure or source, and without any information on
isoform selectivity.

Fig. 5 Structure of the aryl-bis-sulfonamides ML-SA3 and ML-SA5. Both compounds are
TRPML1 activators. Unidentified stereochemistry of ML-SA3 is marked in red and the aryl-bis-
sulfonamide moieties are marked in pink
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Fig. 6 Small-molecule TRPML inhibitor ML-SI1 and its indole-type analogue GW405833.
Characteristics assessed in calcium imaging as well as in endolysosomal patch clamp experiments.
(a) Structure of racemic cis/trans-ML-SI1, with an indoline scaffold and commercially available,
achiral indole GW405833. (b) In contrast to ML-SI1 GW405833 (10 μM) has no effect on
hTRPML1-YFP transfected HEK-293 cells after activation with ML-SA1 (10 μM) in patch
clamp experiments. Experimental conditions were applied as in Fig. 4c with the exception that
pipette (luminal) solution contained 140 mM Na-MSA (Chen et al. 2017), 5 mM K-MSA, 2 mM
Ca-MSA, 1 mM CaCl2, 10 mM HEPES, and 10 mM MES at pH 4.6 (Chen et al. 2017). (c)
Statistical analysis of the inhibitory effect on TRPMLs in Fura-2-AM calcium imaging experiments
(normalized activation). Experiments were carried out as previously described (Plesch et al. 2018)
on a Polychrome IV monochromator (for hTRPML1) or a Leica DMi8 live cell microscope (for
TRPML2 and 3). After stimulation with ML-SA1 (10 μM, activation) for 200 s, the inhibitor
ML-SI1 (10 μM) was applied for further 200 s. For measurements HEK-293 cells stably expressing
hTRPML2-YFP or hTRPML3-YFP, and transiently transfected hTRPML1-YFP cells were used
(Grimm et al. 2010). Stably expressing hTRPML2-YFP cells were generated as previously
described (Chen et al. 2014). (d) Statistical analysis as in (c), using ML-SA1 (10 μM, red) or
MK6-83 (10 μM, green) for activation of hTRPML1ΔNC-YFP (plasma membrane variant of
TRPML1) transiently transfected HEK-293 cells, followed by inhibition using ML-SI1 (10 μM).
(e) Representative Ca2+ signals recorded from hTRPML1-YFP transiently transfected HEK-293
cells, loaded with Fura-2-AM and stimulated with ML-SA1 (10 μM, red) or MK6-83 (10 μM,
green), followed by addition of the inhibitor ML-SI1 (10 μM). Highlighted lines represent means,

Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels 259



Fig. 6 (continued) shaded lines single cell traces. In all statistical analyses of calcium imaging
experiments, mean values of n (in parentheses) independent experiments are shown as indicated.
*** indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05, ns ¼ not significant, one-way
ANOVA test followed by Tukey’s post-hoc test
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Fig. 7 Small-molecule TRPML inhibitor ML-SI3. Characteristics assessed in calcium imaging as
well as in endolysosomal patch clamp experiments. (a) Racemic mixture of trans-isomers of
ML-SI3 identified as an active species. (b) Patch clamp experiments show block of hTRPML2-
YFP transiently transfected HEK-293 cells with ML-SI3 (10 μM) after activation with the TRPML2
selective agonist ML2-SA1 (10 μM) as described in Fig. 4c. Pipette (luminal) solution contained
140 mMNa-MSA, 5 mMK-MSA, 2 mMCa-MSA, 1 mMCaCl2, 10 mMHEPES, and 10 mMMES
at pH 7.2. (c) Statistical analysis of ML-SI3 (10 μM) after activation of hTRPML1, 2, or 3 with
ML-SA1 (10 μM, activation), as described in Fig. 5c. (d) Statistical analysis as in (c), using
ML-SA1 (10 μM, blue) or MK6-83 (10 μM, green) for activation of hTRPML1-YFP transiently
transfected HEK-293 cells, followed by inhibition using ML-SI3 (10 μM). (e) Representative Ca2+

signals recorded from hTRPML1-YFP transiently transfected HEK-293 cells, loaded with Fura-2-
AM and stimulated with ML-SA1 (10 μM, blue) or MK6–83 (green, 10 μM), followed by addition
of the inhibitor ML-SI3 (10 μM). Highlighted lines represent means, shaded lines single cell
trances. In all statistical analyses of calcium imaging experiments, mean values of n
(in parentheses) independent experiments are shown as indicated. *** indicates p < 0.001, **
indicates p < 0.01, ns ¼ not significant, one-way ANOVA test followed by Tukey’s post-hoc test
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Very recently (Rühl et al. 2021), we have presented novel TRPML1 isoform
selective blockers which are based on the identification of a steroidal lead structure
(EDME, 17β-estradiol methyl ether) in a high-throughput screening of a library of
drug-like small-molecule compounds containing numerous FDA-approved drugs.
Based on this screening hit we developed, by systematic structure variations, the
advanced analogues PRU-10 and PRU-12 (Fig. 8). In whole-cell patch clamp
experiments using EDME and the plasma membrane variant of TRPML1
(TRPML1ΔNC) the IC50 measured for TRPML1 was 0.22 μM. No block for
TRPML3 was found with this compound. TRPML2 was blocked with an IC50 of
3.8 μM. For comparison, in analogous patch clamp experiments ML-SI3 blocked
TRPML1 with an IC50 of 4.7 μM and TRPML2 with an IC50 of 1.7 μM, suggesting
that ML-SI3 has an almost threefold stronger effect on TRPML2 compared to
TRPML1 and is >20-fold weaker on TRPML1 than EDME. The synthetic
analogues PRU-10 and PRU-12 showed a further improved selectivity profile
compared to EDME (Rühl et al. 2021).

In the following, we present a summary of the characteristics of the three TRPML
isoforms and the presently available modulators.

3 Small-Molecule Tools for the Modulation of TPCs

Two-pore channels (TPCs, TPCNs) are only distantly related to the TRPML
channels in terms of sequence similarities, but both channel families share a number
of functional features. Both TRPMLs and TPCs are non-selective cation channels in
endo-lysosomes, they are permeable to sodium and calcium, they are activated by PI
(3,5)P2, and both are involved in endolysosomal trafficking, autophagy, TFEB
(Transcription Factor EB) and mTOR signalling (Grimm et al. 2018). TPCs have
been shown to be activated by NAADP (nicotinic acid adenine dinucleotide phos-
phate; (Brailoiu et al. 2010; Calcraft et al. 2009; Ogunbayo et al. 2011; Grimm et al.
2014b; Jha et al. 2014; Pitt et al. 2014; Ruas et al. 2015a)), although it remained
unclear until recently whether activation is mediated directly or indirectly, e.g. via an
auxiliary subunit (Walseth et al. 2012; Lin-Moshier et al. 2012; Morgan and Galione
2014; Morgan et al. 2015; Ruas et al. 2015b; Gerasimenko et al. 2015; Pitt et al.
2016; Grimm et al. 2017; Nguyen et al. 2017; Jiang et al. 2018b). In 2021, two

Fig. 8 Chemical structures of the TRPML1 isoform selective blockers EDME, PRU-10, and
PRU-12
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groups have published independently neurological expressed 1-like protein (HN1L)
or Jupiter microtubule-associated homologue 2 (JPT2) as NAADP binding protein.
However, interaction was only confirmed for TPC1 but not TPC2, leaving open the
question how NAADP acts on TPC2 (Gunaratne et al. 2021; Roggenkamp et al.
2021). Both activators PI(3,5)P2 and NAADP are not plasma membrane permeable.
A commercially available variant of NAADP, NAADP-AM (a lipophilic
acetoxymethyl (AM) ester prodrug, Fig. 9) is plasma membrane permeable (Parkesh
et al. 2008; Galione et al. 2014), but due to its instability very limited in use. Hence,
there was an urgent need for lipophilic, plasma membrane-permeable small-mole-
cule activators of TPCs.

Recently, small-molecule activators for TPCs have been identified by two inde-
pendent groups. Zhang et al. (2019) identified tricyclic antidepressants (TCAs:
clomipramine, desipramine, imipramine, amitriptyline, and nortriptyline),
phenothiazines (chlorpromazine, triflupromazine), and the benzothiazole riluzole
by screening Sigma’s LOPAC library (Fig. 10). All of these compounds are
registered drugs and are able to activate TPC2 with EC50 values between 43 and
112 μM in whole-cell patch clamp experiments. While clomipramine and desipra-
mine can additionally activate TPC1, chlorpromazine and riluzole inhibit TPC1.
Furthermore, currents evoked with the TCAs and phenothiazines were strongly
voltage-dependent while the activation using riluzole was voltage-independent.
This suggests different agonist-specific gating mechanisms within one ion channel.
TCAs were introduced to treat depression, bipolar and panic disorder, chronic pain,
and insomnia. Additionally, they block monoamine (dopamine, norepinephrine, and
serotonin) reuptake and inhibit cholinergic, histaminic, and alpha-adrenergic trans-
mission. Due to the broad range of adverse effects TCAs were meanwhile mostly
replaced as antidepressants by the selective serotonin reuptake inhibitors (Trindade
et al. 1998; Shelton 2019). For amitriptyline, imipramine, and clomipramine it is
reported that they are potent CYP450 inhibitors, that block CYP450 2C19 and 1A2,
which raises the risk of undesired drug–drug interactions (Gillman 2007; Gerndt
et al. 2020b). Riluzole is an FDA-approved drug, which is used for the treatment of

Fig. 9 NAADP and its
membrane-permeable
acetoxymethyl (AM) ester
prodrug variant NAADP-AM
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amyotrophic lateral sclerosis (ALS) (Bissaro and Moro 2019; Liu and Wang 2018)
and furthermore blocks tetrodotoxin-sensitive Na+ channels (Song et al. 1997),
kainite and NMDA (N-methyl-D-aspartate) receptors (Hubert et al. 1994; Debono
et al. 1993; Malgouris et al. 1994).

Another HTS was performed by our consortium (Gerndt et al. 2020a), screening
the 80.000 compound-strong Roche Explore libraries. Two differentially acting
lipophilic small-molecule agonists of TPC2, namely TPC2-A1-N and TPC2-A1-P
(Fig. 11a, b) were identified in calcium imaging experiments using the calcium
indicator dye Fluo-4-AM, followed by re-evaluation in single cell calcium imaging
using Fura-2-AM (Fig. 11 a, b). EC50 values in fluorescence-based calcium imaging
experiments were 7.8 μM (TPC2-A1-N) and 10.5 μM (TPC2-A1-P), while EC50

values in electrophysiological endolysosomal patch clamp experiments were both
0.6 μM. Both compounds neither activated TPC1 nor activated TRPML1, 2, and
3 (Fig. 11c–f). In addition, it was shown that the activators mimicked the activation
of NAADP (TPC2-A1-N) and PI(3,5)P2 (TPC2-A1-P), respectively, rendering the
channel either more calcium-(TPC2-A1-N) or more sodium-(TPC2-A1-P) perme-
able. TPC2-A1-N itself is known as anthelmintic agent (Sjogren et al. 1991), while
there is no previous report on TPC2-A1-P in literature.

While there is comprehensive knowledge on the pharmacological profiles of
TCAs, phenothiazines, and riluzole, due to their long-term application in therapy,
the newly identified activators TPC2-A1-N and TPC2-A1-P (Fig. 11) require an
in-depth pharmacokinetic and pharmacological characterization. On the other hand,
TCAs are known for their unwanted side effects and also seem to be less potent
activators of TPC2 with much higher EC50 values compared to TPC2-A1-N and
TPC2-A1-P.

Fig. 10 hTPC2 agonists published by Zhang et al. (2019). (a) Structures of the TCAs as hTPC2
activators and EC50 values. (b) Structures of the phenothiazines and their EC50 values as hTPC2
activators. (c) Structure of the hTPC2 agonist riluzole
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Several TPC inhibitors have been proposed in the past. TPC activity can be
blocked by commercially available trans-Ned-19 ((Naylor et al. 2009; Kelu et al.
2015; Nguyen et al. 2017); Fig. 12). In 2016, Kintzer and Stroud presented an X-ray
structure of trans-Ned-19 bound to TPC1 from Arabidopsis thaliana and claimed
direct interaction with the ligand involving F229 in S5, W232 in S5, L255 in P1,
F444 in S7, and W647 in S12, thus clamping the pore domains and VSD2 (voltage-
sensing domain 2) together (Kintzer and Stroud 2016). This results in an allosteric
block of channel activation. The validity of these data has however been a matter of
debate since then.

Besides trans-Ned-19, several other compounds have been shown to block TPCs:
ATP (via mTOR (Cang et al. 2013)), the bisbenzylisoquinoline alkaloid tetrandrine
(Sakurai et al. 2015; Nguyen et al. 2017), the flavonoids naringenin (Pafumi et al.
2017), pratensein (MT-8), and duartin (UM-9) (Netcharoensirisuk et al. 2021) as
well as the marketed drugs fluphenazine and raloxifene ((Penny et al. 2019);
Fig. 12).

The herbal alkaloid tetrandrine (isolated from Stephania tetrandra,
Menispermaceae) is known to also block voltage-gated Ca2+ channels,
large-conductance Ca2+-activated K+ (BK) channels, and intracellular Ca2+ pumps
(sarcoplasmic reticulum Ca2+-ATPase pumps; (Wang et al. 2004)). For naringenin it
has been shown that it also blocks TRPM3 (Straub et al. 2013), voltage-gated
sodium channels (Gumushan Aktas and Akgun 2018), cardiac HERG (human

Fig. 11 Confirmation of TPC2-A1-N and TPC2-A1-P as TPC2 activators (Gerndt et al. 2020a).
(a, b) Structures of the activators and representative calcium signals, recorded from HEK-293 cells
transiently transfected with plasma membrane targeted human TPC2 (hTPC2L11A/L12A) and loaded
with Fura-2-AM. Cells were activated with TPC2-A1-N (10 μM) or TPC2-A1-P (10 or 30 μM).
Highlighted lines represent the mean response from a population of cells. Shaded traces represent
responses of single cells. (c, d) Experiments as in a-b but cells were transiently transfected with
human hTRPML1ΔNC-YFP (plasma membrane variant of TRPML1) and sequentially stimulated
with TPC2-A1-N (10 μM) or TPC2-A1-P (30 μM) and the TRPML agonist ML-SA1 (10 μM). (e, f)
Experiments as in (c, d), but cells were transiently transfected with human TRPML2, or TRPML3.
Cells were sequentially stimulated with TPC2-A1-N (10 μM) or TPC2-A1-P (30 μM) and the
TRPML agonist ML-SA1 (10 μM) or the TRPML2 selective agonist ML2-SA1 (10 μM)
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Ether-à-go-go-Related Gene; Kv11.1) channels (Scholz et al. 2005), HMG-CoA
(3-hydroxy-3-methylglutaryl-CoA) reductase, and ACAT (acetyl-CoA-
acetyltransferase; (Lee et al. 1999)), and it enhances the activity of large-
conductance Ca2+-activated K+ (BK) channels (Hsu et al. 2014). Likewise, the
flavonoids pratensein and duartin may have other channel and non-channel targets.
However, in contrast to naringenin (IC50 ¼ 74 μM for hTPC2), the IC50s for
pratensein and duartin are much lower, 2.6 μM and 9.5 μM, respectively
(Netcharoensirisuk et al. 2021). Fluphenazine is an anti-psychotic drug used to
treat psychotic disorders such as schizophrenia. Fluphenazine, like chlorpromazine
and haloperidol, belongs to the first generation of antipsychotics and has a number of
severe adverse effects, in particular extrapyramidal effects including acute dystonia,
akathisia, Parkinsonism, and tardive dyskinesia (Divac et al. 2014). Fluphenazine
blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in brain. It also
blocks neuronal voltage-gated sodium channels (Zhou et al. 2006) and the
ATP-sensitive K+ channel (Müller et al. 1991). Penny et al. 2019 reported an IC50

of 8.2 μM in patch clamp experiments after TPC2 stimulation with PI(3,5)P2.
Raloxifene has an IC50 of 0.63 μM in patch clamp experiments after TPC2 stimula-
tion with PI(3,5)P2 (Penny et al. 2019). Raloxifene belongs to the class of selective
oestrogen receptor modulators (SERM) and is used for the treatment and prevention
of osteoporosis in postmenopausal women, for reduction in risk of invasive breast
cancer in postmenopausal women with osteoporosis and those at high risk for breast

Fig. 12 TPC2 blockers described in literature: trans-Ned-19, ATP, alkaloid tetrandrine, flavonoids
naringenin, pratensein, and duartin, the drugs fluphenazine and raloxifene as well as
benzylisoquinolines SG-094 and SG-005

Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels 265



cancer. Raloxifene also inhibits L-type and T-type voltage-sensitive Ca2+ channels
(Tsang et al. 2004; Wang et al. 2011) as well as Kv4.3 channels (Chae et al. 2015).

Other reported compounds which interfere with NAADP-mediated calcium sig-
nalling are BZ194, an N-alkylated nicotinic acid derivative (Dammermann et al.
2009), and pyridoxalphosphate-6-azophenyl-20,40-disulfonic acid (PPADS;
(Singaravelu and Deitmer 2006; Billington and Genazzani 2007)). For both
compounds, no direct measurements of TPC inhibition are published, in particular
no endolysosomal patch clamp recordings are currently available.

In 2021, Müller et al. reported about novel TPC2 blockers SG-005 and SG-094,
which represent truncated analogues of the bisbenzylisoquinoline alkaloid
tetrandrine. These quite easily accessible compounds block TPC2 with an increased
potency compared to tetrandrine and at the same time show less toxicity. SG-005
additionally blocked the activation of TRPML1 and TPC1, whereas SG-094 had no
considerable inhibitory effect on TRPML1, only on TPC1.

In sum, for none of the currently available TPC antagonists isoform selectivity
has been demonstrated and target selectivity needs to be further improved.

In the following, we present a summary of the characteristics of the two TPC
isoforms (Tables 4 and 5).

Table 4 Summary of the characteristics of TPC1

TPC1 (TPCN1)

Associated
phenotypes

No identified phenotypes in man; mouse knockouts show delayed
endosomal trafficking (Ruas et al. 2014; Castonguay et al. 2017), mature-
onset obesity (Lear et al. 2015), and augmented systemic anaphylaxis and
mast cell activity (Arlt et al. 2020)

Expression
pattern

Broad, highest in heart and kidney

Subcellular
localization

Throughout the endosomal system (EE to LE)

Endogenous
regulation

Channel activation: PI(3,5)P2 (direct); cytosolic Ca
2+; depolarization;

sphingosine; NAADP?
Channel inhibition: Luminal H+; luminal Ca2+; ATP and mTORC1 (direct)

Functions • Non-selective cation channel
• Endosomal ion homeostasis
– Endosomal pH regulation
– Endosomal Ca2+ regulation

• Endosomal trafficking
– Virus (Ebola, SARS-CoV, and MERS-CoV) trafficking

Bacterial toxin trafficking through EE/RE (RE ¼ recycling endosomes)

Available
agonists

• Clomipramine; not isoform selective, other targets known
• Desipramine; not isoform selective, other targets known

Available
antagonists

• Trans-Ned-19
• Tetrandrine; not isoform selective
• BZ194?; PPADS? (no endolysosomal patch clamp data available)
• Chlorpromazine, riluzole (both activate TPC2)
• SG-094, SG-005 (Müller et al. 2021); more potent and less toxic than

tetrandrine
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