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Abstract

Drug addiction is a chronic brain disease characterized by compulsive drug-
seeking and drug-taking behaviors despite the major negative consequences.
Current well-established neuronal underpinnings of drug addiction have pro-
moted the substantial progress in understanding this disorder. However,
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non-neuronal mechanisms of drug addiction have long been underestimated.
Fortunately, increased evidence indicates that neuroimmune system, especially
Toll-like receptor 4 (TLR4) signaling, plays an important role in the different
stages of drug addiction. Drugs like opioids, psychostimulants, and alcohol
activate TLR4 signaling and enhance the proinflammatory response, which is
associated with drug reward-related behaviors. While extensive studies have
shown that inhibition of TLR4 attenuated drug-related responses, there are
conflicting findings implicating that TLR4 signaling may not be essential to
drug addiction. In this chapter, preclinical and clinical studies will be discussed
to further evaluate whether TLR4-based neuroimmune pharmacotherapy can be
used to treat drug addiction. Furthermore, the possible mechanisms underlying
the effects of TLR4 inhibition in modulating drug-related behaviors will also be
discussed.

Keywords
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Psychostimulants · Toll-like receptor 4

1 Introduction

Drug addiction is a chronic brain disease characterized by compulsive drug-seeking
and drug-taking behaviors despite the major negative consequences (Cheron and
Kerchove d'Exaerde 2021). It is one of the leading causes of disability and fatality
worldwide today, with a huge annual cost related to crime, reduced work productiv-
ity and health care (Nestler and Luscher 2019). Current studies focusing on neuronal
adaptations have yielded much progress in the research of drug addiction. For
example, it is suggested that molecular, synaptic, and neurocircuitry
neuroadaptations combine to promote the transition to drug addiction, which is
comprised of increased incentive salience, decreased reward, increased stress, and
decreased executive function (Wise and Koob 2014). However, non-neuronal
underpinnings of drug addiction have long been underestimated (Kashima and
Grueter 2017). Fortunately, a growing body of studies indicate that neuroimmune
system plays an important role in the different stages of drug addiction, including
binge/intoxication, withdrawal, and relapse (Hutchinson et al. 2012; June et al. 2015;
Northcutt et al. 2015).

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PPRs) in
the innate immune system which detect and respond both to exogenous pathogen
associated molecular patterns (PAMPs) and endogenous danger associated molecu-
lar patterns (DAMPs) (Koropatnick et al. 2004; Hennessy et al. 2010; Connolly and
O'Neill 2012). Toll-like receptor 4 (TLR4) is one of the TLRs and its activation leads
to enhanced production of proinflammatory cytokines and chemokines. In the brain,
TLR4 is mainly expressed in glial cells like microglia and astrocytes (Vaure and Liu
2014). Upon recognition of PAMPs or DAMPs, TLR4 signals through two distinct
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pathways, the myeloid differentiation primary response protein 88 (MyD88)-
dependent and MyD88-independent pathway (Kawai and Akira 2007a). In the
MyD88-dependent pathway, the signal transduces through activation of
Interleukin-1 receptor associated kinases (IRAKs, like IRAK1 and IRAK4) and
TNF receptor associated factor 6 (TRAF6), which subsequently promotes the phos-
phorylation of inhibitors of nuclear factor κB kinases (IKK). The activation in turn
leads to the NFκB activation and the production of proinflammatory cytokines and
chemokines (Kawai and Akira 2007b). Alternatively, in MyD88-independent path-
way, the adaptor protein TRIF, TRAF3 and interferon regulatory factor 3 (IRF3) are
involved (Takeda and Akira 2005) (Fig. 1).

TLR4 signaling is suggested to be involved in several neuropsychiatric disorders,
including major depressive disorders, neurodegenerative disorders, and impulsive
control (Nie et al. 2018; Landreth and Reed-Geaghan 2009; Aurelian et al. 2016;
Garcia Bueno et al. 2016; Liu et al. 2019). As drugs of abuse can be considered as
“exogenous,” it is recognized that drugs of different class activate TLR4 signaling
and induce proinflammatory responses. Emerging evidence has suggested the impor-
tant role of TLR4 signaling in regulating drug addiction (Crews et al. 2017). In this
chapter, we will discuss the preclinical and clinical evidence of TLR4 signaling
modulation in drug addiction (i.e., opioid, psychostimulants, and alcohol addiction),
in order to evaluate whether TLR4-based neuroimmune pharmacotherapy can be
used as novel treatment for this disorder. Furthermore, we will also discuss the

Fig. 1 Schematic representation of the role of toll-like receptor 4 (TLR4) signaling in drug
addiction. It should be noted that the non-neuronal mechanism underlying drug addiction is not
clear. Drugs of abuse bind to the accessory receptor of TLR4, MD-2, and activate the downstream
signaling which comprised of two distinct pathways (MyD88-dependent and MyD88-independent
pathways). This activation leads to the transcription of proinflammatory regulators like TNF-α and
IL-β and enhances non-neuronal alterations, which subsequently act in concert with neuronal
adaptations and contribute to drug reward-related behaviors, withdrawal and relapse
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possible mechanisms underlying the effects of TLR4 antagonism in regulating drug-
related behaviors.

2 Role of TLR4 Signaling in Drug Addiction

2.1 Opioid

Although the major targets of opioids in the brain are opioid receptors, which
probably mediate most of the effects of opioids within the CNS, growing evidence
has demonstrated that opioids can also interact with TLRs, among which the TLR4 is
best studied in opioid addiction. In vitro evidence suggests that the molecular
interaction between the opioid system and TLR4 is complex. The opioid antagonist
naloxone inhibited the classic TLR4 agonist LPS-induced secretion of IL-β and
morphological changes of microglia in mixed brain cell cultures (Das et al. 1995). In
contrast, both morphine and fentanyl could activate TLR4 in unstimulated cells,
even though the activation level was much lower than that was stimulated by LPS
(Hutchinson et al. 2010). Morphine exposure could elevate TLR4 protein and
mRNA expression as well as activate TLR4-related signaling pathways in the
Nucleus Accumbens (NAc) (Schwarz and Bilbo 2013). Interestingly, morphine
and fentanyl could attenuate LPS-induced activation of TLR4 in a non-competitive
manner (Hutchinson et al. 2010). These findings suggest that opioids might interact
with TLR4 and act as its partial agonists. Besides in vitro reports, many behavioral
studies have explored the role of TLR4 in mediating the effects of opioids, including
addictive properties (Gabr et al. 2021).

Many pharmacological studies using the TLR4 antagonists such as (+)-naloxone
and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) have implicated
that TLR4 participates in the development of opioid addiction and relapse. (+)-
Naloxone blocked morphine-induced conditioned place preference (CPP),
remifentanil self-administration, drug-induced reinstatement of heroin-seeking
behavior, and dopamine release in the NAc (Hutchinson et al. 2012; Yue et al.
2020). Another study found that microinjection of TLR4 antagonist LPS-RS into the
ventral tegmental area (VTA) prevented the conditioning and maintenance, but not
expression, of morphine-induced CPP (Chen et al. 2017). In the same study, it was
suggested that the STAT3 might mediate the function of TLR4 since LPS-RS
prevented morphine-induced activation of STAT3 in the VTA (Chen et al. 2017).
Interestingly, microinjection of LPS-RS into the NAc did not affect drug-induced
reinstatement of heroin-seeking, suggesting that the NAc might not be the critical
brain site where TLR4 regulates opioid addiction (Yue et al. 2020). Consistent with
pharmacological findings, global deletion of tlr4 or myd88 gene prevented
oxycodone-induced CPP in mice (Hutchinson et al. 2012). Studies that evaluated
the effects of ibudilast also provided some implications on the role of TLR4 in opioid
addiction. Ibudilast is principally a Phosphodiesterase 4 (PDE4) inhibitor but also
exerts antagonist property at TLR4. Moreover, ibudilast could decrease morphine-
induced dopamine release in the NAc in rodents (Bland et al. 2009).
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Opioid withdrawal has been demonstrated to participate in the development of
opioid addiction via a negative reinforcing mechanism (Koob and Volkow 2010).
Several pharmacological studies have indicated that TLR4 also regulates opioid
withdrawal. The TLR4 antagonist (+)-naloxone could significantly attenuate the μ
opioid receptor antagonist (�)-naloxone-precipitated withdrawal behavior in
morphine-dependent rats (Hutchinson et al. 2010). The TLR4 antagonist ibudilast
reduced spontaneous withdrawal-induced hyperactivity in rats (Hutchinson et al.
2009). In contrast, the genetic deletion of TLR4 genes did not affect opioid with-
drawal. Compared to wildtype Balb/c mice, both TLR4-KO and MyD88-KO mice
(Balb/c background) showed similar degrees of naloxone-precipitated jumping
behavior, an animal model of opioid withdrawal (Liu et al. 2011). A more recent
study also reported similar findings that both TLR4 mutant and null mice showed
normal morphine withdrawal behaviors (Mattioli et al. 2014). These findings suggest
that the tlr4 gene might not be critical for opioid withdrawal. However, it should be
noted that global deletion of TLR4 or MyD88 genes may result in changes in many
other genes that could compensate for the loss in the function of TLR4 signaling.
Therefore, future studies using conditional deletion of TLR4 are required to address
the role of the tlr4 gene in the development of opioid addiction.

Nevertheless, not all literature supports the view that TLR4 mediates opioid
addiction. Acute injection of (+)-naltrexone did not affect incubated cue-induced
heroin-seeking or extended access heroin self-administration. Whereas chronic
administration of (+)-naltrexone reduced incubated cue-induced heroin-seeking but
did not affect ongoing extended access heroin self-administration (Theberge et al.
2013). One explanation is that TLR4 signaling might only participate in some
particular opioid addiction-related behaviors. Furthermore, many factors such as
opioid dose, history of drug use, and treatment strategy (i.e., acute or chronic
treatment) are essential factors that might dramatically influence the pharmacologi-
cal effects of TLR4 antagonists on opioid addiction.

In clinical settings, TLR4 antagonist ibudilast was tested for its efficacy in
attenuating opioid-related effects. Ibudilast was shown to reduce ratings of drug
liking following 15 mg of oxycodone and heroin craving (Metz et al. 2017).
Meanwhile, ibudilast also decreased drug breakpoint under the 15 mg but not
30 mg oxycodone condition in a progressive-ratio oxycodone self-administration
task, suggesting that ibudilast attenuated, at least to some extent, the reinforcing
effects of oxycodone (Metz et al. 2017). On the contrary, ibudilast was unable to
consistently affect subjective effect ratings of oxycodone in opioid-dependent
volunteers in another study (Cooper et al. 2017). Nevertheless, it decreased ratings
of withdrawal symptoms on some SOWS items during detoxification (Cooper et al.
2016).
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2.2 Psychostimulants

2.2.1 Cocaine
Cocaine activates innate immune system within the brain through its interaction with
TLR4 (Cearley et al. 2011; Coller and Hutchinson 2012), possibly in a region-
specific manner (Burkovetskaya et al. 2020). Cocaine docked to the same binding
site of MD-2 as the classical TLR4 agonist LPS and increased the proinflammatory
responses. This effect is associated with cocaine-induced dopamine release and
cocaine reward, an effect that can be blocked by TLR4 antagonist (+)-naloxone
(Northcutt et al. 2015). Pretreatment of (+)-naloxone or LPS-RS attenuated cocaine-
induced elevation of extracellular dopamine in the NAc, while they alone did not
affect the dopamine signaling. Meanwhile, non-TLR4 modulator, neurotensin, did
not affect cocaine-induced dopamine elevation, suggesting the specificity to TLR4
receptor. Moreover, pretreatment of TLR4 antagonists blocked the development of
cocaine CPP and self-administration, while sparing food-maintained responses
(Northcutt et al. 2015). Consistently, TLR4 mutant mice showed less responses to
cocaine self-administration and cocaine reward learning, suggesting the importance
of TLR4 in cocaine reinforcement (Kashima and Grueter 2017; Northcutt et al.
2015).

However, inconsistent findings suggest that TLR4 may not be crucial for cocaine-
related behavioral and neurochemical alterations. Tanda and colleagues found that
(+)-naloxone or (+)-naltrexone did not decrease cocaine or heroin-induced dopamine
levels in the NAc shell (Tanda et al. 2016). Both antagonists attenuated cocaine or
remifentanil self-administration at a higher dose that decreased food-maintained
responding as well, suggesting a lack of selectivity on reward behaviors (Tanda
et al. 2016). In addition, (+)-naloxone did not interact with cocaine subjective effects
in the drug-discrimination studies (Tanda et al. 2016). It is further shown that a
TLR4 agonist reactivated microglia, suppressed striatal synaptic strength, and finally
decreased cocaine-induced sensitization (Lewitus et al. 2016). These results chal-
lenge the current knowledge of TLR4 in cocaine addiction, yet call for further
examination and clarification of the role of TLR4 in cocaine-related responses.

A recent clinical study showed that cocaine users had a significant increase in
IL-6 compared with control group, demonstrating an activation of the immune
system (Moreira et al. 2016). Nonetheless, there are few clinical studies examining
the effect of neuroimmune modulators in regulating cocaine addiction. More clinical
investigations focusing on the possibility of neuroimmune signaling as novel thera-
peutic target for cocaine addiction are needed.

2.2.2 Methamphetamine
Methamphetamine (METH) exposure activates glia cells and enhances
proinflammatory cytokines release (Goncalves et al. 2008; Loftis et al. 2011;
Nakajima et al. 2004). Indeed, METH was shown to bind to MD-2, the key receptor
of TLR4 and enhanced CD11b and IL-6 in mRNAs in the VTA (Wang et al. 2019).
Increased evidence suggests that modulation of TLR4 can reduce METH-related
behavioral and neurochemical effects (Fujita et al. 2012; Narita et al. 2006; Zhang
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et al. 2006). TLR4 antagonists (+)-naloxone and LPS-RS reduced METH-induced
elevation of dopamine in the NAc (Wang et al. 2019). Ibudilast, AV1013, and
minocycline decreased METH-induced behavioral sensitization, drug-primed and
cue-induced METH-seeking (Snider et al. 2012; Beardsley et al. 2010), METH-
induced conditioned place preference (CPP) (Fujita et al. 2012; Chen et al. 2009) and
METH self-administration (Snider et al. 2013). These findings indicate an essential
role of glia activation underlying the rewarding effects of METH. Interestingly, it is
also implicated that cannabinoids Δ9-tetrahydrocannabinol and cannabidiol might
be effective for protection of METH-induced inflammation through modulation of
TLR4 and NF-κB signaling (Majdi et al. 2019).

Clinical studies also yielded inspiring results that neuroimmune modulators could
be effective against METH-related symptoms. Initially, a case study reported that
minocycline significantly improved the psychotic symptoms in METH use disorders
(Tanibuchi et al. 2010). Later, in an early-stage study, ibudilast reduced several
METH-related subjective effects including High, Good, Stimulated and Like,
suggesting its effect in attenuating the reward-associated subjective effects of
METH (Worley et al. 2016). Moreover, ibudilast is also shown to improve the
attention performance during the early abstinence from METH dependence (Birath
et al. 2017). All these results implicated that neuroimmune modulators may have
protective effects on METH-related disorders. However, a most recent clinical trial
showed that ibudilast did not affect METH abstinence (Heinzerling et al. 2020). This
randomized, placebo-controlled trial included 64 patients with METH use disorders
for the 12-week ibudilast treatment and urine specimen was collected for drug screen
and study assessments (Heinzerling et al. 2020). Ibudilast was well tolerated yet did
not alter METH abstinence (Heinzerling et al. 2020). No significant correlation
between serum ibudilast levels and METH use during treatment for patients was
observed (Heinzerling et al. 2020). These results seem discouraging, yet it is still
early to conclude that ibudilast has no effect on METH-related actions. No further
assessment on the effect of ibudilast on METH intake or craving was provided.
Indeed, a pilot clinical study showed that ibudilast could reduce METH-induced
elevation of peripheral markers of inflammation, which may underlie the
mechanisms of METH addiction. As such, more research investigating the effects
of TLR4 modulation in METH-taking or relapse could add valuable information to
the field.

2.2.3 Nicotine
Currently, there are no studies examining the role of TLR4 in nicotine addiction.
Although it is suggested that nicotine increased the expression of TLR4 and also
upregulated TLR4-related proinflammatory responses in vitro (Yin et al. 2014; Hu
et al. 2012; Xu et al. 2014), less is known about whether TLR4 is involved in
nicotine reward or withdrawal. Interestingly, a recent clinical study showed a
potential association between TLR4 polymorphism and lifetime smoking (Zerdazi
et al. 2017). Based on the study from 514 bipolar disorder patients, El-Hadi and
colleagues found that rs10759932 was significantly associated with tobacco smok-
ing (Zerdazi et al. 2017). This finding suggests the involvement of TLR4 in smoking,
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or further, nicotine addiction. However, studies also suggest that nicotine attenuates
neuroinflammation induced by microglia activation in the brain (Park et al. 2007;
Lutz et al. 2014), possibly through TLR4 signaling (Li et al. 2021). Nicotine and its
metabolite cotinine targeted TLR4 co-receptor, MD-2, and inhibited LPS-induced
production of TNF-α and nitric oxide, and further blocked microglia activation
(Li et al. 2021). Moreover, this effect cannot be abolished by nicotinic acetylcholine
receptor (nAChR) inhibitor or nAChRs siRNA (Li et al. 2021). These results seem
inconsistent and add more complexity to the role of TLR4 in nicotine response.

2.3 Ethanol

Neuroinflammation contributes to the establishment of addiction of several
substances, including alcohol. In vitro and in vivo studies have shown that ethanol
produces neuroinflammation at least partially through TLR4 signaling pathway and
leads to the activation of NFκB (Blanco et al. 2005; Fernandez-Lizarbe et al. 2009).
For example, adolescent binge drinking increases the TLR4 expression in the adult
prefrontal cortex, which is correlated with deficits in reversal learning and increased
preservative behaviors (Vetreno and Crews 2012). Bing drinking also promoted the
IL-1β mRNA expression in the basolateral amygdala (BLA). Consistently, intra-
BLA infusions of IL-1 receptor antagonist (IL-1Ra) decreased the alcohol consump-
tion without altering sucrose drinking and locomotion in mice (Marshall et al. 2016).
Furthermore, studies utilized TLR4 transgenic animal models showed that TLR4
deficiency prevented ethanol-induced neuroinflammation along with synaptic
changes and long-term behavioral and cognitive alterations (Fernandez-Lizarbe
et al. 2009; Pascual et al. 2017; Montesinos et al. 2015; Montesinos et al. 2016;
Montesinos et al. 2018; Shukla et al. 2018). Consistently, TLR4 antagonists like (+)-
Naltrexone and Nalmefene prevented TLR4 activation and inhibited alcohol-
induced upregulations of proinflammatory responses as well as alcohol intake and
reward (Jacobsen et al. 2018a, b; Montesinos et al. 2017). However, a recent
comprehensive study showed that TLR4 may not be essential to excessive alcohol
drinking (Harris et al. 2017). Using different species, different tests of alcohol
consumption, and different methods to inhibit TLR4 signaling, they found that
TLR4 inhibition did not affect the drinking-in-the-dark or two-bottle choice chronic
ethanol intake or ethanol self-administration (Harris et al. 2017). This study
questioned the essentiality of TLR4 in alcohol reward. Nevertheless, they did
agree on the effect of TLR4 modulation in alcohol-induced sedation and GABA
receptor function (Harris et al. 2017).

Despite the complex results from preclinical studies, much efforts have been put
on whether TLR4-related neuroimmune responses regulate alcohol intake in patients
with alcohol use disorders (AUD). Studies showed that AUD patients had altered
TLR4 methylation, which is correlated with alcohol consumption patterns (Karoly
et al. 2017, 2018). Post-mortem human also showed upregulated TLR4-related
immunoreactivity cells that correlated with lifetime alcohol consumption (Crews
et al. 2013), although alcohol withdrawal may have differentiated effects
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(Donnadieu-Rigole et al. 2016). In a randomized, placebo-controlled clinical study,
however, ibudilast did not affect the subjective responses to alcohol. Meanwhile, it
attenuated alcohol-induced stimulant and mood-altering effects in patients with more
depressive symptoms (Ray et al. 2017), while other appetitive responses, like
craving for high-fat/high-sugar diet, were not altered (Cummings et al. 2018).
These results raised a question whether improvement of depressive symptomatology
should be considered as a measurement for potential pharmacotherapies. Neverthe-
less, we are still at the very beginning to examine TLR4 as promising therapeutic
target for the treatment of alcohol addiction, more comprehensive studies with larger
sample size are warranted.

3 Possible Mechanisms Underlying the Role of TLR4
Signaling in Drug Addiction

Apart from the traditional neuronal mechanisms which involves dopaminergic,
glutamatergic, and GABAergic system, drugs of abuse-induced glia activation are
believed to contribute to the development of drug addiction. Opioid,
psychostimulants, and alcohol all bind to the accessory receptor Myeloid Differenti-
ation factor 2 (MD-2) and activate TLR4. This activation promotes the release of
proinflammatory cytokines and chemokines, which subsequently alters the
neuroadaptations and synaptic plasticity that is related to drug-induced aberrant
behaviors. TLR4 is showed to play a role in NAc synaptic physiology and drug
reward behavior (Kashima and Grueter 2017). TLR4-KO animals demonstrated a
significantly decreased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
(AMPA) receptor/N-methyl-D-aspartate (NMDA) receptor ratio (A/N ratio) in the
NAc core, suggesting a decrease in postsynaptic strength caused by a reduced
AMPAR transmission or increased NMDAR transmission (Kashima and Grueter
2017). Meanwhile, TLR4-KO D1(�) MSNs showed significant slower NMDAR
decay kinetics compared with WT, suggesting an altered NMDAR stoichiometry
(Kashima and Grueter 2017). Because altered NMDARs in the NAc MSNs are
related to behavioral adaptations affecting motivation and reward-associated
learning, it is further shown that TLR4-KO mice exhibit deficits in long-term
depression in the NAc core, paralleled with deficits in drug reward learning
(Kashima and Grueter 2017). These results showed a direct association between
TLR4 and drug-induced neuroadaptations.

The downstream effectors of TLR4 may also play a part in regulating drug
addiction. Our recent study examined the role of IRAK4, a downstream molecule
of TLR4 signaling, in opioid addiction. We found that IRAK4 antagonist
PF06650833 reduced cue-induced reinstatement of morphine-seeking and
fentanyl-seeking (Wu et al. 2021). Morphine self-administration induced activation
of IRAK4 in the NAc, which was accompanied by increases in IKKα/β activity and
expression level of soluble TNF-α (Wu et al. 2021). Furthermore, microinjection of
RF06650833 into the NAc reduced cue-induced reinstatement of morphine-seeking
(Wu et al. 2021). As IRAK4 is one of the keynotes of the TLR4 signaling cascade,
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our results might suggest that TLR4 might participate in the cue-induced reinstate-
ment of morphine-seeking via the IRAK4 signaling pathway.

Immune factors like TNF-α and IL-β that are involved in the modulation of
synaptic functions probably participate in drug reward as well. TNF-α is a key
effector in the TLR4 signaling, and inhibition of TNF-α abolishes TLR4-mediated
responses (Kawai and Akira 2010; Eidson et al. 2017). It is reported that TNF-α is
involved in cocaine-induced plasticity (Lewitus et al. 2016). Drugs of abuse activate
the glia cells in the NAc, which subsequently enhance the production of TNF-α.
TNF-α is known to regulate the internalization of synaptic AMPA receptors
(Lewitus et al. 2014). A recent study showed that cocaine activates striatal microglia
and promotes TNF-α production, which suppresses the glutamatergic synaptic
strength in the NAc core (Lewitus et al. 2016). Besides the AMPARs, TNF-α is
also suggested to regulate the activity of presynaptic metabotropic glutamate
receptors and GABAA receptors (Bezzi et al. 2001; Stellwagen et al. 2005; Pascual
et al. 2012; Domercq et al. 2006). Like TNF-α, IL-β is also activated by TLR4 (Latz
et al. 2013). IL-β is associated with long-term potentiation which underlies learning
and memory, thus is implicated with drug-related aberrant memory (Rizzo et al.
2018). IL-β decreases glutamate supply through the inhibition of glial glutamate
transporter activity, resulting in the attenuation of glutamate-glutamine cycle-depen-
dent GABA synthesis. Moreover, IL-β also participates in the regulation of postsyn-
aptic GABA receptor activity. These modulations are widely associated with
synaptic plasticity which may contribute to TLR4 signaling-related neuroadaptations
(Wang et al. 2000).

The activation of TLR4 by drugs of abuse produces neuroinflammation as well as
neurodegeneration within key brain regions that are involved in drug addiction
(Alfonso-Loeches et al. 2010; Pascual et al. 2011; Alfonso-Loeches et al. 2012).
Conversely, inhibition of TLR4 abolishes the proinflammatory responses and blocks
cell damage (Blanco et al. 2005). For example, neurodegenerations in the prefrontal
cortex are associated with the loss of executive functions over behavioral inhibition
or a lack of inhibitory control over mesolimbic areas, which may consequently
promote the drug-taking behaviors (Crews et al. 2011, 2015). Generally, the loss
of control over progression from initial recreational drug use to compulsive drug-
taking may promote the development of drug addiction (Wu and Li 2020). Although
much evidence has implicated the role of TLR4 and its signaling in drug addiction,
the exact mechanisms and process remain unknown. Nevertheless, it should be kept
in mind that drugs of abuse activation of TLR4 signaling may work in conjunction
with the traditional well-established neuronal mechanisms, as the modulation of
central immune system alone did not alter drug-related behaviors (Coller and
Hutchinson 2012).
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4 Future Directions

While extensive studies have suggested that TLR4 and its signaling play an impor-
tant role in drug addiction, many questions remain to be answered before TLR4
modulators could be used as potential treatments for alleviating drug abuse-related
symptoms. Firstly, conflicting results from preclinical studies suggest the complex
effects of TLR4 in regulating drug addiction. Future comprehensive studies that
examine the effect of TLR4 modulation in different drug class from different drug
addiction stages (i.e. binge/intoxication, withdrawal and relapse) will help establish
whether TLR4 is a promising and novel therapeutic target to treat drug addiction.
Secondly, the mechanism underlying the effect of TLR4 modulations in drug
addiction is no clear. More studies carefully investigate how TLR4-related activation
contribute to the progression of drug addiction are urgently needed. More impor-
tantly, to answer how TLR4-related non-neuronal system communicate and
synergize with the well-known neuronal system will help tremendously in under-
standing the mechanisms underlying drug addiction. Last but not least, increased
recognition of TLR4 in regulating drug addiction leads to a growing interest in
clinical investigations. However, we are still far away from reaching a solid conclu-
sion from clinical settings that TLR4 modulators could be potential
pharmacotherapies for drug addiction. Future randomized and placebo-controlled
clinical studies with large sample size, which examine the long-term safety, tolera-
bility, and efficacy of TLR4-based neuroimmune pharmacotherapies are warranted.

5 Conclusion

Drugs of abuse activate TLR4 and its signaling and enhance the production of
proinflammatory cytokines and chemokines. Modulations of TLR4 and its signaling
are shown to be involved in addiction to drugs from different class, including
psychostimulants, opioids, and alcohol. Furthermore, increased evidence has
suggested that TLR4 and related glial cell modulators could be potential treatments
for addiction-related behaviors. This is a thriving topic that requires more compre-
hensive studies for both target validation and clinical efficacy verification to reshape
the treatment for drug addiction.
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