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Abstract

Mimetics of the anorexigenic gut hormone glucagon-like peptide 1 (GLP-1) were
originally developed as insulinotropic anti-diabetic drugs but also evoke signifi-
cant weight loss, leading to their recent approval as obesity therapeutics.
Co-activation of receptors for GLP-1 and other gut hormones which reduce
food intake – peptide YY (PYY3–36), cholecystokinin (CCK) and glucose-
dependent insulinotropic peptide (GIP) – is now being explored clinically to
enhance efficacy. An alternative approach involves pharmacologically
stimulating endogenous secretion of these hormones from enteroendocrine cells
(EECs) to recapitulate the metabolic consequences of bariatric surgery, where
highly elevated postprandial levels of GLP-1 and PYY3–36 are thought to con-
tribute to improved glycaemia and weight loss.
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1 Introduction

Obesity is a growing global health concern, and the major modifiable risk factor for
type 2 diabetes mellitus (T2DM) and cardiovascular disease. Even relatively modest
weight loss (5–10%) can substantially improve insulin sensitivity, pancreatic β-cell
function, inflammation, and cardiovascular risk scores (Magkos et al. 2016). Beyond
lifestyle modification and poorly-tolerated drugs, the most effective weight loss
strategy for common obesity has been bariatric surgery.

Several pharmacological agents targeting the gut hormone axis have recently
been developed as novel obesity therapeutics, after successful use in the treatment of
T2DM. Once-weekly injections of the long-acting glucagon-like peptide 1 (GLP-1)
mimetic semaglutide were recently shown to promote substantial weight loss in
obese subjects in a series of phase III trials, with reductions of over 15% observed in
half of participants (Wilding et al. 2021). This heralds a new era for obesity
therapeutics and encourages development of other medications which activate the
same anorexigenic pathways, while minimising side effects. This chapter examines
existing and potential approaches to target the enteroendocrine system in obesity,
including drugs which directly activate receptors for GLP-1 and other gut hormones,
bariatric surgery, and modulation of endogenous enteroendocrine cell (EEC)
secretion.
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2 Gut Hormone Mimetics: GLP1R Agonism and Beyond

2.1 GLP-1 Receptor Agonists

GLP-1 itself cannot be given therapeutically due to its extremely short half-life
(1–2 min), so several injectable GLP1R agonist peptides which are partly resistant to
dipeptidyl peptidase 4 (DPP4) degradation have been developed (Drucker and
Nauck 2006). Since the approval of the first such GLP1R agonist exenatide in
2005, significant advances have been made to increase half-life, allowing a shift
from twice-daily to once-weekly injections and oral formulations (Marso et al. 2016;
Zinman et al. 2019). Prominent side effects of incretin mimetics include nausea and
GI symptoms such as diarrhoea, although these are somewhat reduced in second-
generation treatments and are normally manageable following dose titration
(Drucker and Nauck 2006; Zinman et al. 2019).

Following phase III trials showing outstanding weight loss efficacy of 10–20% in
overweight subjects, the long-acting GLP1R agonist semaglutide has recently
received FDA approval for treatment of obesity (Ryan 2021). This weight loss
was far greater than the 5–10% achieved with another GLP1R agonist liraglutide,
which was FDA-approved for obesity in 2014 (Mehta et al. 2017). This success is
likely to encourage development of next-generation anti-obesity drugs targeting the
GLP-1 system, which have the dual benefit of weight loss and improved glycaemic
control. GLP1R agonists also reduce the risk of cardiovascular events such as stroke
and myocardial infarction (Kristensen et al. 2019), although the underlying
mechanisms and the extent of GLP1R expression in the heart and blood vessels
remain unclear (McLean et al. 2021).

2.2 DPP4 Inhibitors

Another class of antihyperglycaemic drugs targeting the incretin system are the
orally-bioavailable DPP4 inhibitors which increase the circulating half-life of both
GLP-1 and the related hormone glucose-dependent insulinotropic peptide (GIP).
While DPP4 inhibitors such as sitagliptin increase glucose-stimulated insulin secre-
tion, they do not induce significant weight loss, unlike GLP1R agonists (Drucker and
Nauck 2006). DPP4 has a broad range of other substrates, including peptide YY
(PYY) and neuropeptide Y, which may have implications for the overall metabolic
effects of DPP4 inhibition (Mulvihill and Drucker 2014). DPP4 cleavage converts
PYY1–36 to PYY3–36, which mediates the majority of PYY’s anorexigenic effects via
NPY2R (Ballantyne 2006). Indeed, the appetite-suppressive effects of PYY1–36 are
lost in rats genetically deficient in DPP4 (Unniappan et al. 2006) and activation of
NPY1R is linked to increased feeding (Kanatani et al. 2000). It has therefore been
proposed that reduced PYY3–36 and increased PYY1–36 levels following DPP4
inhibition account for the lack of weight loss (Aaboe et al. 2010). An alternative
possibility, however, would be that intestinal-derived active GLP-1 levels reached
under normal physiological conditions are insufficient to promote weight loss. This
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is supported by findings that the DPP4 inhibitor linagliptin did not enhance anorexia
in diet-induced obese (DIO) mice even in the presence of an NPY2R agonist, despite
elevated active GLP-1 levels (Hansen et al. 2021), and that GLP1R inhibition did not
affect food intake reduction seen following selective chemogenetic activation of
distal colonic L-cells, whereas NPY2R inhibition did (Lewis et al. 2020).

2.3 GLP1R/GCGR Co-agonism

In the development of novel incretin mimetics, there is increasing interest in the use
of dual or triple agonists targeting other receptors in addition to the GLP1R. The
rationale is that these may combine beneficial effects on body weight, glycaemic
control and insulin sensitivity while minimising side effects (Brandt et al. 2018). The
co-activation of gut hormone receptors also more closely mimics the physiological
response to a meal, where multiple enteroendocrine peptides are co-secreted.

Despite the glucose-elevating effects of glucagon (GCG), chronic administration
increases energy expenditure, likely via central mechanisms and hepatic
upregulation of fibroblast growth factor 21 (FGF21) (Habegger et al. 2013). Gluca-
gon action in the liver also reduces hepatic lipid content and alters hepatocyte
metabolism to reduce the extent of non-alcoholic steatohepatitis (NASH), a common
obesity co-morbidity (Boland et al. 2020). Balanced synthetic co-agonists of the
GLP1R/GCGR, which mimic the activity of oxyntomodulin, are capable of improv-
ing glycaemic control in mice and humans (Ambery et al. 2018; Henderson et al.
2016). The GLP1R/GCGR co-agonist SAR425899 induced similar weight loss to
liraglutide in a phase IIb trial, while improving HbA1c and increasing β-cell
responsiveness to a mixed meal tolerance test (Schiavon et al. 2021); however,
this drug was discontinued in 2018 due to incidence of adverse events and disap-
pointing efficacy (Sanofi 2018). A separate phase IIb trial in overweight T2DM
patients showed the GLP1R/GCGR co-agonist cotadutide (MEDI0382) evokes
slightly greater weight loss (~5%) than a higher dose of liraglutide (Nahra et al.
2021). Unlike liraglutide, cotadutide reduces hepatic fibrosis and lipid content in
preclinical NASH models (Boland et al. 2020) and improves markers of hepatic
function in T2DM patients (Nahra et al. 2021). The compound BI456906 has also
recently entered phase II trials with a direct comparison to semaglutide (Boehringer
Ingelheim 2019). Weight loss efficacy of existing GLP1R/GCGR co-agonists does
not appear greater than that achieved by best-in-class GLP1R agonists, but these
co-agonists may prove particularly useful in the treatment of individuals with obesity
and concomitant liver disease.

2.4 GLP1R/GIPR Co-agonism

GIP was long-ignored as a therapeutic target for obesity because of studies linking
loss of GIPR signalling to protection from adiposity, and a demonstrated clinical
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inefficacy in patients with uncontrolled T2DM (Chia et al. 2009; Nauck et al. 1993).
Although native GIP and GIPR agonists have at best moderate effects on food intake
or body weight (Coskun et al. 2018; Mroz et al. 2019), dual incretin agonists which
activate both the GLP1R and GIPR have recently been demonstrated to have greater
efficacy in restoring normoglycaemia and reducing body weight than GLP1R
agonists alone. The first unimolecular GLP1R/GIPR agonist was the pegylated
DPP4-resistant compound NNC0090–2746 (Finan et al. 2013), which evoked simi-
lar improvements in HbA1c and body weight to liraglutide in T2DM patients, while
also reducing total cholesterol levels (Frias et al. 2017). More striking results have
recently been achieved with the dual agonist tirzepatide, a once-weekly injectable
peptide biased towards GIPR activation (Coskun et al. 2018). Tirzepatide reduces
hyperglycaemia and body weight to a greater extent than the GLP1R agonist
comparator dulaglutide, with over a third of T2DM patients achieving over 10%
reduction in body weight when treated with the highest dose of tirzepatide (Frias
et al. 2018). On-going phase III trials are assessing the cardiovascular outcomes of
tirzepatide in T2DM (SURPASS), and the weight loss effects in non-diabetic
individuals with obesity (SURMOUNT).

Given this clinical efficacy of dual GLP1R/GIPR agonists, recent work has
focused on understanding the underlying mechanisms. In terms of glucose tolerance,
improved glycaemic control – which could be initially mediated by GLP1R
agonism – is known to re-sensitise pancreatic β-cells to the effects of GIP in
T2DM patients (Hojberg et al. 2009). As GIPR antagonists have also been
demonstrated to induce weight loss in some (Killion et al. 2018), but not all (Mroz
et al. 2019; West et al. 2021), preclinical models, chronic activation of the GIPR has
been proposed to cause receptor desensitisation which antagonises endogenous GIP
activity (Killion et al. 2020); however, there is currently no substantial evidence to
support this hypothesis. Chemogenetic activation of hypothalamic GIPR-expressing
cells, which only show a small degree of overlap with neuronal GLP1R expression,
acutely reduces food intake in mice (Adriaenssens et al. 2019). A recent publication
demonstrated c-fos-staining, marking neuronal activation, in hypothalamic neurons
in response to a peripherally administered GIPR agonist; this agonist reduced food
intake and weight gain in DIO mice, an effect that was abolished when central GIPR
expression was conditionally knocked out through a Nestin-Cre approach (Zhang
et al. 2021). The importance of synergistic activation of GIPR- and GLP1R-
expressing neurons and downstream anorexigenic pathways, and the potential of
GIP for the treatment of obesity in humans, remains an area of active study.

2.5 GLP1R/GCGR/GIPR Triple Agonism

Monomeric drugs which act as triple agonists at the GIP, GLP-1 and GCG receptors
have also been developed, in an attempt to combine the beneficial effects of GLP1R/
GCGR and GLP1R/GIPR co-agonists. These tri-agonists induce greater body weight
loss (up to 30% in DIO mice) alongside improved glucose tolerance and a reversal of
steatohepatitis (Finan et al. 2015). Given its effects on liver fat and fibrosis, the
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tri-agonist HM15211 has now entered phase II trials for the treatment of NASH
(Hanmi 2020). Many additional compounds have also been developed and are
progressing through preclinical and phase I pipelines for treatment of T2DM (Lilly
2021).

2.6 GLP1R/NPY2R Co-agonism

Several studies have demonstrated additive or synergistic effects of GLP-1 receptor
agonists with PYY3–36 (De Silva et al. 2011; Neary et al. 2005; Talsania et al. 2005).
In humans, acute (150 min) intravenous infusions of native PYY3–36 in conjunction
with GLP-1 reduced energy intake (Schmidt et al. 2014). Similarly, subcutaneous
infusion of GLP-1, oxyntomodulin and PYY3–36 over 28 days in overweight
individuals improved glycaemic control and caused greater weight loss than
semaglutide, but it is impossible to delineate the contribution of each peptide in
this study (Behary et al. 2019). High doses of native PYY3–36 induce significant
nausea, so doses of PYY analogues would have to be carefully titrated, as is
currently done for GLP1R agonists (Gantz et al. 2007). Long-acting analogues of
PYY3–36 have been developed and reported to reduce food intake and body weight in
primate (Rangwala et al. 2019) and rodent (Lear et al. 2020) models of obesity, alone
and in conjunction with GLP1R agonists. Unlike GIP and glucagon, no
unimolecular GLP1/PYY3–36 co-agonists have been reported but co-administration
of the long-acting PYY analogue PYY 1875 with semaglutide is currently being
assessed in phase I human studies for obesity (Novo Nordisk 2019).

2.7 CCK1R Agonism

CCK also has potent anorexigenic effects and several CCK1R agonists were devel-
oped in the 2000s as satiety agents (Cawston and Miller 2010). While many of these
drugs reduced food intake and body weight in preclinical models, they were deemed
no more effective than diet alteration in human studies and were therefore
discontinued (Jordan et al. 2008). Co-administration of CCK1R and GLP1R
agonists (Trevaskis et al. 2015), or unimolecular co-agonists (Hornigold et al.
2018; Irwin et al. 2015), induces impressive (up to 28%) weight loss in rodent
models. A new long-acting CCK1R agonist which reduces food intake and body
weight in the obese mini-pig model has recently been developed (Christoffersen
et al. 2020). This has not yet progressed to clinical trials but represents a promising
compound for use in conjunction with GLP1R agonists if the preclinical efficacy is
sustained in longer-term human studies.
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2.8 Co-administration of GLP-1 and Amylin Receptor Agonists

Amylin is an anorexigenic hormone co-secreted with insulin from pancreatic β-cells,
also expressed in the hypothalamus and, likely at lower levels, in EECs (Boyle et al.
2018; Habib et al. 2012; Li et al. 2015). The area postrema of the brainstem is
thought to be critical for the satiety effects of amylin, although other brain regions
including the hypothalamic arcuate/ventromedial nuclei and ventral tegmental area
may influence control of hedonic feeding (Boyle et al. 2018). Several amylin
receptors exist, which are formed when the calcitonin receptor complexes with one
or more receptor activity modifying proteins (RAMPs) (Hay et al. 2018). The amylin
analogue pramlintide evokes small (typically <5%) reductions in body weight in
obese subjects (Aronne et al. 2007). It also induces modest improvements in
glycaemic control via inhibition of gastric emptying and suppression of glucagon
secretion, and has therefore been approved for treatment of both type 1 and type
2 diabetes (Ryan et al. 2005). A newer once-weekly amylin analogue cagrilintide has
demonstrated efficacy in early clinical trials for obesity, alone (phase II) (Fletcher
et al. 2021) or in combination with semaglutide (phase Ib) (Enebo et al. 2021). Initial
results show a promising additive effect of GLP-1 and amylin receptor agonism, but
this has yet to be confirmed in large-scale trials.

2.9 Summary of Gut Hormone Mimetic Treatments

Incretin mimetics have been used clinically for over a decade and are effective in
improving glucose tolerance for patients with T2DM with a tolerable safety profile.
The potent anorexigenic effects of the once-weekly GLP-1R agonist semaglutide
and dual GLP1R/GIPR co-agonist tirzepatide in recent phase III trials represent
ground-breaking opportunities for the pharmacological treatment of obesity. These
drugs can induce clinically meaningful weight loss of 10–20% in overweight and
obese patients, with or without diabetes, and are likely also to confer other beneficial
effects such as reduction of cardiovascular mortality. Current pharmaceutical devel-
opment is focused on combining GLP1R agonism with activity at other hormone
receptors to further improve these results, ameliorate other complications of obesity
such as NASH and minimise adverse effects.

3 Bariatric Surgery

Currently, bariatric surgical rearrangements of the gastrointestinal tract remain the
most successful means of inducing weight loss in patients with severe obesity.
Several mechanisms have been proposed to underlie these metabolic changes
(reviewed in chapter “Bariatric Surgery”) but a key driver is accelerated nutrient
delivery to the distal small intestine and subsequent dramatic increase in secretion of
gut hormones such as GLP-1, PYY and oxyntomodulin (Holst et al. 2018; Larraufie
et al. 2019). Postprandial excursions of GLP-1, PYY and CCK are strongly elevated
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immediately post-operatively (Laferrere et al. 2007; Peterli et al. 2012), with
exaggerated responses maintained for as long as 20 years after surgery (Naslund
et al. 1997). Clinical studies using the GLP1R antagonist exendin-9 demonstrate a
clear role for GLP-1 in mediating the beneficial effects of bariatric surgery on
postprandial insulin secretion and glucose tolerance (Jorgensen et al. 2013; Larraufie
et al. 2019; Salehi et al. 2014), but the importance of post-surgical PYY elevation
has been studied in less detail. Following Roux-en-Y gastric bypass (RYGB), double
Glp1r/Npy2r knockout mice achieve similar weight loss to wild-type animals
(Boland et al. 2019); however, in human RYGB patients the combination of the
GLP1R-antagonist exendin-9 and DPP-4 inhibition increases food intake, whilst
each treatment alone is ineffective (Svane et al. 2016).

It has been hypothesised that increased circulating GLP-1 and PYY may be the
result of altered exposure of the gastrointestinal epithelium to nutrients after surgery
leading to changes in stimulus responsiveness or EEC differentiation. Although
immunohistochemistry studies in rats (Mumphrey et al. 2013) and humans (Rhee
et al. 2015) have reported small changes in L-cell number or density following
RYGB, these are insufficient to explain the substantial increase in circulating levels
of GLP-1 and PYY. Furthermore, in lean human and mouse models of bariatric
surgery there were no major differences in EEC peptide content or transcriptome
before and after gastrectomy in humans or mice (Larraufie et al. 2019), suggesting
that altered nutrient flow is the critical factor underlying enhanced gut hormone
secretion.

4 Stimulating Endogenous EEC Secretion

Pharmacologically stimulating endogenous secretion of anorexigenic and
insulinotropic hormones or selectively expanding L-cell number could potentially
mimic the positive effects of bariatric surgery. In addition to nutrient stimulation, it is
possible to directly target the sensory machinery employed by electrically active
enteroendocrine cells (Fig. 1). Although existing trials have focused on treating
T2DM, the profound weight loss induced by RYGB and GLP-1 receptor agonism is
proof of principle that the gut hormone axis is also a promising target for anti-obesity
drugs.

4.1 Nutrient Encapsulation

Initial attempts to stimulate endogenous gut hormone secretion focused on oral
delivery of nutritional stimuli. Oral ingestion of the amino acid glutamine modestly
increases circulating GLP-1 concentrations (Greenfield et al. 2009) and improves
postprandial glycaemic control in T2DM (Samocha-Bonet et al. 2011). Use of a
slow-release enteric coating to reduce dosage by selectively delivering glutamine to
the L-cell-rich distal gut evoked a small increase in circulating GLP-1 and insulin in
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fasted individuals, but no metabolic improvements were seen following an oral
glucose tolerance test (Meek et al. 2016).

Similar enteric capsules have been used for ileocolonic delivery of free fatty acids
and bile acids, in attempt to mimic the rerouting of nutrients observed with bariatric
surgery. In fasted T2DM subjects, addition of encapsulated lauric acid to a meal
lowers postprandial glucose and evokes a small increase in GLP-1 (Ma et al. 2013).
Hydrolysed pine nut oil capsules slightly increase GLP-1 and GIP responses to oral
glucose in healthy and overweight volunteers, compared to placebo capsules
(Sorensen et al. 2021). Neither study demonstrated notable alterations in circulating
insulin levels, likely reflecting inadequate stimulation of incretin release. Acute
infusion of the bile salt taurocholate into the rectum potently increases GLP-1,
PYY and insulin concentrations, while reducing ad libitum food intake and plasma
glucose (Adrian et al. 2012). However, the high doses required for beneficial
metabolic effects caused adverse reactions, including rectal irritation and abdominal
pain. In a 28-day trial of participants with obesity or T2DM, ileocolonic delivery of
conjugated bile acid capsules evoked small but significant improvements in glucose
homeostasis, likely mediated by modest increases in GLP-1 (Calderon et al. 2020).

In developing treatments for obesity, it is important to avoid therapeutics with an
inherently high caloric load, which would likely negate any beneficial anorexigenic
effects. Given the limited success of using nutritional stimuli to evoke secretion of
GLP-1, compared to the major elevations following bariatric surgery, efforts have
largely shifted towards the use of pharmacological agonists to selectively target
receptors on EECs.

Fig. 1 Mechanisms of stimulating endogenous enteroendocrine cell secretion
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4.2 Pharmacological Targeting of Enteroendocrine GPCRs

G-protein coupled receptors (GPCRs) make a significant contribution to regulation
of gut hormone secretion in response to products of fat or protein digestion,
neurotransmitters and other paracrine or endocrine signals. Activation of EEC
receptors coupled to Gq or Gs, leading to Ca2+ and cyclic adenosine monophosphate
(cAMP) elevation respectively, is widely recognised to stimulate hormone release.
Bile acids strongly evoke gut hormone secretion via the Gs-coupled G-protein bile
acid receptor GPBAR1 (Brighton et al. 2015), and monoacylglycerols also act via
cAMP signalling downstream of GPR119 (Moss et al. 2016). Several Gq-coupled
receptors are important for the postprandial stimulation of gut hormone secretion: the
long-chain fatty acid receptors FFA1/GPR40 (Edfalk et al. 2008) and FFA4/
GPR120 (Hirasawa et al. 2005), the short chain fatty acid receptor FFA2/GPR43
(Tolhurst et al. 2012), and the aromatic amino acid-responsive calcium sensing
receptor CaSR (Pais et al. 2016) and GPR142 (Lin et al. 2016).

Given the inherently druggable nature of GPCRs alongside their cell surface
accessibility and relatively localised expression in specific cell populations, these
receptors represent a key target in the development of novel therapeutics to enhance
endogenous enteroendocrine secretion. Several synthetic compounds which target
EEC receptors have been developed to stimulate gut hormone release in attempts to
mimic the weight loss effects of bariatric surgery.

4.3 FFA1 (GPR40) Agonists

Agonists of the free fatty acid receptor FFA1/GPR40 were initially developed for
their direct effect on pancreatic β-cells (Itoh and Hinuma 2005). The partial agonist
TAK-875 showed promising results in T2DM patients, increasing insulin secretion
and improving glycaemic control without inducing hypoglycaemia (Burant et al.
2012); however, signs of hepatotoxicity during large-scale phase III trials halted
development of TAK-875 (Kaku et al. 2016). There is currently no evidence to
suggest these adverse effects were FFA1-mediated (Otieno et al. 2018) and, as liver
expression of this receptor is negligible (Briscoe et al. 2003), it is hoped that newer
drugs will avoid similar hepatic injury.

An example of a full FFA1 agonist is AM-1638, which evokes GIP and GLP-1
secretion, and causes GLP1R-dependent reductions in plasma glucose in mice (Luo
et al. 2012). The structurally-related AM-6226 improves glucose tolerance in a
primate model, more effectively than the DPP4 inhibitor sitagliptin (Brown et al.
2018). Other FFA1 agonists in preclinical development which stimulate GLP-1
secretion include SCO-267 (Ueno et al. 2019) and ZYDG2 (Jain et al. 2018).
Given its dual role in insulin and incretin secretion, FFA1 presents a promising
target for the treatment of T2DM. Whether newer agonists are able to stimulate
sufficient release of GLP-1 and other anorexigenic hormones to evoke meaningful
effects on body weight remains to be determined.
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4.4 GPR119 Agonists

GPR119, the Gs-coupled monoacylglycerol receptor, is also expressed in both
enteroendocrine and pancreatic α and β-cells (Chu et al. 2007; Moss et al. 2016).
Preclinical studies with the agonist AR231453 demonstrate GPR119-dependent
stimulation of GLP-1, GIP and PYY release, and improvements in glucose tolerance
which were reduced in Glp1r knockout mice (Chu et al. 2008; Flock et al. 2011).
Intriguingly, GPR119 agonism also slows gastric emptying independently of
GLP1R, GIPR, GLP-2R and NPY2R (Flock et al. 2011). Nasogastric delivery of
the endogenous GPR119 agonist 2-oleoylglycerol in humans induces a small
increase in GLP-1 and GIP levels, but this was insufficient to alter insulin or glucose
profiles (Hansen et al. 2011).

Despite promising early animal data, the effects of GPR119 agonists on
glycaemic control in diabetic populations have been inconclusive. The agonist
JNJ-38431055 stimulated GLP-1 and GIP release without altering insulin (Katz
et al. 2012). Another agonist GSK1292263 increased circulating PYY approxi-
mately five-fold in T2DM subjects but did not affect GLP-1, GIP or glucose levels
(Nunez et al. 2014). While this increase in anorexigenic PYY is comparable to
postprandial levels after bariatric surgery, there were no differences in self-reported
hunger scores. In a phase II trial of Japanese T2DM patients, the agonist DS-8500a
improved Hba1c levels, to a lesser extent than sitagliptin, alongside beneficial
improvements in lipid and cholesterol (Yamada et al. 2018). The same drug did
not alter glycaemic control in a North American cohort when co-dosed with metfor-
min (Sankyo 2018). There are no on-going listed clinical trials of GPR119 agonists
for T2DM or obesity, but the agonist MBX-2982 recently entered phase II trials to
evaluate whether it can enhance glucagon secretion during insulin-induced
hypoglycaemia in type 1 diabetes (CymaBay 2020).

4.5 GPBAR1 (TGR5) Agonists

Activation of the Gs-coupled G-protein bile acid receptor GPBAR1 (previously
known as TGR5/GPR131) evokes release of GLP-1, PYY, GIP, GLP-2 and insulin
(Bala et al. 2014; Kuhre et al. 2018; Parker et al. 2012b; Thomas et al. 2009).
Furthermore, there is preclinical evidence that GPBAR1 agonism may enhance
resting brown adipose thermogenesis and decrease inflammation, providing addi-
tional benefits in the treatment of obesity (van Nierop et al. 2017).

Bile acids and selective GPBAR1 agonists stimulate GLP-1 secretion and
improve glucose homeostasis in wild-type, but not Gpbar1 knockout, mice (Thomas
et al. 2009). Colorectal infusion of bile acids also increases PYY/GLP-1 secretion in
humans and suppresses appetite in both T2DM and healthy-weight volunteers
(Adrian et al. 2012); however, in contrast to animal studies, oral or intrajejunal
dosing of bile acids in humans induces very little GLP-1 release with no effect on
insulin levels (Hansen et al. 2016; Meyer-Gerspach et al. 2013). In the only
published clinical study using a selective GPBAR1 agonist, T2DM subjects were
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treated with SB-756050 for 6 days (Hodge et al. 2013). This trial produced disap-
pointing effects on glucose tolerance, although there was some indication of
increased GLP-1 secretion at certain doses in response to acute GPBAR1
stimulation.

GPBAR1 is widely expressed, and care must therefore be taken to balance the
potential therapeutic benefits of receptor activation (improved glucose homeostasis,
reduced inflammation) with the risk of diverse off-target effects. These adverse
reactions have primarily been studied in animal or cell models but include gallstone
formation, cardiovascular alterations, constipation, pruritus and promotion of cell
proliferation [reviewed in van Nierop et al. (2017)]. It was initially hoped that it may
be possible to target the enteroendocrine cell GPBAR1 directly from the gut lumen
with a non-absorbable agonist, to minimise effects in other organ systems; however,
it has since been demonstrated that activation of GPBAR1 occurs at the basolateral
surface of L-cells, following absorption across the epithelial layer by the apical
sodium-dependent bile acid transporter (ASBT) (Brighton et al. 2015).

4.6 Bile Acid Sequestrants and ASBT Inhibitors

Given the challenge of selectively targeting GPBAR1 in EECs pharmacologically,
other approaches which alter the intestinal availability of endogenous bile acids may
prove effective in the treatment of obesity. The majority (~95%) of bile acids are
actively reabsorbed by the ASBT in the distal small intestine and returned to the liver
via the portal vein for re-secretion, although a small proportion enter the systemic
circulation (Dawson et al. 2009). Bile acids which reach the colon can be modified
by the microbiota to form passively-absorbed unconjugated bile acids (Mekhjian
et al. 1979), or lost in faeces.

Bile acid sequestrants are non-absorbable resins designed to increase faecal loss
of bile acids and therefore increase de novo synthesis to reduce total plasma
cholesterol. As well as improving dyslipidaemia, the sequestrant colesevelam also
significantly lowers glycaemia in T2DM patients (Bays 2011), an effect which was
GPBAR1-dependent in mice (Potthoff et al. 2013). Sequestrants increase delivery of
bile acids to the distal intestine and slightly increase postprandial GLP-1 and GIP
levels in T2DM patients (Beysen et al. 2012; Brufau et al. 2010); although this is not
to the extent seen following bariatric surgery, likely reflecting the need for bile acid
absorption for incretin secretion. A recent study of post-RYGB subjects also
demonstrated that addition of colesevelam to a meal does not alter circulating
GLP-1 levels, arguing against an important role for endogenous bile acids in
mediating postprandial GLP-1 release in this cohort (Jonsson et al. 2021).

ASBT inhibitors which block small intestinal bile acid absorption have also been
trialled. Although ileal GPBAR1-mediated hormone secretion depends on bile acid
absorption via ASBT (Brighton et al. 2015), passive absorption of secondary bile
acids in the colon –where there is a large pool of GLP-1 and PYY positive EECs – is
likely to still enable GPBAR1 activation (Billing et al. 2019). In diabetic rats, oral
administration of ASBT inhibitors promoted GLP-1 and insulin release (Chen et al.
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2012). Patients with chronic constipation treated with high doses of the ASBT
inhibitor elobixibat for 14 days showed slightly elevated postprandial GLP-1 levels
(Rudling et al. 2015). The inhibitor GSK2330672 reduced fasting plasma glucose
levels in T2DM subjects, although GLP-1 levels were not measured (Nunez et al.
2016). Notwithstanding gastrointestinal side effects, primarily diarrhoea, ASBT
inhibitors are still under development for the treatment of hypercholesterolaemia,
NASH and functional constipation. The impact of these drugs on energy intake and
body weight should be monitored as they progress through clinical trials, although
preclinical studies showed little alteration (Rao et al. 2016).

4.7 Slowing Macronutrient Digestion

Macronutrient breakdown is required for both absorption and stimulation of EEC
secretion. Therapies which slow nutrient digestion may therefore reduce the total
calories absorbed, while increasing nutrient availability in the GLP-1 and PYY-rich
regions of the ileum and colon. Orlistat, a lipase inhibitor approved for the treatment
of obesity, reduces breakdown of lipids to fatty acids and monoacylglycerols and
delivers a large fat load distally. In healthy volunteers, orlistat taken before a meal
reduces circulating GLP-1, PYY and CCK while also reducing satiety (Ellrichmann
et al. 2008). The requirement for lipid digestion and subsequent absorption of fatty
acids to access basolaterally-located FFA1 (Christensen et al. 2015) appears to limit
the ability of orlistat to enhance gut hormone release. Alpha-glucosidase inhibitors,
such as acarbose and miglitol, are approved therapies for T2DM which slow the
digestion of starch and sucrose to reduce postprandial glucose elevations. These
drugs appear to evoke small increases in GLP-1 after a meal or sucrose ingestion,
while reducing GIP secretion from the proximal gut (Narita et al. 2012; Seifarth et al.
1998). Postprandial effects on plasma GLP-1 have not been observed in every study
(Hucking et al. 2005) and, like orlistat, the efficacy of alpha-glucosidase inhibitors is
likely limited by the need for carbohydrate digestion to stimulate EECs in the
distal gut.

4.8 SGLT1 Inhibitors

Glucose, from ingested carbohydrates or free sugars, is absorbed across the intestinal
epithelium by the apical sodium-dependent glucose cotransporter SGLT1. In elec-
trically active EECs, this coupled uptake of glucose and positively charged sodium
ions results in membrane depolarisation and subsequent hormone release (Parker
et al. 2012a). Paradoxically, blocking SGLT1 leads to a pronounced increase in
circulating GLP-1 at later time points, as well as reducing postprandial glucose
excursions (Powell et al. 2017). Following preclinical success, the non-absorbable
SGLT1 inhibitor LX-2761 has entered phase I trials as an oral anti-diabetic agent
(Lexicon 2018). In parallel to ASBT inhibition, it is hypothesised that blocking
proximal uptake increases the delivery of glucose to the distal intestine. As SGLT1
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can no longer mediate GLP-1 release in response to glucose, alternative glucose-
sensing mechanisms or increased availability of glucose-derived metabolites may be
important for EEC activation in this setting.

4.9 Somatostatin Receptor Antagonists

An alternative strategy involves using somatostatin receptor (SSTR) antagonists to
release tonic inhibition of enteroendocrine secretion (Jepsen et al. 2019). Specifi-
cally, a selective antagonist of SSTR5 – which is highly enriched in ileal L-cells
(Moss et al. 2012) – has been shown to improve glycaemic control in mice, in a
GLP-1-dependent manner (Jepsen et al. 2021; Sprecher et al. 2010). In rodents,
SSTR5 antagonists only improve glucose tolerance when administered orally, fur-
ther implicating an incretin-like effect rather than direct stimulation of pancreatic
insulin secretion (Jepsen et al. 2021). SSTR5 expression does appear to be higher in
human than rodent β-cells, and so antagonism may have a dual benefit of stimulating
gut hormone and insulin release in man (Farb et al. 2017). Several SSTR antagonists
have recently been developed for oral administration (Hirose et al. 2017), but clinical
studies for these drugs in obesity or T2DM have not yet been reported.

4.10 Future Directions in Manipulating Endogenous EEC Secretion

The success of L-cell secretagogues in preclinical and clinical studies has been
limited to relatively small increases in circulating gut hormone levels. Injectable
GLP-1 analogues and bariatric surgery both induce ~ten-fold elevations in
concentrations of circulating GLP-1 or equivalents, leading to potent anorexigenic
effects (Calara et al. 2005; Yousseif et al. 2014). It appears clear that increasing
endogenous gut hormone secretion to these levels will require synergistic activation
of multiple pathways. For example, single oral administration of an SSTR5 antago-
nist, GPBAR1 agonist or FFA1 agonist in mice induces modest (<five-fold) stimu-
lation of GLP-1 secretion (Briere et al. 2018). By contrast, co-treatment with a
GPBAR1 or FFA1 agonist (to directly evoke GLP-1 release), a SSTR5 antagonist
(to release L-cell inhibition) and a DPP4 inhibitor (to prevent breakdown) elevated
circulating GLP-1 to supraphysiological levels, far greater than those achieved post-
surgery or during treatment with exogenous incretin mimetics. Similarly, the use of a
lipid nanocarrier system for oral exenatide delivery has recently been shown to
induce enhanced GLP-1 secretion, synergistically improving glucose tolerance
compared to subcutaneous exenatide (Xu et al. 2020). An alternative approach
could combine basolateral activation of GPBAR1 or FFA1 from the circulation
with a non-caloric drug targeting receptors on the apical processes of open-type
EECs, such as the electrogenic glucose transporter SGLT1.

In recent years, bulk and single cell RNA sequencing of human EECs has been
carried out using immunolabelled dissociated tissue, or genetically modified reporter
organoids (Beumer et al. 2020; Goldspink et al. 2020; Roberts et al. 2019). L-cells
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express several receptors not previously implicated in postprandial nutrient sensing
or neurohormonal regulation, which may represent novel targets for the selective
manipulation of endogenous gut hormone secretion.

5 Enhancing EEC Number

Intestinal epithelial cells – exposed to the extreme chemical and physical conditions
of the intestinal lumen – have a rapid turnover time, typically only 3–5 days
(Darwich et al. 2014). If it were possible to selectively enhance EEC differentiation,
this could represent a promising strategy to increase endogenous gut hormone
release. Several studies have characterised which transcription factors (TFs) are
expressed by specific enteroendocrine cell subtypes and the time course of this
expression (Beumer et al. 2020; Gehart et al. 2019). The hormonal repertoire of
individual EECs is much broader than suggested by the classical single letter (e.g.,
‘L’-cell) classification system and expression of specific hormones is dependent on a
combination of factors, including the cell’s location within the gastrointestinal tract,
position along the crypt-villus axis and possibly extrinsic influences such as
nutritional status. A number of compounds – such as short chain fatty acids and
bile acids – have been proposed to physiologically modulate EEC differentiation in
organoid and mouse models (Lund et al. 2020; Petersen et al. 2014). Although
attempts have been made to develop drugs which boost EEC number (Beumer et al.
2018; Petersen et al. 2015, 2018; Tsakmaki et al. 2020), significant further work is
required to selectively target TFs active in specific EEC populations before this
approach could be considered for therapeutically increasing gut hormone secretion.

6 Conclusion

As evidenced by recent trials of the GLP-1 receptor agonist semaglutide and the
GLP-1/GIP receptor dual agonist tirzepatide, the anorexigenic and insulinotropic gut
hormone axes can be effectively manipulated to induce significant weight loss in
human subjects. Directly targeting the gut for the treatment of obesity also remains
an attractive therapeutic strategy. Pharmacological agonists activating multiple gut
hormone receptors, which have demonstrated early clinical success, could be
replaced by effective stimulation of plurihormonal EECs. Increasing hormone
release from the gut would also enable the activation of local receptors, such as
those on vagal afferent neurons, which appear to underlie at least some of the actions
of EEC products. By synergistically manipulating several pathways controlling
endogenous enteroendocrine secretion, it is theoretically possible to mimic the
effectiveness of bariatric surgery in a pill.
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