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Abstract

Two-pore domain potassium channels are formed by subunits that each contain
two pore-loops moieties. Whether the channels are expressed in yeast or the
human central nervous system, two subunits come together to form a single
potassium selective pore. TOK1, the first two-domain channel was cloned from
Saccharomyces cerevisiae in 1995 and soon thereafter, 15 distinct K2P subunits
were identified in the human genome. The human K2P channels are stratified into
six K2P subfamilies based on sequence as well as physiological or pharmacologi-
cal similarities. Functional K2P channels pass background (or “leak”) K

+ currents
that shape the membrane potential and excitability of cells in a broad range of
tissues. In the years since they were first described, classical functional assays,
latterly coupled with state-of-the-art structural and computational studies have
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revealed the mechanistic basis of K2P channel gating in response to specific
physicochemical or pharmacological stimuli. The growing appreciation that K2P

channels can play a pivotal role in the pathophysiology of a growing spectrum of
diseases makes a compelling case for K2P channels as targets for drug discovery.
Here, we summarize recent advances in unraveling the structure, function, and
pharmacology of the K2P channels.

Keywords

Background current · K2P channel · KCNK · TALK · TASK · THIK · TRAAK ·
TREK · TRESK · TWIK

1 An Introduction to Two-Pore Domain Potassium Channels

Potassium (K+) channels are a superfamily of multi-subunit membrane proteins that
are fundamental for physiology throughout the tree of life. K+ channels are complex
protein machines with a simple purpose: they open and close (gate) in a coordinated
manner that allows the conduction of K+ ions down their electrochemical gradient,
typically from the intracellular to extracellular space in mammalian tissues. Gating
occurs in response to a panoply of stimuli and shapes the resting membrane potential
and the dynamics of cellular excitability by regulating the flux of K+ ions. Thus, K+

channels are essential for many biological processes including neuronal, muscular,
and cardiac function (Enyedi and Czirjak 2010).

The superfamily of K+ channels is stratified into distinct subfamilies based on
structural similarities, namely the number of transmembrane domains and pore
forming domains present in each subunit. The largest subfamily includes the voltage
(KV) channels and calcium activated (KCa) channels which are characterized by one
reentrant pore loop (P-loop) and (typically) six transmembrane domains per subunit;
holo-channels are tetramers. The inwardly rectifying K+ channels (KIR) also form as
tetramers in which each subunit consists of a single P-loop and two transmembrane
domains. The notion that all K+ channels are tetramers changed in 1995 when TOK1
was cloned from Saccharomyces cerevisiae (Ketchum et al. 1995). TOK1 channels
have a distinct architecture: Functional channels are dimers of subunits with eight
transmembrane domains (M1-M8), intracellular amino- and carboxy-terminal tails,
and two reentrant P-loops located between transmembrane domains M5-M6 and
M7-M8 (Fig. 1) (Ketchum et al. 1995). Although TOK channels are not found
beyond fungi, K+ channel subunits with two P-loops from higher organisms were
described soon after.

Unlike the KV and KIR channel subfamilies, discovery of the K2P channels was
made possible using genome database mining rather than by a molecular cloning
strategy (Goldstein et al. 1996; Lesage et al. 1996b; Yang and Jan 2013). In 1996,
K2PØ (also called KCNKØ, or dORK) was cloned from Drosophila melanogaster
and K2P1 (also called KCNK1 or TWIK1) was cloned from human kidney (Lesage
et al. 1996b). Holo two-pore domain K+ (K2P) channels are dimers of subunits, with
each subunit contributing two-P loops and four transmembrane domains to the
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structure (Feliciangeli et al. 2015; Goldstein et al. 2001; Guyenet et al. 2019;
Kollewe et al. 2009; Medhurst et al. 2001; Yang and Jan 2013). In general, heterol-
ogous expression of K2P channels produces outward K

+ currents under physiological
conditions. The phenomenon of “background’” or “leak” K+ currents has been
appreciated since the 1940s and was ratified in the membrane equations of Hodgkin
and Huxley (Enyedi and Czirjak 2010; Goldman 1943; Goldstein et al. 1996, 2001;
Hodgkin and Huxley 1952; Lesage et al. 1996b). In the last ~25 years, numerous
studies have confirmed the central role that K2P channels play in determining the
membrane potential in a broad range of excitable and non-excitable cell types
(Goldstein et al. 2001) (Fig. 1).

K+ channel subunits are identified by a common sequence of amino acid residues
that comprise the selectivity filter for K+ ions within the conduction pore of the
channel (see also chapter “Comparison of K+ Channel Families”). This evolutionarily
conserved structural domain is constructed from four P-loops that are held in position
in the membrane between two transmembrane helixes that form the channel corpus.
The surrounding architecture of the channel is comprised of transmembrane domains
that correlate with their unique physiological functions. This architectural arrange-
ment controls when the channels open and for how long (open probability), allowing
the conductance of K+ ions down their electrochemical gradient through the selectiv-
ity filter of the pore with high fidelity (Doyle et al. 1998). Gating of K2P channels is
regulated by a plethora of physicochemical and mechanical stimuli including stretch,
temperature, pH, and various cell signaling, and second-messenger pathways
(Chemin et al. 2007; Honore 2007; Lotshaw 2007). Despite significant progress,
the mechanistic basis by which each of these stimuli influences the gating machinery,
and in turn the activity of K2P channels, remains a matter of ongoing research.

A growing body of work, first using a classical structure-function approach, and
more recently via snapshots of channel structures paired with molecular dynamics
simulations has revealed that extrinsic regulators typically influence the open proba-
bility of K2P channels via allosteric pathways and via c-type gating in particular
(Bagriantsev et al. 2011, 2012; Cohen et al. 2008; Lolicato et al. 2014, 2020;
Piechotta et al. 2011; Schewe et al. 2016; Zilberberg et al. 2001). Compelling
evidence supports that this mode of gating results from constriction of the extracel-
lular region of the channel, occluding the conduction pathway for K+ ions (Hoshi
et al. 1991; Yellen 1998). In common with data from other types of K+ channel, the
c-type gating of K2P channels occurs at the selectivity (SF) (Bagriantsev et al. 2011;
Cohen et al. 2008; Piechotta et al. 2011). For example, binding of high affinity
quaternary ammonium (QA) deep within the K2P2 channel selectivity filter revealed

Fig. 1 (continued) subfamilies indicated, these are named for their physiological or pharmacologi-
cal properties. (b) A cartoon depicting how the transmembrane domains and P-loops of human K2P

channels are organized to create a single channel pore from a dimer of subunits. (c) A topological
cartoon to show the organization of the 8-transmembrane domains (M1-M8) that comprise a TOK
subunit. Note the two pore-loops (P1 and P2) between M5-M6 and M7-M8. (d) A topological
cartoon to show the organization of the 4-transmembrane domains (M1–M4) that comprise a K2P

subunit. Note the two pore-loops (P1 and P2) between M1-M2 and M3-M4
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that the gating process was occurring at the SF (Piechotta et al. 2011; Schewe et al.
2016). Furthermore, c-type gating works in concert with the carboxy-terminal tail of
the channel to mediate the response to physicochemical stimuli such as temperature
and mechanical force (Bagriantsev et al. 2011, 2012), indicating that allosteric
interactions can transcend the channel corpus (Bagriantsev et al. 2011, 2012;
Zilberberg et al. 2001).

K2P channels assemble as dimers with each subunit composed of four transmem-
brane domains and two P-loops, one between the M1 and M2 helices and one
between the M3 and M4 helices (Fig. 1b, c) (Brohawn et al. 2012; Goldstein et al.
2001; Kollewe et al. 2009; Lolicato et al. 2017; Miller and Long 2012). In addition,
the first extracellular loop of each K2P subunit (linking the M1 to M2 helices)
contributes to a “cap-domain” located above the axis of the K+ selectivity filter.
This structure bifurcates the pathway for K+ ions and is proposed to render K2P

channels insensitive to many classical K+ channel blockers (such as protein toxins)
by shielding the extracellular mouth of the pore via steric hindrance (Fig. 2)
(Lolicato et al. 2017; Miller and Long 2012; Piechotta et al. 2011; Zuniga and
Zuniga 2016). The extracellular cap-domain is formed when the two extracellular
helices (E1 and E2) assemble (Şterbuleac 2019). The cap-domain has not been
observed in other K+ channels and was first revealed upon elucidation of the
structure of K2P1 (TWIK1) and K2P4 (TRAAK) by X-ray crystallography. The
placement and movement of the transmembrane helices allow the channel to adopt
the two unique states, “up” and “down” (Brohawn et al. 2012; Miller and Long 2012;
Şterbuleac 2019). Transitioning from the “up” to the “down” states reveals
fenestrations which allow molecules to interact with the channel’s inner pore
(Feliciangeli et al. 2015; Şterbuleac 2019). The cap-domain has been observed on
all K2P channel structures solved to date, including K2P1, K2P2, K2P3, K2P4, and
K2P10 (Brohawn et al. 2012; Dong et al. 2015; Lolicato et al. 2017; Miller and Long
2012; Pope et al. 2020; Rödström et al. 2020).

The unique topology of K2P channels is shared among 15 human genes
designated “KCNK” by the Human Gene Organization nomenclature (Lesage and
Barhanin 2011; Yang and Jan 2013) (Table 1). These genes encode 15 K2P channel
subunits that are classified into six subfamilies based on similarities in structural and
functional properties: tandem of pore domains in a weak inward rectifying K+

channel (TWIK); TWIK-related K+ channel (TREK); TWIK-related acid sensitive
K+ channel (TASK); TWIK-related alkaline pH-activated K+ channel (TALK);
TWIK-related spinal cord K+ channel (TRESK); and tandem pore domain halo-
thane-inhibited K+ channel (THIK) (Table 1). To mitigate the variance in the
pharmacological and physiological attributes that were subsequently associated
with different members of each subfamily the nomenclature of the K2P channels
“K2PX” was designated by the International Union of Basic and Clinical Pharmacol-
ogy (IUPHAR) (Table 1). However, the descriptive names of these channels have
utility and remain in common use.
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2 The Role of K2P Channels in Pathology and Pain Signaling

Numerous studies have linked K2P channels to cardiac and neuronal diseases. In this
section we highlight examples. K2P channels have also been linked to
neurodevelopmental disorders including Birk-Barel syndrome. K2P channels have
also been linked to neurodevelopmental disorders including Birk-Barel syndrome.
This rare genetic disease is associated with mutation of the glycine residue at
position 236 (Gly236) to arginine (a positively charged residue) in the KCNK9
gene (encodes K2P9, also called TASK3) and is characterized by intellectual
disability, hypotonia and hyperactivity. Two-electrode voltage-clamp (TEVC) stud-
ies of WT and mutant channels expressed in Xenopus oocytes revealed that while
wild type (WT) channels passed measurable currents, mutant channels had no
measurable current. In addition, co-expression of mutant channel with either WT

Fig. 2 The architecture of a K2P channel. An overview of the three-dimensional architecture of
K2P2 (Crystal structure, PDB ID: 6CQ6) showing views from the side, the top (extracellular), and
the bottom (intracellular) of the channel. The helices of one subunit are colored to reflect the
segments of a single subunit: four transmembrane domains (M1–M4); two portions of extracellular
loop1 that contribute to the cap-domain (EC1 and EC2); two selectivity filter helices (SFH1 and
SFH2), one contributes to each P-loops. Images were rendered from the PDB files indicated using
UCSF Chimera software (https://www.rbvi.ucsf.edu/chimera)
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or K2P3 channels (which form functional heterodimers with K2P9) resulted in
decreased current (Barel et al. 2008). Using the bacterial K+ channel KcsA to
generate a homology model structure, Barel and colleagues determined that the
expected location of the Gly236 residue was in the ion conduction pathway. It was
therefore postulated that a mutation to arginine may result in the disruption of
physical and electrostatic interactions in the pore that would diminish current by
impeding the conduction of K+ ions.

KCNK18 gene encodes for K2P18 or the TRESK channel and is primarily
expressed in trigeminal root ganglion (TRG) and dorsal root ganglion (DRG).
Truncations and other mutations in KCNK18 have been associated with familial
migraine (Lafrenière et al. 2010). Expression of mutant K2P18 channels resulted in
decreased current density when expressed in oocytes. This observation led
Lafrenière and colleagues to propose that an increase in the functional expression
of WT K2P18 could protect against migraines and that as yet unidentified mutations
in KCNK18 could lead to an increase in migraine risk (Lafrenière et al. 2010).

Following whole exome sequencing (WES) studies conducted on patients with
arrhythmic disorders, Decher and colleagues identified a heterozygous K2P2 muta-
tion (Ile267Thr) in a patient with right ventricular outflow tract ventricular tachycar-
dia (RVOT-VT). When expressed in Xenopus oocytes, K2P2 Ile267Thr channels
have decreased current compared to WT channels. Further, co-expression of WT and

Table 1 The 15 mammalian K2P channels

K2P subfamily
Channel
name

Gene
name

Common
name

Tandem pore domain halothane-inhibited channel
(THIK)

K2P12 KCNK12 THIK2

K2P13 KCNK13 THIK1

The TWIK-related spinal cord K+ channel (TRESK) K2P18 KCNK18 TRESK

TWIK-related alkaline pH-activated K+ channel
(TALK)

K2P5 KCNK5 TASK2

K2P16 KCNK16 TALK1

K2P17 KCNK17 TALK2

Tandem of pore domains in a weak inward rectifying
K+ channel (TWIK)

K2P1 KCNK1 TWIK1

K2P6 KCNK6 TWIK2

K2P7 KCNK7 kcnk8

TWIK-related K+ channel (TREK) K2P2 KCNK2 TREK1

K2P10 KCNK10 TREK2

K2P4 KCNK4 TRAAK

TWIK-related acid sensitive K+ channel (TASK) K2P3 KCNK3 TASK1

K2P9 KCNK9 TASK3

K2P15 KCNK15 TASK5

The 15 unique K2P channels expressed by mammals. Abbreviations: TWIK tandem of pore
domains in a weak inward rectifying K+ channel, TREK TWIK-related K+ channel, TASK
TWIK-related acid sensitive K+ channel, TALK TWIK-related alkaline pH-activated K+ channel,
TRESK TWIK-related spinal cord K+ channel, THIK tandem pore domain halothane-inhibited K+

channel, TRAAK TWIK-related arachidonic-acid-stimulated K+ channel. See Two P domain
potassium channels in the IUPHAR/BPS Guide to Pharmacology Database https://www.
guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79 for more information
about each individual channel
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mutant channel resulted in reduced current density in what is known as a “dominant-
negative” behavior (Decher et al. 2017). It was found that the mutant channel was
more permeable to sodium (Na+) ions, unlike WT channels. This change in ion
selectivity of the channel was attributed to the mutation of the isoleucine residue in
the second pore loop to threonine. A change in the selectivity of K2P channels that
permits an increase in the conductance of sodium has previously been observed for
development-related alternative-translation initiated truncation variants of K2P2 and
for mutation in K2P1 (Thomas et al. 2008). Following their observations, Decher
and colleagues sought to reverse this defect in ion selectivity by finding drugs that
would “rescue” the channel. Incubation of the channel with the following K2P2
blockers verapamil (62 μM) and fluoxetine (80 μM) and activators 2-APB (50 μM)
and riluzole (500 μM) did not alter the selectivity of the channel (Decher et al. 2017).
In contrast 5 μM of BL-1249 rescued channel function. Authors hypothesized that
BL-1249 may be binding at a unique site that differs from the other compounds.

K2P channels are expressed ubiquitously across excitable and non-excitable
tissues (Lesage 2003; Lesage and Lazdunski 2000). Several K2P channels are
expressed in the TRG and DRG (Mathie and Veale 2015). The DRG and TRG
somatosensory neurons give rise to the peripheral axonal fibers that innervate
various tissues including the skin, muscle, and viscera and ascend to the spinal
cord (DRG) or brainstem (TRG) (Mathie and Veale 2015; Plant 2012). Damage-
sensing (nociceptive) somatosensory neurons detect and respond to noxious stimuli
through activation of Aδ fibers which are lightly myelinated neurons that respond to
localized pain, and via C-fibers which are unmyelinated neurons that are activated by
a range of noxious stimuli (Plant 2012). Aα and Aβ fibers are myelinated fibers that
respond to innocuous, mainly mechanical stimuli (Plant 2012). K2P channels
expressed in the DRG and TRG modulate neuronal excitability and response to
noxious and innocuous mechanical stimuli.

Using a rat neuropathic pain model, Pollema and colleagues demonstrated that
following spared nerve injury (SNI) levels of mRNA for KCNK3 and KCNK9 (that
encode for K2P3 and K2P9 channels, respectively), were downregulated compared
to sham controls. Downregulation of these K2P channels following SNI implicates
these channels in neuropathic pain phenotypes. Interestingly, four weeks post SNI,
only mRNA for KCNK1 (which encodes for K2P1) remained downregulated hinting
at the importance of this channel in maintaining the neuropathic pain phenotype
(Pollema-Mays et al. 2013). Contrary to this study, another group found that while
still using the SNI model, intrathecal delivery of K2P18 in an adenovirus vector
reduced the response of rats to neuropathic pain (Zhou et al. 2013).

2.1 K2P Channel Pharmacology

Although multiple lines of evidence support a role for K2P channels in pain physiol-
ogy, pharmacological options that target these proteins remain elusive. Given that
present pharmacophores lack the ability to selectively inhibit K2P channels, devel-
opment of selective pharmacological agents is therefore imperative in order to study
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distinct characteristics of each channel. Intensive efforts to identify selective, potent,
and efficacious pharmacophores are in progress. For example, Bagriantsev and
colleagues utilized a 384 well plate yeast-based screening assay to identify K2P

blockers and activators in a high-throughput fashion. They began by screening a
library containing 106,281 small molecules for their ability to inhibit the growth of
yeast expressing K2P2. From this screen the library of small molecules was
narrowed to 320 compounds that were selected for their ability to inhibit 44–99%
of growth (Bagriantsev et al. 2013). A dose-response screen revealed 61 compounds
that successfully prevented the growth of yeast expressing K2P2. TEVC
experiments conducted in Xenopus oocytes revealed that 2 inhibitors ML45,
ML58 and 3 activators ML12, ML42, and ML67 altered K2P2 channel activity
(Bagriantsev et al. 2013). Bagriantsev et al. selected the activator ML67 which
caused an ~11 fold (EC50 213 � 1.2 μM) increase in K2P2 channel current for
further characterization. Through TEVC experiments it was found that the com-
pound activated closely related channels (K2P10, EC50 ~ 250 μM) but not the more
distantly related K2P3 channel. Substitution of a tricyclic ring to the ML67 com-
pound yielded the compound ML67–33 which was 5 times more potent than the
other ML-67 derivatives (Bagriantsev et al. 2013). Mutations at the P1 pore helix
(Gly1371) and M4 (Trp275) of K2P2 resulted in decreased channel activity. Con-
versely, triple glycine mutations at the C-terminal lead to channels that could be
activated by the compound. As a result, the authors postulated that ML-67-33
mediates its effects on K2P2 activity by modulating the C-type gate. Compounds
such as ML-67-33, a selective and potent activator of K2P2 channels, provide an
approach by which similar compounds could be developed and assayed. In this
chapter we provide a concise summary of the pharmacology and regulation of K2P

channels in that they may be explored further toward the development of novel
pharmacophores.

3 The THIK Channels: K2P12 and K2P13

The THIK subfamily is composed of THIK2 (K2P12, KCNK12) and THIK1
(K2P13, KCNK13) channels (Girard et al. 2001; Rajan et al. 2001). The mammalian
K2P12 and K2P13 channels share 64% homology as well as a similar pore region
structure (Renigunta et al. 2014). While K2P13 channels are expressed ubiquitously,
K2P12 channels are expressed in the lungs, spleen, and brain (Rajan et al. 2001).
When expressed heterologously in Xenopus oocytes, only K2P13 channel activity
can be measured while K2P12 channel activity is largely undetectable. K2P13
currents are activated by arachidonic acid and inhibited by halothane, quinidine,
and weakly by hypoxia (a ~ 13% reduction compared to control when Po2 is
decreased to 20 mmHg) (Table 2) (Campanucci et al. 2005; Enyedi and Czirjak
2010; Feliciangeli et al. 2015; Renigunta et al. 2014).

K2P12 channels are one of five channels: K2P1 (TWIK1), K2P6 (TWIK2), K2P7
(kcnk8), and K2P15 (TASK5) that are classified as electrically silent channels
because they do not pass measurable K+ current in either native cells or in
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heterologous expression systems (Renigunta et al. 2014). Two groups reported that
lack of detectable K2P12 channel activity was a result of the channel possibly being
sequestered in the endoplasmic reticulum (ER) and thus resulting in low expression
of the channel at the cellular membrane (Blin et al. 2014; Chatelain et al. 2013).
However, detection of K2P12 channel activity is possible under specific
circumstances. Thus, it was found that substitution of a proline residue within M2
helix or deletion of 18 to 19 AA found in the N-terminus (corresponding to an ER
retention/retrieval signaling motif) results in the appearance of macroscopic K2P12
activity that is comparable to K2P13 (* Chatelain et al. 2013; Renigunta et al. 2014).
Removal of the AAs from the N-terminus however prevented the channel from being
activated by arachidonic acid even though it could still be inhibited by both
halothane and quinidine (Renigunta et al. 2014). Of great physiological relevance,
heterodimerization of K2Ps 12 and 13 results in functional channels presumably
because K2P13 masks the ER retention motif on the K2P12 subunit (Bayliss et al.
2019).

4 The TRESK Subfamily: K2P18

The TRESK subfamily contains only the K2P18 channel, encoded by KCNK18
(Sano et al. 2003). Discovery of K2P18 in 2003 was made possible following the
completion of the human genome project (Sano et al. 2003). Sano and colleagues
utilized the human draft sequencing data to clone the K2P18 subunit from the
complementary DNA of the spinal cord. Subsequence expression analysis found
mRNA transcript for KCNK18 throughout the central and peripheral nervous
systems (Bayliss et al. 2019; Enyedi et al. 2012; Enyedi and Czirjak 2015; Gada
and Plant 2019; Tulleuda et al. 2011; Weir et al. 2019). In rodents, expression of
K2P18 has also been detected in the spleen, thymus, and testis (Enyedi and Czirjak
2010). K2P18 channels contribute to the leak or background K+ current which plays
an important role in the regulation of neuronal excitability (Hwang et al. 2015).
When studied using symmetrical K+ solutions, K2P18 channels displayed outward
rectification (Lengyel et al. 2018; Sano et al. 2003). Tulleuda and colleagues
reported a decrease in channel activity following neuronal injury, which alters
neuronal excitability and thus changes “pain pathways.”

Table 2 Modulators of THIK subfamily of K2P channelsa

Channel Activators Inhibitors

K2P13
(THIK1,
KCNK13)

Arachidonic acid
(Rajan et al. 2001)

Halothane (Rajan et al. 2001); Quinidine (Chatelain
et al. 2013; Rajan et al. 2001); Hypoxia (Campanucci
et al. 2005)

K2P12
(THIK2,
KCNK12)

No known
modulators

Halothane (Rajan et al. 2001)

aA regularly updated summary of the activators and inhibitors for all K2P channels is available at
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79

426 J. M. Kamuene et al.

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=79
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=79


K2P18 shares ~19% sequence homology with other members of the K2P family
(Lengyel et al. 2018; Sano et al. 2003). Despite this, human K2P18 is predicted to be
structurally like the rest of the K2P channels. It however differs in that its intracellu-
lar loop found between the second and third transmembrane domains is longer
(>120 amino acids (AA) compared to the 20–30 AA in the other K2P channels)
and its C-terminal is shorter (30 AA long compared to the�120 AA in the other K2P
channels) (Enyedi and Czirjak 2015; Sano et al. 2003). In contrast to most other K2P
channels, K2P18 has a short C-terminal tail. This structural difference may indicate
differential regulation of K2P18, including how regulatory events might allosteri-
cally influence the activity of the channel. (Braun et al. 2015).

The activity of K2P18 channels is enhanced by volatile (inhaled) anesthetics
(e.g., isoflurane, sevoflurane, halothane, desflurane) but is inhibited by local
anesthetics, including bupivacaine, tetracaine, ropivacaine, mepivacaine, lidocaine,
as well as unsaturated fatty acids (Table 3) (Czirjak et al. 2004; Liu et al. 2004). Like
most K2P channels, K2P18 channels are sensitive to differences in extracellular and
intracellular pH, however the degree of sensitivity differs in the human ortholog
compared to rodent orthologs (Lotshaw 2007). In contrast to other K2P channels,
K2P18 is modulated by the cytosolic concentration of Ca2+ ions. Thus, K2P18
channels are regulated by activation of Gαq-coupled receptors, which lead to down-
stream release of Ca2+ from intracellular stores (Table 3). However, a series of
elegant studies by Czirják et al. showed that the direct application of Ca2+ ions to the
inside of the membrane was insufficient to stimulate K2P18 in off-cell patches,
suggesting that additional cytoplasmic factors are required to activate the channels
(Czirjak et al. 2004). Subsequent studies found that the Ca2+-dependent activation of
K2P18 is mediated by the calmodulin-dependent protein phosphatase, calcineurin,
which interacts with the C-terminal tail of the channel (Czirjak et al. 2004). This
regulatory mechanism that activates K2P18 channels can be inhibited by pharmaco-
logical inhibitors of calcineurin such as cyclosporine. In addition, mutant channels
that lack the calcineurin binding site are still subject to regulation by a novel-type of
protein kinase C (Pergel et al. 2019).

5 The TALK Subfamily: K2P5, K2P16, and K2P17

The TALK family includes the K2P5, (TASK2, KCNK5), K2P16 (TALK1,
KCNK16), and K2P17 (TALK2, TASK4, KCNK17) channels (Decher et al. 2001;
Girard et al. 2001; Reyes et al. 1998). K2P16 and K2P17 channels share 37%
homology (Lotshaw 2007). When K2P5 was first cloned from human kidney it
was assigned to the TASK subfamily. However, it was later reassigned to the TALK
subfamily because it had more sequence similarity (~30%) to K2P16 and K2P17
and, in addition, its pH sensitivity was in the alkaline range, similar to that of K2P16
and K2P17 (Enyedi and Czirjak 2010; Lotshaw 2007; Reyes et al. 1998). In humans,
K2P5 expression has been detected in the kidneys, pancreas, and liver. Transcripts
for KCNK5 were also detected in DRG and spinal cord (Medhurst et al. 2001)
(Enyedi and Czirjak 2010). In humans, mRNA for KCNK17 has been found in the
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liver, heart, pancreas, and lungs while K2P16 channels appear to be expressed
exclusively in the pancreas (Duprat et al. 2005; Girard et al. 2001; Lotshaw 2007).

All TALK subfamily channels are activated by extracellular and intracellular
alkalinization and inhibited by extracellular acidification (Cid et al. 2013) (Table 4).
The pH-sensing of K2P5 requires Arg244; substitution of this amino acid with
neutral residues abolishes the response of the channel to changes in alkalization of
the extracellular pH (pHo) (Niemeyer et al. 2007). Protonation of Arg244 residue
lowers K+ occupancy of the selectivity filter resulting in pore-blockade (Cid et al.
2013).

TALK channels are also sensitive to changes in the intracellular pH (pHi)
(Niemeyer et al. 2010). It is postulated that lys245, located on the C-terminus of
K2P5, acts as a sensor for pHi (Cid et al. 2013). Given the findings, it may be that the
regulation of K2P5 channel activity by pHo and pHi occurs via effects on indepen-
dent gates (Cid et al. 2013; Niemeyer et al. 2010); however, the mechanistic details
that subserve this idea are yet to be elucidated.

K2P5 activity can be inhibited by Gβγ subunits of the heterotrimeric G protein
(Anazco et al. 2013) (Table 4). Añazco and colleagues suggested that Gβγ modula-
tion plays a role in the channel’s ability to react to changes in cell volume (this is a
result of neutralization of a lysine residue in the C-terminus that is important for
inhibition by Gβγ). Although modulation of K2P5 by Gβγ is possible, it remains an
open question in the field. Evidence to support Gβγ-modulation of K2P channel
activity can be found in the K2P2 channels (Woo et al. 2012). Finally, Duprat and
colleagues demonstrated that both K2P16 and K2P17 channels can be activated by
nitric oxide (NO) and reactive oxygen species (ROS) (Table 4) (Duprat et al. 2005).

6 The TWIK Subfamily: K2P1, K2P6, and K2P7

Following its initial description in 1996, K2P1 (TWIK1, KCNK1) was observed to
have low channel activity in heterologous expression systems (Goldstein et al. 1998;
Lesage et al. 1996b; Pountney et al. 1999). However, since mRNA transcripts for
KCNK1, the gene that encodes for the K2P1 subunit, are found in the kidney,
placenta, lungs, heart, and the brain (Gaborit et al. 2007; Lesage et al. 1996b;
Talley et al. 2001), several groups pursued potential cellular and biophysical
mechanisms that would limit the activity of K2P1 channels. Data to support three

Table 3 Modulators of the TRESK subfamily of K2P channelsa

Channel Activators Inhibitors

K2P18 (TRESK,
KCNK18)

Volatile anesthetics (Liu
et al. 2004)
Calcium (Czirjak et al.
2004)

Local anesthetics (Czirjak et al. 2004;
Liu et al. 2004)
Unsaturated fatty acids (Sano et al. 2003)

Gαq (Czirjak et al. 2004) Cyclosporin (Czirjak et al. 2004)
aA regularly updated summary of the activators and inhibitors for all K2P channels is available at
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79
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hypotheses have been presented: SUMOylation of K2P1 channels at the plasma
membrane; rapid endocytosis of K2P1 channels from the plasma membrane, and
hydrophobic dewetting of the channel pore.

SUMOylation is an enzyme-mediated post-translational modification pathway
that links a ~100 amino acid Small Ubiquitin-like MOdifier (SUMO) protein to the
epsilon amine-group of lysine residues in specific motifs (Hay 2005). Although
SUMOylation was not thought to occur at the plasma membrane, the process was
shown to inhibit the activity of K2P1 channels because K+ selective currents were
observed when SUMO was removed from the channel by a SUMO-specific
proteases (SENPs), or when the SUMOylation site (K2P1-Lys274) was mutated to
prevent SUMO-binding (Plant et al. 2010; Rajan et al. 2005). SUMOylation is now
known to regulate the activity of an array of ion channels in multiple tissues. The
process is rapid, reversible, and dynamic and is often challenging to capture bio-
chemically. In keeping with observations of numerous soluble SUMO substrates,
such as transcriptional regulators, SUMOylation of K2P1 channels is labile and is
often not observed when cells and tissues are studied after detergent purification
(Feliciangeli et al. 2007; Hay 2005). Therefore, SUMOylation is typically studied in
live cells using real-time electrophysiology, spectroscopy, and microscopy (Plant
et al. 2010).

Studies in MDCK and HEK293 cells found that the low activity of K2P1 could be
attributed to rapid, endocytic recycling of the channel from the plasma membrane
(Feliciangeli et al. 2010, 2015). The process is dynamin-dependent based on analysis
of a di-isoleucine motif: mutation of Ile293 and Ile294) resulted in measurable
currents upon heterologous expression. Further, K2P1 was found to associate with
ARF6, a small G protein that modulates endocytosis at the apical surface of epithelial
cell (Decressac et al. 2004).

Following the resolution of the crystal structure of human K2P1, molecular
dynamic simulations (MDS) of ion permeation identified a “hydrophobic cuff” in
the inner vestibule of the channel, below the selectivity filter, comprised of four
residues: Leu146 on M2 and Leu261 on M4, from each subunit (Aryal et al. 2014;
Miller and Long 2012). MDS revealed that stochastic motion of the cuff restricted
the access of water molecules to the internal entrance of the pore, creating an

Table 4 Modulators of TALK subfamily of K2P channelsa

Channel Activators Inhibitors

K2P5 (TASK2,
KCNK5)

Alkaline pHo and pHi (Cid et al. 2013; Niemeyer et al.
2007)

Gβγ (Anazco
et al. 2013)

K2P16
(TALK1,
KCNK16)

Alkaline pHo and pHi (Cid et al. 2013; Niemeyer et al.
2007); Nitric oxide (NO) and Reactive oxygen species
(ROS) (Duprat et al. 2005)

No known
modulators

K2P17
(TALK2,
KCNK17)

No known
modulators

aA regularly updated summary of the activators and inhibitors for all K2P channels is available at
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79
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energetic barrier to the permeation of K+. Based on this model, substitution of
Leu146 with hydrophilic residues resulted in a K2P1 channel variant that passed
robust currents in Xenopus oocytes (Aryal et al. 2014; Chatelain et al. 2012).

Determining how SUMOylation, the hydrophobic gating barrier, and rapid endo-
cytosis contribute individually or together to the regulation of K2P1 in native cells
remains an area of active study that is spurred on by the observation that K2P1
knockout mice exhibit altered physiology in several tissues, including pancreatic β
cells and the kidney (Chatelain et al. 2012; Nie et al. 2005). Similarly, K2P1 has
been shown to play a key physiological and developmental role in the atria of
transgenic zebrafish (Christensen et al. 2016). K2P1 has also been shown to mediate
arrhythmogenic depolarization of cardiac myocytes exposed to low concentrations
of K+ associated with hypokalemia (Gotter et al. 2011). A part of the enigmatic
character of K2P1 can be attributed to heterodimerization with K2P3 and K2P9
subunits in rat neurons and with K2P2 in rat astrocytes (Hwang et al. 2014; Plant
et al. 2012). The resultant heteromeric channels have distinct properties. For exam-
ple, the activity of K2P1-K2P3 and K2P1-K2P9 channels is increased by volatile,
halogenated ester-based anesthetics and is subject to regulation by the SUMO
pathway (Plant et al. 2012).

The TWIK subfamily is also composed of K2P6 (TWIK2, KCNK6) and the K2P7
(Kcnk8, KCNK7) channels. K2P6 was described by two independent groups
(Chavez et al. 1999; Pountney et al. 1999) and shares 34% sequence identity with
K2P1. In contrast, K2P7 is more closely related to K2P6 (94% homology) (Lesage
and Lazdunski 2000; Lotshaw 2007). K2P6 and K2P7 are expressed in peripheral
tissues and peripheral blood leukocytes, respectively (Lesage and Lazdunski 2000;
Medhurst et al. 2001).

In native cells all TWIK channels have low channel activity and as a result they
are sometimes considered to be electrically silent (Bockenhauer et al. 2000;
Renigunta et al. 2014), limiting functional characterization of the channels as well
as the development of selective pharmacological tools (Lotshaw 2007). When
active, K2P1 and K2P6 currents are inhibited by barium, quinine, or quinidine
(Table 5) (Lesage et al. 1996b). Separately, K2P1 channels can also be inhibited
by intracellular (Lesage et al. 1996b) as well as extracellular acidification (Plant et al.
2010). K2P1 is also regulated by PKC activation by phorbol esters such as PMA,
which enhances channel activity (Table 5) (Lesage et al. 1996b).

7 The TREK Subfamily: K2P2, K2P10, and K2P4

The TREK subfamily is composed of K2P2 (TREK1, KCNK2), K2P10 (TREK2,
KCNK10), and K2P4 (TWIK-related arachidonic-acid-stimulated K+ channel or
TRAAK, K2P4, KCNK4) channels (Bang et al. 2000; Fink et al. 1998). In humans
K2P2 and K2P10 tissue expression overlaps in the CNS and periphery tissues while
K2P4 expression is most notable in the neurons (Lesage et al. 2000; Meadows et al.
2000; Medhurst et al. 2001). K2P10 channel shares 65% sequence similarity to
K2P2 and 45% similarity to K2P4 (Bang et al. 2000; Ozaita and Vega-Saenz de
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Miera 2002). The K2P2 and K2P10 channels exhibit similar outward rectification
(Lesage et al. 2000; Maingret et al. 1999; Medhurst et al. 2001). The differences
between K2P2 and K2P10 currents can be seen when comparing unitary currents of
the two channels under high extracellular concentration of K+. Under this condition
K2P10 exhibits inward rectification (Lesage et al. 2000; Maingret et al. 1999;
Medhurst et al. 2001) while both K2P2 and K2P4 exhibit Goldman-Hodgkin-Katz
(GHK) rectification (Fink et al. 1998).

The TREK subfamily of K2P channels are noted for their sensitivity to mechani-
cal stimuli. These mechanosensitive channels are modulated by numerous physico-
chemical stimuli including pH, temperature, mechanical stress (stretch, shear, and
swelling), polyunsaturated fatty acids (PUFAs), anesthetics (volatile), and protein
phosphorylation (Table 6) (Lotshaw 2007; Maingret et al. 1999). K2P2 channels are
also activated by an acidic pHi (Maingret et al. 2000), likely due to protonation of a
glutamic acid residue at position 306 (Glu306). Protonation of this residue is an
important regulator of the response of K2P2 channels to mechanical stimulation
(Honore et al. 2002).

TREK channels are also activated by heat (Kang et al. 2005; Maingret et al.
2000). Thus, at 37 �C K2P2 channels exhibit outward rectification (Kang et al. 2005;
Maingret et al. 2000) that is lost upon cooling (Kang et al. 2005; Maingret et al.
2000). K2P2 and K2P10 are also activated by halogenated volatile anesthetics such
as chloroform, ether, halothane, isoflurane (Table 6) (Lesage et al. 2000; Maingret
et al. 2000). Halothane is a more effective activator of K2P10 while chloroform is a
more efficacious activator of K2P2 (Lesage et al. 2000). All the TREK subfamily
channels are activated by riluzole, a neuroprotective drug that transiently activates
K2P2 and K2P10 but permanently activates K2P4 (Lesage et al. 2000). The mecha-
nism by which riluzole exerts its effect is believed to be a result of PKA inhibition as
a result of cAMP accumulation (Lesage et al. 2000). In 2001, Bockenhauer and
colleagues demonstrated that PKA phosphorylation of serine-348 (Ser348) results in
an altered voltage-dependence of K2P2 channels, effectively reducing the open
probability and thereby the channel activity (Bockenhauer et al. 2001).

Table 5 Modulators of TWIK subfamily of K2P channelsa

Channel Activators Inhibitors

K2P1
(TWIK1,
KCNK1)

pHo (Rajan et al. 2005)
(deSUMOylated channel); PKC
(Lesage et al. 1996b)

Barium (Lesage et al. 1996b); Quinine or
Quinidine (Lesage et al. 1996b); Acid
pHi (Lesage et al. 1996b)

K2P6
(TWIK2,
KCNK6)

No known modulators Barium (Lesage et al. 1996b); Quinidine
(Lesage et al. 1996b)

K2P7
(Kcnk8/
KCNK7)

No known modulators No known modulators

aA regularly updated summary of the activators and inhibitors for all K2P channels is available at
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79
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Inhibition of K2P2 and K2P10 but not K2P4 was demonstrated to be mediated by
activators of protein kinases (Table 6). Lesage and colleagues found that
co-expression of K2P10 and Gαs-coupled receptor 5HT4 resulted in decreased
channel activity when the receptors were activated by 5-hydroxytryptamine. In
contrast, co-expression K2P10 and Gαi-coupled mGluR2 receptors increased chan-
nel activity upon stimulation by glutamate (Lesage et al. 2000). Lastly,
co-expression of K2P10 and the Gαq-coupled receptor mGluR1 resulted in inhibi-
tion of channel activity upon stimulation of mGluR1 by glutamate (Lesage et al.
2000). Signaling through Gαq results in activation of phosholipase C (PLC) which
results in the hydrolysis of PIP2 into diacylglcerol (DAG) and inositol 1,4,5-triphos-
phate (IP3) production. Lesage et al. postulated that inhibition of the channel may be
a result of activation of protein kinase C (PKC) by DAG (Fig. 3).

8 The TASK Subfamily: K2P3, K2P9, and K2P15

The TASK subfamily is composed of K2P3 (TASK1, KCNK3), K2P9, (TASK3,
KCNK9), and K2P15 (TASK5, KCNK9) channels (Duprat et al. 1997; Kim and
Gnatenco 2001; Kim et al. 2000). The K2P3 channel was first isolated based on its
sequence homology to K2P1 and K2P2 (Duprat et al. 1997). In general, the TASK
channels share low sequence similarity with other K2P channels (<30%) however,
amongst each other TASK channels share relatively high sequence similarity
(>50%) (Ashmole et al. 2001; Duprat et al. 1997, 2007; Kim et al. 2000). TASK
channels are expressed in most tissues with notable expression in the placenta and
pancreas (Ashmole et al. 2001; Duprat et al. 1997; Kim et al. 2000; Rajan et al.
2000). While K2P3 and K2P9 can form functional homodimers or heterodimers,

Table 6 Modulators of TREK subfamily of K2P channelsa

Channel Activators Inhibitors

K2P2
(TREK1,
KCNK2)

NO (Koh
et al.
2001)

Acid pHi (Maingret
et al. 1999), Volatile
anesthetics
(Chloroform, ether,
halothane, isoflurane)
(Lesage et al. 2000;
Maingret et al. 2000),
Mechanical stress
(Lesage et al. 2000;
Medhurst et al. 2001),

PUFA (Lesage et al.
2000; Meadows et al.
2000; Medhurst et al.
2001), Riluzole
(Lesage and
Lazdunski 2000)
Heat (Kang et al.
2005; Maingret et al.
2000),

Gαs and Gq
(Lesage et al.
2000),
Quinidine
(Lesage et al.
2000)

K2P10
(TREK2,
KCNK10)

Gαi
(Lesage
et al.
2000)

K2P4
(TRAAK,
KCNK4)

Alkaline
pHi (Kim
and
Gnatenco
2001)

No known modulators No known
modulators

aA regularly updated summary of the activators and inhibitors for all K2P channels is available at
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79
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K2P15 channels are electrically silent when expressed alone or with other TASK
channels (Ashmole et al. 2001; Bayliss and Barrett 2008; Czirják and Enyedi 2002;
Duprat et al. 2007). Under physiological conditions activation of TASK1 and
TASK3 channels occurs instantaneously and the channels exhibit outward rectifica-
tion (Duprat et al. 2007; Kim et al. 2000).

The sine qua non of TASK channels is inhibition of the channel activity by
extracellular acidification (Table 7) (Czirják and Enyedi 2002; Duprat et al. 1997;
Kim et al. 2000; Rajan et al. 2000). In mutational studies of Guinea pig K2P9 (62.3%
and 88.3% homology to human K2P3 and K2P9, respectively) Rajan and colleagues
found that the histidine at position 98 (His98) conferred pH sensitivity to the channel
(Lopes et al. 2000, 2001; Rajan et al. 2000). Similarly, Lopes and colleagues found
that protonation of the equivalent residue in K2P3 conferred pH-sensitivity to that
channel (Lopes et al. 2000, 2001). Of note, K2P3 and K2P9 heterodimers are also
inhibited by by extracellular acidification (Czirják and Enyedi 2002).

Two groups have found that K2P9 homodimers are inhibited by Ruthenium Red
(RR) while micromolar concentrations of RR were also unable to inhibit K2P3
homodimers in both Xenopus oocytes and COS-7 cells (Table 7). Interestingly,
K2P3-K2P9 heterodimers are minimally inhibited by RR (Czirják and Enyedi
2002; Kang et al. 2004). RR appears to inhibit K2P9 homodimers by binding to
Glutamate 70 (Glu70) on both subunits (Czirjak and Enyedi 2003). With K2P3-
K2P9 heterodimers there is only one subunit with Glu70 for RR to bind which is
likely insufficient to cause inhibition (Czirjak and Enyedi 2003).

K2P3 and K2P9 are both inhibited by Gαq (Chen et al. 2006) although whether
this result is secondary to hydrolysis of PIP2 remains an area of active debate. Both
K2P3 and K2P9 are activated by volatile anesthetics (halothane and isoflurane)
(Kang et al. 2004; Patel et al. 1999).

Fig. 3 (continued) a zoomed-in view of how the molecule interacts with the channel protein.Right-
hand column: ML402 (top) or ML335 (bottom) interacting with K2P2 channel (PDB ID: 6CQ9,
6CQ8) (Lolicato et al. 2017). Left-hand column: Brominated fluoxetine derivative or
Norfluoxetine binding to K2P10 (PDB ID: 4XDL, 4XDK (Dong et al. 2015)

Table 7 Modulators of TASK subfamily of K2P channelsa

Channel Activators Inhibitors

K2P3
(TASK1,
KCNK3)

Alkaline pHo (Duprat et al. 1997; Kang et al.
2004), Halothane and Isoflurane (Patel et al.
1999)

Acidic pHo (Duprat et al. 1997;
Kim et al. 2000; Rajan et al.
2000), Gαq (Chen et al. 2006)
K2P9: Ruthenium Red (Czirják
and Enyedi 2002)

K2P9
(TASK3,
KCNK9)

K2P15
(TASK5)

No known modulators No known modulators

aA regularly updated summary of the activators and inhibitors for all K2P channels is available at
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId¼79
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9 TOK Channels

K+ channel subunits with two pore domains are not limited to expression in higher
order eukaryotes but have also been identified in fungi. The transient outward
current (TOK) channels were first cloned and described in Saccharomyces
cerevisiae following a genome search that identified a P domain peptide sequence
homologous to those of other K+ channels (Ketchum et al. 1995). In contrast to the
K2P subunits discussed above, TOK channels are dimers of subunits with eight
transmembrane domains with intracellular amino- and carboxy-terminal tails
(M1-M8), with two reentrant P-loops located between transmembrane domains
composed with two P-loops regions located between M5 and M6 and M7 and M8
(Fig. 3) (Ketchum et al. 1995; Lesage et al. 1996a; Zhou et al. 1995). Expression
of the S. cerevisiae TOK (ScTOK) channels in Xenopus oocytes revealed K+-
selective channels with outward rectification that were activated by depolarizing
voltages (Ketchum et al. 1995; Lesage et al. 1996a; Zhou et al. 1995). Activation
of ScTOK channels is coupled to the K+ equilibrium potential (EK) in that changes
in the external concentration of K+ results in loss of outward rectification (Bertl
et al. 1998; Ketchum et al. 1995; Lesage et al. 1996a; Zhou et al. 1995). ScTOK
currents are inhibited by barium ions, quinine, or tetraethylammonium (TEA)
(Ketchum et al. 1995; Lesage et al. 1996a; Zhou et al. 1995).

TOK channels have now been identified in a range of fungi, including strains that
are pathogenic to humans. A comparative study of four pathogenic fungi, Aspergil-
lus fumigatus (AfTOK1), Candida albicans (CaTOK), and two strains of Crypto-
coccus neoformans (CnTOK and H99TOK), by Lewis and colleagues revealed that
the TOK subfamily of K+ channels share similar biophysical characteristics as
ScTOK (Lewis et al. 2020). Their unique distribution in only fungi suggests that
these TOK channels could be important therapeutic targets for anti-fungal
pharmaceutics. This intriguing proposal is supported by data showing that extracel-
lular K1 killer toxin kills Saccharomyces yeast by increasing the open probability of
ScTOK and perturbing K+ homeostasis (Ahmed et al. 1999). In contrast, infection
with killer toxin virus protects against the effects of the external toxin, allowing
virus-positive cells to propagate (Sesti et al. 2001). Thus, selective, small molecule
activators of TOK channels are potential anti-fungal agents.

10 Conclusion and Future Perspectives

The K+ channels comprise a large, diverse, and ubiquitous superfamily of membrane
proteins that regulate various biological processes in both excitable and
non-excitable cells (Kuang et al. 2015; Tian et al. 2014). The two-pore domain K+

channels constitute a subfamily of K+ channels that are categorized based on
structural and sequence similarity. Since the discovery of these channels more than
20 years ago much has been revealed about these channel’s physiology and pharma-
cology. The expression of K2P channels is widespread across various tissues and
organ systems. This broad distribution and expression highlight their importance in
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the biology of many tissues and suggest that K2P channels will continue to emerge as
important potential druggable targets for the treatment of diverse diseases. Given the
fundamental role that K2P channels play in physiology, it is not surprising that their
activity is tightly regulated and modulated by diverse physicochemical and mechan-
ical stimuli including temperature, mechanical stress, pHi, pHo, second-messenger
pathways, PUFAs, and phosphoinositides.

Despite the growing body of work which has implicated K2P channels in various
cardiac and neuronal diseases, there is much that is yet to be learned about K2P

physiology and its role in pathophysiology. A present obstacle in attaining this
knowledge is the lack of channel selective pharmacophores although this landscape
is starting to evolve, particularly for the TREK subfamily of K2P channels. Follow-
ing the elucidation of several K2P structures we now appreciate that a part of the
delay in identifying selective pharmacophores comes from the cap-domain of the
K2P channels. This structural feature, seemingly unique amongst K+ channels,
protects the outer mouth of the channel pore from infiltration by classical K+ channel
blockers, particularly protein toxins. However, the same structural revolution that
identified the problems has also helped to initiate solutions. Using computational
approaches to understand the dynamics of K2P channels, researchers have started to
identify druggable pockets and binding sites within the channel corpus. Of note,
Lolicato and colleagues identified a cryptic binding pocket behind the pore of the
K2P2 channel that can co-ordinate the newly identified channel activators ML335
and ML402 (Lolicato et al. 2017). Bagriantsev and colleagues demonstrated that
selective and potent compounds of K2P channels can also be identified using high-
throughput screens (Bagriantsev et al. 2013). These powerful approaches promise to
break the gridlock in the development of selective new K2P channel modulators in
the future.
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