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Abstract

The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-
forming subunit of the potassium channel responsible for a fast component of
the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important
determinant of cardiac action potential (AP) repolarization and effectively
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controls the duration of the QT interval in humans. Dysfunction of hERG channel
can cause severe ventricular arrhythmias and thus modulators of the channel,
including hERG inhibitors and activators, continue to attract intense pharmaco-
logical interest. Certain inhibitors of hERG channel prolong the action potential
duration (APD) and effective refractory period (ERP) to suppress premature
ventricular contraction and are used as class III antiarrhythmic agents. However,
a reduction of the hERG/IKr current has been recognized as a predominant
mechanism responsible for the drug-induced delayed repolarization known as
acquired long QT syndromes (LQTS), which is linked to an increased risk for
“torsades de pointes” (TdP) ventricular arrhythmias and sudden cardiac death.
Many drugs of different classes and structures have been identified to carry TdP
risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in
the drug development process according to the regulatory agencies. In contrast,
several hERG channel activators have been shown to enhance IKr and shorten the
APD and thus might have potential antiarrhythmic effects against pathological
LQTS. However, these activators may also be proarrhythmic due to excessive
shortening of APD and the ERP.
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1 Introduction

Cardiac arrhythmias are one of the major causes of cardiovascular disease-related
deaths worldwide. Ion channels are pore-forming proteins that provide pathways for
the transmembrane movement of ions and thus control the cardiac action potential
(AP) generation and propagation, resulting in the release of Ca2+ from intracellular
stores and triggering cardiac muscle contraction. Abnormalities in cardiac ion
channel function may lead to arrhythmias and sudden cardiac death (Keating and
Sanguinetti 2001). The human ether-á-go-go related gene (hERG, KCNH2) encodes
the pore-forming subunit (Kv11.1) of the channel that in cardiac myocytes conducts
the rapidly activating delayed rectifier potassium current (IKr). Outward IKr is a
critical current in the phase 3 AP repolarization in the human ventricle and effec-
tively controls the QT interval of the electrocardiogram (Sanguinetti et al. 1995).
Inhibition of IKr results in the prolongation of repolarization, which has been
described as an antiarrhythmic mechanism of Class III antiarrhythmic agents
(Singh and Vaughan Williams 1970). However, these drugs have also been found
to be associated with an increased risk of arrhythmias. In addition to antiarrhythmic
agents, a wide variety of different classes of non-antiarrhythmic pharmaceuticals
have the potential to inhibit hERG/IKr current and, thus, can pose a threat of the drug-
induced form of acquired long QT syndromes (LQTS) associated with an increased
risk of an unusual life-threatening form of arrhythmia known as torsades de pointes
(TdP) (Sanguinetti and Tristani-Firouzi 2006; Vandenberg et al. 2012). Conse-
quently, assessing potential IKr/hERG inhibition of drug candidates has become a
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major requirement in new drug development process (Hancox et al. 2008;
Sanguinetti and Mitcheson 2005). Considerable effort has been made to understand
the molecular basis underlying the susceptibility of hERG channel to pharmacologi-
cal inhibition. A recent cryoelectron microscopy (cryo-EM) structure of hERG
(Wang and MacKinnon 2017) has provided opportunities to better understand
hERG channel gating and pharmacology (Butler et al. 2019). This review briefly
describes hERG channel as a pharmacological and safety target for antiarrhythmic/
proarrhythmic actions of drugs.

2 Structure of hERG Channel

Like other Kv channels, hERG channel is formed by co-assembly of four α subunits.
Each α subunit has six transmembrane spanning α-helical segments (S1–S6) along
with the intracellularly located N- and C-terminus. The voltage sensor domain
(VSD) that senses transmembrane potential is formed by S1–S4 helices (Piper
et al. 2003; Subbiah et al. 2004). S4 helix contains positively charged amino acids
mainly separated by hydrophobic residues. S5–S6 segments along with the
intervening pore loop contribute to the pore domains. S5 is connected to S6 by an
extracellular helix, followed by the pore helix (PH) and the K+ selective filter
(SF) (Jiang et al. 2005). The SF of the hERG channel adopts a unique signature
sequence of Ser-Val-Gly-Phe-Gly (Doyle et al. 1998). It has been supposed that
below the SF the pore widens to form a water-filled central cavity that is lined by
residues from the S6 helices (Perry et al. 2010). However, recently solved cryo-EM
structure of the hERG channel in the open state reveals that four deep cylindrical
hydrophobic pockets below the SF extend out from the central pore cavity (Fig. 1a)
(Wang and MacKinnon 2017). These pockets exclusively exist in hERG channel
since the S6 inner helix of hERG is displaced to create a separation between the PH
and S6 helix (Wang and MacKinnon 2017).

hERG channel has a unique kinetic behavior that is characterized by slow
deactivation but very fast, voltage-dependent inactivation (Vandenberg et al.
2004). This unusual combination of kinetics gives rise to an apparent inward
rectification that is crucial for maintaining a prolonged plateau phase of the cardiac
AP. The channel opens following membrane depolarization as a result of its VSD’s
response to the voltage; however, the channel almost immediately inactivates,
limiting K+ passage until the start of the repolarization phase of the AP (due to the
rapid recovery from inactivation). In addition, hERG deactivates very slowly so that
the outward K+ current is passed even as the membrane potential returns toward the
resting potential (Fig. 1b, c). Therefore, the unique kinetics makes the hERG current
ideally suited for determining the duration of the plateau phase of the AP (Smith
et al. 1996; Sanguinetti and Tristani-Firouzi 2006). Maintenance of plateau is crucial
for ensuring sufficient time for calcium release from the sarcoplasmic reticulum to
enable cardiac contraction. The gating kinetics of hERG also enables the channel to
generate rapid transient currents late in AP repolarization/early diastole, to protect
against arrhythmogenic premature depolarizations.
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3 Mechanisms of Arrhythmias

Cardiac arrhythmias are commonly believed to arise primarily from abnormal
automaticity, reentrant excitation, or the combination of both. Abnormal automatic-
ity may occur as a result of enhanced automaticity or triggered activity (Wit 1990).
The triggered activity and reentrant excitation are highly associated with hERG
dysfunction-induced tachycardial ventricular arrhythmias. It is generally accepted
that tachyarrhythmic events are obligated depending on two phenomena: a triggering
event for initiation and a reentry substrate for sustainability (Schmitt et al. 2014).
Triggered activity results from the premature activation of cardiac tissues by
afterdepolarizations, which are oscillations in membrane potential that follow the
primary depolarization phase (0) of an AP. If afterdepolarizations develop before full
repolarization, corresponding to phase 2 or phase 3 of the cardiac AP, they are
classified as early afterdepolarizations (EADs) and those originating from phase 4 of
AP are classified as delayed afterdepolarizations (DADs) (Fig. 2a). EADs are usually
but not exclusively associated with prolonged action potential durations (APD). It is
generally considered that EADs occur primarily due to the reactivation of the
voltage-gated CaV1.2 channels (L-type Ca2+ channels) (January and Riddle 1989).
If the change in membrane potential brought about by the EAD is large enough to

Fig. 1 The structure and gating of hERG channel. (a) The structure of pore cavity; adopted from
(Wang and MacKinnon 2017) with permission. The central cavity has an atypically small central
volume surrounded by four deep hydrophobic pockets. Internal molecular surface around the
central cavity is represented as translucent surface colored by electrostatic potential according to
the scale shown. Residues related to drug binding are shown as sticks on the otherwise ribbon
representation of the channel. (b) hERG channel exists in closed, open, or inactivated states;
transitions between these states are voltage dependent. (c) hERG current response (bottom) to the
AP voltage waveform (top). hERG channel opens following membrane depolarization and then
rapidly inactivates. During repolarization of the AP waveform, the current increases due to the
recovery from inactivation and then slowly decreases again as the electrochemical gradient for K+

efflux decreases
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reach the threshold potential for initiation of APs, it will cause triggered activity
(Fig. 2a). EADs and their resulting triggered activity are thought to underlie the
arrhythmogenesis observed in LQTS (Maruyama et al. 2011). DADs usually occur
under conditions of intracellular calcium overload and involve spontaneous release
of calcium from the sarcoplasmic reticulum.

In order for sustained arrhythmias to occur, the triggering events must subse-
quently initiate a self-sustained episode of APD propagation, which is known as
reentry-based arrhythmia (where reentry denotes an ongoing loop of unintended
electrical signaling). A normally-propagating AP usually encounters neighboring
tissue with equal conducting velocity and completely extinguish (Fig. 2b left). If an
impulse is blocked in a specific area of the tissue but not elsewhere and the
retrograde conduction is still possible, a unidirectional blocking is said to have
occurred. If a retrogradely conducting impulse encounters excitable tissue, a reentry

Fig. 2 The mechanisms of arrhythmias. (a) The afterdepolarizations developing before full
repolarization, corresponding to phase 2 or phase 3 of the cardiac AP are classified as EADs
(left,������), and those originating from phase 4 of AP are classified as DADs (right,������). When
afterdepolarizations reach the threshold potential, a new AP is generated, leading to the triggered
activity (-----). (b) Propagation of normal AP (left) and conditions for a reentrant excitation (right).
Under normal conditions, the electrical signals travel down each branch of Purkinje fiber with equal
velocity, and the signals will not progress if the two branches are connected. However, if one branch
exhibits a unidirectional block, the electrical signal will travel down only one branch and may back-
propagate until the point of blocking. If a retrogradely progressing impulse encounters excitable
tissue, a reentry is set up
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is being set up (Fig. 2b right). Such electrophysiological blocks may result from an
anatomical or functional obstacle under pathological conditions such as myocardial
infarction or inflammation or altered electrophysiologic properties due to electrolyte
imbalance or ischemia. Another important factor forming arrhythmic substrates is
electrophysiological heterogeneity of the myocardium. The APD diverges in differ-
ent parts of the myocardium, and there is a significant heterogeneity among cardiac
cells along several axes including the transmural, left-right, and apicobasal axes
(Boukens et al. 2009). The dispersion is increased in the conditions with inherited
ion channelopathies and after unintended inhibition of IKr by cardiac and
non-cardiac drugs (Antzelevitch 2007, 2008). This amplification of spatial disper-
sion of repolarization can form substrates for reentry loops and thus contribute to
life-threatening arrhythmias (Antzelevitch 2007; Keating and Sanguinetti 2001).

4 hERG Inhibitors

4.1 hERG Inhibitors as Antiarrhythmic Agents

Class III antiarrhythmic agents include nonselective K+ channel blockers
ambasilide, amiodarone, and dronedarone and selective IKr blockers dofetilide,
ibutilide, and sotalol (Lei et al. 2018). The supposed mechanism of antiarrhythmic
effects of these compounds is the inhibition of reentry-based arrhythmias through
prolongation of the effective refractory period (ERP). However, inhibition of IKr by
these compounds has also been found to be associated with an increased risk of
arrhythmias and sudden cardiac death (Vandenberg et al. 2001). The proarrhythmic
effect of class III compounds results from excessive prolongation of APD, especially
an extended and slowly decaying phase 3-repolarization (triangulation), which could
promote reactivation of L-type Ca2+ channels and, thus, lead to EADs. According to
the aforementioned arrhythmogenic mechanisms, increased dispersion of
repolarizations form reentry substrates can, in turn, result in TdP, which may
ultimately degenerate to ventricular fibrillation.

4.2 hERG Inhibition by Structurally Diverse Drugs

In 1922, syncope and sudden death were firstly reported in patients treated with the
quinidine (Levy 1922). These phenomena were further revealed in 1964, when
Selzer and Wray (1964) observed TdP on electrocardiograms from patients with
quinidine-related syncope, which was resulted from prolongation of cardiac repolar-
ization due to hERG channel blockage. Since then, more and more drugs with
miscellaneous structures are discovered to block hERG channel and, thus, carry
the TdP risk. Antiarrhythmic, antihistamine, antimicrobial, antipsychotic, and anti-
depressant drugs are important classes associated with proarrhythmic risk (Rampe
and Brown 2013). Hitherto, several drugs have been withdrawn from the market or
given strict limitation for use because of TdP risk, including terfenadine, lidoflazine,
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astemizole, sertindole, levomethadyl, droperidol, cisapride, and grepafloxacin
(Table 1). A database is available for drugs with the risk of TdP, which is categorized
into three classes: drugs with known risk of TdP, possible risk of TdP, and condi-
tional risk of TdP. Drugs with known risk of TdP related to hERG channel inhibition
are listed in Table 1. Updated information about drug-associated TdP risk can be
found at www.crediblemeds.org.

4.3 Molecular Basis Underlying hERG Channel Inhibition

The question of why the hERG channel is so susceptible to “nonspecific” block by
such a wide variety of medications has attracted intense interest. Much effort has
been made to explore the structural basis underlying this unusual susceptibility to
inhibition, with approaches ranging from electrophysiology to, protein structure
solution and in silico modeling. It is generally considered that there are at least
two important structural features of hERG channel that are responsible for the above
property. Firstly, many drugs bind to hERG channel by being trapped in its inner
cavity, which appears to be much larger than in any other voltage-gated K+ channel.
Thus, the large inner cavity of hERG channel can accommodate and trap large
molecules that other K+ channels cannot trap (Mitcheson et al. 2000). Recently,
the cryo-EM structure of hERG has been solved (Wang and MacKinnon 2017), it
provides a valuable insight into the channel structure with regard to the drug binding.
It has been demonstrated that there are four unique elongated, relatively hydrophobic
pockets that extend from the central cavity (Wang and MacKinnon 2017) (Fig. 1a).
Drugs are proposed to occupy the center of the cavity and insert a functional group
into the hydrophic pockets. The central cavity of the channel in the region just below
the SF is slightly narrower than that seen in Shaker-like voltage-gated K+ channel
structures. As a consequence, there is a greater negative electrostatic potential in this
region of the cavity (Vandenberg et al. 2017), which attracts cations (e.g., metal ions
or positively charged drugs) to form a more stable structure. Secondly, it is believed
that a number of aromatic residues in a specific hERG channel region can form
binding sites for inhibitory drugs. The electrons of the aromatic ring may form
π-cation or π-π interactions with the drug molecule via charged nitrogen or aromatic
ring, respectively (Fernandez et al. 2004; Stansfeld et al. 2007). Mutagenesis
screening has demonstrated that residues on the S6 helix (Y652, F656, G648) and
residues at the base of the SF (T623, S624, and V625) are critical to binding for a
range of hERG blockers (Kamiya et al. 2006; Lees-Miller et al. 2000; Mitcheson
et al. 2000; Perry et al. 2004). Among these, the two aromatic residues on the S6
helices (Y652, F656) are highly conserved in hERG channel orthologs, but not in
other voltage-dependent K+ channels (Shealy et al. 2003). Substantial evidence has
shown that channel blockage by almost all hERG blocking drugs tested is dramati-
cally attenuated by mutations of one or both of these two key residues (Y652 and
F656) that form much of the lining of the K+ conductance pathway. In addition, in
silico hERG blocking studies have also demonstrated that Y652 and F656 in the
hERG S6 domain play critical roles in drug binding (Hyang-Ae et al. 2018). These
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Table 1 Drugs with a known risk of TdP due to hERG inhibition

Drugs Drug class References

Amiodarone Antiarrhythmic (Kamiya et al. 2001; Kiehn et al. 1999)

Arsenic trioxidea Anticancer (Ficker et al. 2004)

Astemizoleb Antihistamine (Suessbrich et al. 1996; Zhou et al. 1999)

Azithromycin Antibiotic (Yang et al. 2017; Zhi et al. 2015)

Bepridilb Antianginal (Chouabe et al. 1998, 2000)

Chloroquine Antimalarial (Sánchez-Chapula et al. 2002; Traebert et al.
2004)

Chlorpromazine Antipsychotic/
antiemetic

(Lee et al. 2004; Thomas et al. 2003b)

Ciprofloxacin Antibiotic (Bischoff et al. 2000; Kang et al. 2001)

Cisaprideb GI stimulant (Mohammad et al. 1997; Rampe et al. 1997)

Citaloprama Antidepressant,
SSRI

(Chae et al. 2014; Witchel et al. 2002)

Clarithromycin Antibiotic (Stanat et al. 2003; Volberg et al. 2002)

Cocaine Local anesthetic (Guo et al. 2006; Zhang et al. 2001)

Disopyramide Antiarrhythmic (Paul et al. 2001; Yang et al. 2001)

Dofetilide Antiarrhythmic (Kiehn et al. 1995; Yang et al. 2001)

Domperidone Antiemetic (Claassen and Zünkler 2005; Drolet et al.
2000)

Donepezila Cholinesterase
inhibitor

(Chae et al. 2015)

Dronedarone Antiarrhythmic (Ridley et al. 2004; Thomas et al. 2003a)

Droperidol Antipsychotic/
antiemetic

(Drolet et al. 1999; Luo et al. 2008)

Erythromycin Antibiotic (Duncan et al. 2006; Stanat et al. 2003)

Escitaloprama Antidepressant,
SSRI

(Chae et al. 2014)

Flecainide Antiarrhythmic (Paul et al. 2002)

Fluconazolea Antifungal (Han et al. 2011)

Gatifloxacinb Antibiotic (Kang et al. 2001)

Grepafloxacinb Antibiotic (Bischoff et al. 2000; Kang et al. 2001)

Halofantrine Antimalarial (Tie et al. 2000; Traebert et al. 2004)

Haloperidol Antipsychotic (Shuba et al. 2001; Suessbrich et al. 1997)

Ibogaine Psychedelic (Koenig et al. 2013; Thurner et al. 2014)

Ibutilide Antiarrhythmic (Kodirov et al. 2019; Yang et al. 2001)

Levofloxacin Antibiotic (Kang et al. 2001)

Levomethadyl acetateb Opioid agonist (Katchman et al. 2002)

Mesoridazineb Antipsychotic (Su et al. 2004)

Methadone Opioid agonist (Katchman et al. 2002)

Moxifloxacin Antibiotic (Bischoff et al. 2000; Kang et al. 2001)

Nifekalant Antiarrhythmic (Kushida et al. 2002)

Ondansetron Antiemetic (Kuryshev et al. 2000)

Papaverine HCl
(Intracoronary)

Vasodilator,
coronary

(Kim et al. 2007, 2008)

(continued)
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two aromatic residues in each subunit were originally proposed to face into the inner
cavity so as to provide a total of eight binding sites for drugs (Mitcheson et al. 2000).
However, recent cryo-EM structure of hERG channel in open state revealed that
Y652 projects towards K+ permeation pathway, while F656 side chains projects
away from the permeation pathway towards the outer PH (Fig. 1a). This structure is
not consistent with the original hypothesis that drugs directly bind to F656 within the
permeation pathway. The molecular basis for this discrepancy is not yet fully
understood. One possibility is that inactivation in hERG is associated with
repositioning of Y652 and (especially) F656 side chains into a configuration that
promotes interaction with blockers in the pore since drugs prefer to bind to the hERG
channel in its inactivated state (Chen et al. 2002). This might involve a small
clockwise rotation of the inner S6 helix containing these side chains (Chen et al.
2002; Helliwell et al. 2018). Comprehensive reviews with the detailed information
about molecular basis of hERG drug binding can be found in the references (Butler
et al. 2019; Dickson et al. 2020; Helliwell et al. 2018; Vandenberg et al. 2017;
Wacker et al. 2017; Wang and MacKinnon 2017).

In addition to the direct inhibition of channel activity, forward trafficking
impairment can reduce hERG current through a reduction in the number of hERG
channels on cell membrane. Experiments indicate that arsenic trioxide (Ficker et al.
2004), pentamidine (Kuryshev et al. 2005), and probucol (Guo et al. 2007) disrupt
hERG trafficking at concentrations known to cause QT prolongation and arrhythmia

Table 1 (continued)

Drugs Drug class References

Pentamidinea Antifungal (Kuryshev et al. 2005; Tanaka et al. 2014)

Pimozide Antipsychotic (Kang et al. 2000)

Probucola,b Antilipemic (Guo et al. 2007, 2011)

Procainamide Antiarrhythmic (Yang et al. 2001)

Propofol Anesthetic, general (Han et al. 2016)

Quinidine Antiarrhythmic (Sănchez-Chapula et al. 2003; Yang et al.
2001)

Roxithromycina Antibiotic (Han et al. 2013; Volberg et al. 2002)

Sertindoleb Antipsychotic (Rampe et al. 1998)

Sevoflurane Anesthetic, general (Yamada et al. 2006)

Sotalol Antiarrhythmic (Numaguchi et al. 2000; Sanguinetti and
Jurkiewicz 1990)

Sparfloxacinb Antibiotic (Bischoff et al. 2000; Kang et al. 2001)

Sulpiride Antipsychotic,
atypical

(Lee et al. 2009)

Terfenadineb Antihistamine (Suessbrich et al. 1996; Tanaka et al. 2014)

Terodiline Muscle relaxant (Martin et al. 2006)

Thioridazine Antipsychotic (Kim and Kim 2005; Milnes et al. 2006)

Vandetanib Anticancer (Lee et al. 2018)
aDrug with effect of trafficking inhibition
bDrug withdrawn from market by FDA. Data acquired from www.crediblemeds.org in May, 2020
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without direct channel block. Some other drugs such as fluoxetine and ketoconazole
both can acutely block hERG channel and reduce hERG plasma membrane protein
abundance following long-term exposure by inhibiting trafficking (Rajamani et al.
2006; Takemasa et al. 2008). It is important to consider impaired trafficking as an
alternative mechanism for drug-induced QT prolongation, as conventional com-
pound screening methods for hERG block liability may not detect reductions in
channel abundance.

4.4 Methodology of hERG Assays

Since hERG channel plays an important role in cardiac repolarization and is suscep-
tible to inhibition by a wide variety of compounds, evaluation of the potential hERG
blocking effect of new compounds for identifying potential risk of proarrhythmic
side effects is a necessary step in a drug discovery process. The International
Conference on Harmonisation of Technical Requirements for Registration of
Pharmaceuticals for Human Use (ICH) adopted a guideline S7B putting forward
requirements in assessing hERG blocking of new drugs for the cardiac safety
in 2005.

A variety of technologies have been applied to evaluate effects of hERG channel
blocking based on multiple test systems including heterologous hERG expression in
Xenopus oocyte and mammalian cells such as HEK293 cells and CHO cells, and
native cardiomyocytes with IKr current. Because the cardiomyocytes of adult mice
and rats heart lack the IKr current component, native cardiomyocytes for testing are
commonly derived from the hearts of larger animals such as guinea pigs, rabbits, and
dogs. Evaluation technologies include direct electrophysiological measurement (i.e.,
patch clamp), and indirect non-electrophysiological measurements such as competi-
tive radioligand binding assays, ion flux assays, fluorescence-based assays, and in
silico modeling.

Patch clamp technique remains a gold standard to directly assess hERG blocking
liability of compounds (Hancox et al. 2008). It provides accurate and physiologically
relevant data of ion channel function at the single cell or single channel level.
However, traditional manual patch clamp has been limited in drug screening due
to low throughput and a requirement for highly skilled operators. Recently devel-
oped automated patch clamp approach, which offers high-throughput electrophysio-
logical data acquisition, has transformed the situation (Guo and Guthrie 2005; Jones
et al. 2009). At present, both manual patch clamp and automated patch clamp are
widely used in evaluation of hERG safety (Danker and Möller 2014; Lindqvist
2019). Non-electrophysiological measurements are also widely used, these assess
the potency of drugs for hERG blocking by measuring the hERG channel related
indicators. The competitive radioligand binding assays determine displacement of
specific radiolabeled hERG ligands such as [3H]dofetilide (Diaz et al. 2004;
Finlayson et al. 2001a, b), [3H]astemizole (Chiu et al. 2004), [35S]-MK-499 (Raab
et al. 2006), and [125I]-BeKm1 (Angelo et al. 2003) to reflect the binding affinity of
test drugs. The ion flux-based assays (often in combination with fluorescence-based
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approaches) measure the amount of ions such as Rubidium (Rb+) (Terstappen 1999)
and Thallium (Tl+) (Titus et al. 2009; Weaver et al. 2004) permeating through the
hERG channel and thus indirectly reflect the alterations of hERG function under the
action of drugs. In recent years, in silico models of hERG channel were developed
for predicting the action of hERG modulators. In silico models are based on
structural properties of the hERG channel and incorporate the information of channel
gating and ligand binding kinetics. The aim of such modeling is to characterize the
interactions of compounds with the hERG channel by computer simulations (Lee
et al. 2016; Pearlstein et al. 2016; Zhang and Hancox 2004). However, the electro-
physiological measurements remain necessary to confirm data obtained by such
modeling.

The potency of compounds for producing hERG inhibition, usually indicated by
the compound’s IC50 (concentration of half-maximal inhibition), can be normalized
to the clinically relevant concentrations of the given compound, such as Cmax,free

(free plasma concentration) to calculate the safety margin, as proposed by the S7B
guideline. According to relevant studies, the closer the hERG IC50 value is to the
Cmax,free the higher is the risk of QT interval prolongation (Redfern et al. 2003; van
Noord et al. 2011). A 30-fold margin between Cmax,free and hERG IC50 has been
considered as a cardiac safety value in many cases (Redfern et al. 2003; van Noord
et al. 2011). However, it is also recognized that an increase in the margin should be
considered, especially for drug candidates aimed for non-debilitating diseases
(Redfern et al. 2003).

However, due to the lack of standardization for measuring hERG modulator
potency, there are often significant differences in measured IC50 values reported
by different laboratories for the same compounds. For instance, the difference in
IC50 of cisapride reported by different laboratories exceeds 60-fold (Potet et al. 2001;
Rezazadeh et al. 2004). The essential factors that contribute to such variability
generally include differences in test systems and recording conditions such as
temperature and voltage protocols.

Using different test systems, such as native cardiac myocytes and cell lines
heterologously expressing hERG can lead to significant discrepancy of IC50 values.
As much as 50-fold difference of E-4031 IC50 has been observed between native
cardiac myocytes (Sanguinetti and Jurkiewicz 1990) and transfected cells (Zhou
et al. 1998). This discrepancy may result from the differences in the composition of
hERG channel. In the native cardiomyocytes, in addition to the dominant hERG1a
isoform, the hERG1b isoform is also expressed (although at much lower level) and
can contribute to the composition of heteromeric channel (McNally et al. 2017).
Indeed, a study has shown that a homomeric hERG1a channel expressed in HEK293
cells is blocked by E-4031 more rapidly than with a heteromeric channel containing
both hERG1a and hERG1b (Sale et al. 2008). A similar trend has been found for
dofetilide (Abi-Gerges et al. 2011).

Additional complications arise from the state-dependent binding of some
compounds to the hERG. Substantial evidence indicates that different hERG
blockers have a high-affinity binding to the activated or inactivated channel (Stork
et al. 2007; Walker et al. 1999). The channel state can be modulated by temperature
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and voltage protocols including voltage pattern, duration, and pulse frequency (Lee
et al. 2019; Stork et al. 2007). Thus, it is not difficult to understand why there are
significant differences in measured IC50 values under distinct temperature and
voltage protocols. In addition, temperature and voltage protocols have an influence
on drug binding kinetics and trapping (Kirsch et al. 2004; Stork et al. 2007). These
factors also lead to discrepancies in the reported potency parameters.

4.5 A New CiPA Paradigm to Evaluate Drug-Induced TdP

Although no approved drugs have been withdrawn from the market because of the
TdP risk since the ICH S7B Guideline was implemented (Sager et al. 2014), the
hERG safety remains a necessary phase in drug discovery. Yet, limitations of only
assessing hERG blockage have been recognized. The cardiac AP is coordinated by
multiple ion currents and requires relative balance between inward and outward
currents. It is therefore insufficient to focus on a single component in predicting the
risk of delayed repolarization and TdP. For example, verapamil has been shown to
inhibit hERG current with high potency (Zhang et al. 1999), but it does not lead to
QT interval prolongation and does not increase the TdP risk because of the concom-
itant inhibition on inward ICaL (Winters et al. 1985). A recent study based on
30 drugs of different risk categories (high, intermediate, and low) has shown that
blocking inward currents such as sodium and calcium current may reduce
proarrhythmic effect of hERG current inhibition (Crumb et al. 2016). Thus,
assessing hERG blockage alone carries a risk for false-positive predictions and
leads to potentially valuable new compounds being discarded early in drug discov-
ery. A study has indicated that as many as 60% of new molecular entities developed
as potential therapeutic agents are abandoned early due to hERG inhibition (Ponti
2008). Therefore, a new parardigm, a Comprehensive Invitro Proarrhythmia Assay
(CiPA) has been proposed in the field of cardiac safety; CiPA presents a more
comprehensive approach to predicting proarrhythmic risk (Sager et al. 2014).

There are three preclinical components in CiPA paradigm: (1) drug effects on
multiple human cardiac currents; (2) in silico reconstruction of human ventricular
electrophysiology, and (3) in vitro effects on human stem-cell derived ventricular
myocytes. Specific study groups have been established to refine the approaches and
benchmarks within each of these components.

In CiPA paradigm, hERG blocking is no longer the unique indicator; instead, a
more comprehensive in vitro set of ion current assays is used to explore the effects of
drugs on multiple potassium, sodium, and calcium currents. A recent study has
shown that, under the premise of evaluation of hERG, incorporating NaV1.5 or
CaV1.2 in particularly into the evaluation system has significantly improved the TdP
predictability (Kramer et al. 2013). The ion channel working group of CiPA has
developed a series of protocols to test the effects of compounds on the main cardiac
ion channels including hERG, L-type calcium, and fast and late inward sodium
currents, hoping to provide standardized protocols to be used in different patch
clamp facilities of the academic and industrial research institutions (Fermini et al.
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2016; Huang et al. 2017; Windley et al. 2017). In the next step, in silico reconstruc-
tion of ventricular APs assesses the effects of compounds more intimately on the
basis of electrophysiological data. Finally, cadiomyocytes such as human induced
pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) would be used to
provide an assessment of the integrated electrophysiological response to a drug
(Sager et al. 2014; Wallis et al. 2018). The updated information about the progress
of CiPA groups is available at www.cipaproject.org. Hopefully, the CiPA paradigm
can provide more precise and comprehensive information for assessment of hERG
inhibition to predict the risk of drug-induced arrhythmia.

5 hERG Activators

In contrast to numerous hERG channel blockers, some compounds have been
discovered to increase hERG channel currents during the course of screening for
hERG channel-blocking activity early in preclinical safety evaluation (Grunnet et al.
2008). Thus, Kang and colleagues reported the first synthetic activator of hERG
channel, RPR260243 (Kang et al. 2005). Since then several other hERG activators
have been identified, including PD118057 (Zhou et al. 2005), NS1643 (Casis et al.
2006; Hansen et al. 2006a), NS3623 (Hansen et al. 2006b), Mallotoxin (Zeng et al.
2006), PD307243 (Gordon et al. 2008; Xu et al. 2008), A935142 (Su et al. 2009),
ICA-105574 (Gerlach et al. 2010), KB130015 (Gessner et al. 2010), etc. These
compounds shorten cardiac APD and have been proposed as a new therapeutic
approach for the treatment of acquired or congenital LQTS (reviewed in (Sanguinetti
2014; Szabó et al. 2011; Vandenberg et al. 2012; Zhou et al. 2011)).

5.1 Mechanisms of Action of hERG Channel Activators

Different to hERG blockers that simply block K+ conduction and have little influ-
ence on channel gating, hERG activators primarily exert their effects by modulating
channel gating. Four distinct mechanisms have been described: (1) slowing the rate
of channel deactivation; (2) attenuation of C-type inactivation; (3) negative shift of
voltage dependence of activation; (4) increase in channel open probability
(Sanguinetti 2014) (Fig. 3). Accordingly, depending on the predominant mechanism
of action, hERG activators can be categorized in four types (although most hERG
activators have multiple mechanisms of action). Here, we will give a brief review on
the gating modulation by several known activators. More detailed information on
these mechanisms can be found in several previous reviews (Perry et al. 2010;
Sanguinetti 2014; Szabó et al. 2011; Zhou et al. 2011). The chemical structures of
major hERG activators are shown in Fig. 4.

5.1.1 Slowing the Deactivation
RPR260243 is the first compound designed as a type 1 hERG channel activator
(Kang et al. 2005). This small molecule enhances current by attenuating inactivation
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and severely slowing the rate of channel deactivation (Kang et al. 2005; Perry et al.
2007). Another compound, Ginsenoside Rg3, an alkaloid isolated from the root of
Panax ginseng plants, increases current magnitude primarily by slowing the rate of
hERG deactivation (Choi et al. 2011). More recently, compound LUF7346 has been
identified as a type 1 hERG channel activator, which increases hERG current by
slowing deactivation and positively shifting voltage dependence of inactivation
(Sala et al. 2016).

Scanning mutagenesis has identified the putative binding site for RPR260243,
which is located near the cytoplasmic ends of the S5 and S6 helices of the hERG
subunit, a region of the channel that is important for activation and deactivation.
Hence, it is proposed that binding of RPR260243 to a single subunit may directly
constrain movement of the S6 domains to slow the rate of channel closure (Perry
et al. 2007).

5.1.2 Attenuation of C-Type Inactivation
As mentioned, one of the most important gating features of hERG channel is its fast
C-type inactivation. Attenuation of C-type inactivation is produced by some of the
hERG channel activators, an effect resulting in an enhancement of hERG current. Up
to now, more than ten compounds such as PD118057 (Zhou et al. 2005), PD307243
(Gordon et al. 2008), NS1643 (Casis et al. 2006), NS3623 (Hansen et al. 2006b),
A-935142 (Su et al. 2009), ICA-105574 (Gerlach et al. 2010), ML-T531 (Zhang

Fig. 3 The action of hERG channel activators. hERG activators primarily exert their effects by
modulating channel gating. There are four distinct mechanisms including slowing of channel
deactivation (1), attenuation of C-type inactivation (2), negative shift of voltage dependence of
activation (3), and increase in channel open probability (4). Known hERG activators are assigned to
types 1-4, according to the predominant mechanism of action
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et al. 2012), AZSMO-23 (Mannikko et al. 2015), ITP-2 (Sale et al. 2017), MC-450
(Gualdani et al. 2017), and HW-0168 (Dong et al. 2019) have been identified to
enhance hERG current primarily through attenuating the channel inactivation and
are thus classified as type 2 activators (Perry et al. 2010). However, most of those
activators may have multiple mechanisms of action. The mechanistic and structural
basis underlying the fast inactivation of hERG channel is not fully understood. It is
believed to be caused by a subtle voltage-dependent conformational changes in the
SF of the outer pore domain (for reviews, see Ref. Vandenberg et al. 2012).

Fig. 4 Chemical structures of major hERG channel activators
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Experimental evidence has shown that the binding sites of many type 2 activators are
located closer to the SF (Garg et al. 2011; Gerlach et al. 2010; Perry et al. 2009).
Scanning mutagenesis combined with molecular modeling studies have revealed that
PD118057 interacts with residues located in the PH of one hERG subunit and the
N-terminal half of the S6 helix in an adjacent subunit to attenuate inactivation (Perry
et al. 2009). Similarly, the residues interacting with ICA-105574, another potent type
2 activator (Gerlach et al. 2010), are located in the PH and the base of the SF and S6
segments (Garg et al. 2011). A recent study has proposed a common mechanism to
prevent C-type inactivation by a group of negatively charged activators such as
PD-118057 (Schewe et al. 2019). This type of activators may directly stabilize the
SF in its active state through binding to similar sites below the SF (Schewe et al.
2019). In line with this hypothesis, a molecular dynamics simulation has
demonstrated that ICA-105574 increases the stability of the SF to attenuate channel
inactivation (Zangerl-Plessl et al. 2020). However, whether other type 2 activators
with distinct chemical structures share the same molecular mechanism remains
uncertain.

5.1.3 Negative Shift of Voltage Dependence of Activation
Previous experimental findings indicate that both Mallotoxin and KB130015
increase hERG current amplitude primarily by causing a hyperpolarizing shift in
the voltage dependence of channel activation (Zeng et al. 2006; Gessner et al. 2010).
Mallotoxin also accelerates the rate of activation and slows the rate of deactivation
(Zeng et al. 2006). KB130015 is a derivative of the hERG blocker, amiodarone, and
presumably binds to the hERG pore from the cytosolic side and functionally
competes with amiodarone (Gessner et al. 2010). SKF-32802, a structural analog
of NS3623, induces a leftward shift in the voltage dependence of activation. The
above compounds are identified as the type 3 activators (Donovan et al. 2018).

5.1.4 Increase in Channel Open Probability
Similar to SKF-32802, SB-335573 is also a structural analog of NS3623. However,
it enhances hERG current through increasing open probability without affecting the
voltage dependence of activation and, thus, identified as a type 4 activator (Donovan
et al. 2018). In addition, PD-118057 has been reported to increase single hERG
channel open probability (Perry et al. 2009).

5.2 Potential Antiarrhythmic Effect of hERG Channel Activators

Several hERG activators have been tested for their antiarrhythmic effectiveness in
inherited or drug-induced acquired LQTS. Thirteen subtypes of inherited LQTS
have been identified, with the most prevalent forms being LQTS1, 2, and 3 (Schwartz
et al. 2012). The underlying channelopathies are loss-of-function mutations in IKs
(type 1) and in IKr (type 2) and increased sustained INa current (type 3). Theoreti-
cally, the LQTS phenotype could be rescued by the compensatory effect of hERG
channel activators if IKr current is not completely lost. Experimental evidence
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obtained in cardiac myocytes, especially in hiPSC-CMs derived from LQTS patients
and in transgenic animals, supports this notion. A study has demonstrated that
NS1643 significantly shortens APD and QT interval in a rabbit model of inherited
LQTS1 (Bentzen et al. 2011). Type 2 activator ML-T531 normalizes the prolonged
APD by selectively enhancing IKr in hiPSC-CMs derived from LQTS1 patient
(Zhang et al. 2012). NS1643 and ICA-105574 effectively restore hERG current
from heterozygous LQTS2 mutant channels in heterologous expression systems
(Huo et al. 2017; Perry et al. 2020). Several activators, including NS1643,
ICA-105574, and LUF-7346, have been shown to reverse the prolonged repolariza-
tion in hiPSC-CMs derived from LQTS2 patients carrying different mutations
(Duncan et al. 2017; Perry et al. 2020; Sala et al. 2016). In addition, both NS3623
and Mallotoxin show the antiarrhythmic potential in a cellular model of LQTS3
(Diness et al. 2009).

Many hERG activators with different gating modulation mechanisms have been
demonstrated to counteract the inhibition by hERG blockers either in heterologous
expression systems or in native cardiac myocytes (review, Ref. (Szabó et al. 2011)).
However, only few of those activators have been tested in vivo or in intact hearts for
their effectiveness of suppressing drug-induced arrhythmias. An experiment has
demonstrated that in vivo administration of NS3623 results in shortening of the
QT interval as well as reversal of a pharmacologically induced QT prolongation in
both anesthetized and conscious guinea pigs (Hansen et al. 2008). NS1643
completely suppresses arrhythmic activity caused by IKr inhibitor dofetilide in the
in vivo rabbit models of TdP (Diness et al. 2008). ICA-105574 effectively prevents
ventricular arrhythmias caused by IKr or IKs inhibitors in intact guinea-pig hearts
(Meng et al. 2013). Recent experiments demonstrates that LUF7244 and
RPR260243 counteract dofetilide-induced arrhythmias in a chronic atrioventricular
block model in dogs (Qile et al. 2019) and in whole organ zebrafish hearts (Shi et al.
2020), respectively. These findings support the notion that hERG activators may
provide an effective antiarrhythmic approach in drug-induced, disease-induced, or
gene mutation-linked LQTS.

5.3 Proarrhythmic Risk of hERG Channel Activators

The fact that congenital short QT syndromes (SQT) (Crotti et al. 2010) may lead to
susceptibility to arrhythmias raises concerns that QT-shortening drugs could also
lead to arrhythmias. Several reports have revealed the potential proarrhythmic risk of
some hERG activators including mallotoxin, NS1643, ICA-105574, and PD-118057
in experimental and in silico models (Bentzen et al. 2011; Lu et al. 2008; Peitersen
et al. 2008; Schewe et al. 2019) and, thus, those hERG activators have been used to
create drug-induced SQT models. The arrhythmogenesis of these activators may
result from a decrease of ERP and an increase of the transmural dispersion of
repolarization (TDR). Amplification of the spatial dispersion of repolarization in
the form of TDR is the basis for the development of life-threatening ventricular
arrhythmias (Antzelevitch 2007). In addition, ICA-105574 causes temporal
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redistribution of the peak IKr to much earlier in the plateau phase of the AP and, thus,
results in early repolarization (Perry et al. 2020; Qiu et al. 2019), which, in turn, my
result in the development of phase 2 reentry and ventricular tachycardia/ventricular
fibrillation.

6 Conclusion

The shape of the cardiac AP depends on a fine balance between various depolarizing
and repolarizing ionic currents. The unique gating kinetic properties of hERG
channel make it ideal for determining the morphology and duration of the cardiac
AP repolarization. Consequently, alterations of hERG channel function by inhibitors
or activators may result in either prolongation or shortening of APD, which can
counteract abnormal electroactivity under specific pathological condition. However,
unintended disturbance or overcorrection of hERG channel function may result in
arrhythmogenesis. Thus, hERG channel becomes an important pharmacological and
safety target for antiarrhythmic/proarrhythmic actions of drugs.
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