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Abstract

Xanthine oxidase inhibitors are primarily used in the clinical prevention and
treatment of gout associated with hyperuricemia. The archetypal xanthine oxidase
inhibitor, Allopurinol has been shown to have other beneficial effects such as a
reduction in vascular reactive oxygen species and mechano-energetic uncoupling.
This chapter discusses these properties and their relevance to human pathophysi-
ology with a focus on Allopurinol as well as newer xanthine oxidase inhibitors
such as Febuxostat and Topiroxostat.
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Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) are collectively referred
to as xanthine oxidoreductase (XOR). XDH is initially synthesised as a 150-kDa
protein from which XO is derived, e.g. under conditions of ischemia/hypoxia either
reversibly by conformational changes (calcium or SH oxidation) or irreversibly by
proteolysis, the latter leading to formation of a 130-kDa form of XO. Both, XO and
XDH, catalyse the conversion of hypoxanthine via xanthine to uric acid, the former
by using oxygen forming superoxide and hydrogen peroxide and the latter NAD+.
However, XDH is in principle also able to generate ROS.

Keywords

Antioxidants · Endothelial dysfunction · Oxidative stress · Uric acid · Xanthine
oxidoreductase

1 Urate and Xanthine Oxidoreductase

Urate is a heterocyclic purine derivative. In humans and some primates, it is the final
product of purine breakdown. The majority of urate is filtered through the kidney
(60–70%) and at least 90% of this is re-absorbed through the GLUT9 and URAT1
anion transporters. Humans lack a functional uricase gene that is present in most
other lower mammals. Uricase further oxidises urate into water-soluble allantoin
(Chen et al. 2016).

Urate is thought to exert opposing actions on ROS extracellularly versus intracel-
lularly. Circulating urate is thought to contribute to 70% of all free radical scaveng-
ing capability of plasma. It is an effective scavenger of carbon-centred radicals and
peroxylradicals (Waring 2002). For example, it reacts with peroxynitrite (ONOO�)
to release nitric oxide (NO) and therefore induce vasodilatation (Skinner et al. 1998).
However, under hydrophobic conditions, it can accelerate the oxidation of LDL,
increased monocyte-chemoattractant protein (MCP)-1, high sensitivity C-reactive
protein and inflammatory interleukins (Bagnati et al. 1999). Therefore, it is thought
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that overall, hyperuricaemia contributes to the progression of CV disease because of
the overwhelming oxidant property of urate (Chen et al. 2016) as well as the free
radical by-products of its formation (George and Struthers 2008) (see below).

Xanthine oxidoreductase (XOR) is part of a group of enzymes known as the
molybdenum iron-sulphur flavin hydroxylases. It was first discovered in milk by
Schardinger in 1902 (Berry and Hare 2004) and is thought to be involved in
reactions that produce reactive oxygen species (ROS) such as nitrite which enable
newborn infants to overcome gut-associated bacterial gastroenteritis (Hancock et al.
2002; Stevens et al. 2000). XOR is widely distributed throughout various organs
including the liver, gut, lung, kidney, heart, brain and plasma (Pacher et al. 2006)
with the highest levels being found in the gut and the liver (Parks and Granger 1986).
In the myocardium, it is localised to the capillary endothelial cells (Cicoira et al.
2002). The gene encoding for XOR is located at the short arm of chromosome
2 (Ichida et al. 1993). It exists in two interconvertible forms known as xanthine
oxidase (EC 1.1.3.22) and xanthine dehydrogenase (EC 1.17.1.4) (Della Corte et al.
1969). Both enzymes consist of two identical subunits of 145 kDa.

The mechanism by which XOR catalyses hypoxanthine and xanthine conversion
is complex and has been previously described in detail (Berry and Hare 2004; Hille
and Massey 1981). A fully reduced XO contains six electrons, and its re-oxidation
involves electron transfer to oxygen molecules which generates two H2O2 and two
O2

� species (Hille and Massey 1981) for every fully reduced XO molecule. It is
interesting to note that XDH can theoretically produce more O2

� per mole of oxygen
during NADH oxidisation than XO. Along with NADPH oxidase, it is a major
generator of ROS in the human.

2 Allopurinol

Allopurinol (C5H4N4O) is the archetypal and longest established XO inhibitor in
clinical use. It is a weak acid with a dissociation constant (pKa) of 9.4. It has a
molecular mass of 136.11 g/mol. It is rapidly converted to oxypurinol by aldehyde
oxidoreductase. While allopurinol is an analogue of hypoxanthine, oxypurinol
(or alloxanthine) is an analogue of xanthine (Day et al. 2007). Oxypurinol is much
more lipid soluble than allopurinol (octanol/water partition coefficient 14 vs. 0.28 for
allopurinol) (Day et al. 2007).

2.1 Pharmacokinetics

Approximately 90% of allopurinol is absorbed from the gastrointestinal tract. It is
rapidly absorbed and reaches peak plasma concentrations within 30–60 min (Pea
2005) following oral administration. It is rapidly metabolised to its active metabolite
oxypurinol. For every 100 mg oral dose of allopurinol, 90 mg of oxypurinol is
formed (Day et al. 2007). When given orally, oxypurinol has a lower bioavailability
than allopurinol. An early pharmacokinetics study showed that 300 mg of
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allopurinol produced a slightly higher plasma levels than 600 mg of oral oxypurinol
(Elion et al. 1968). Allopurinol has a short half-life in plasma between 2 and 3 h and
has negligible protein binding. It has an apparent volume of distribution of 1.2 to
2.2 L/kg in healthy volunteers (Day et al. 2007). The renal clearance of allopurinol is
1.54 mL/min/kg (Day et al. 2007). Oxypurinol is detected in plasma 15–20 min after
an oral dose of allopurinol, reaches peak plasma levels in 3–4 h (Guerra et al. 2001)
and has a much longer plasma half-life between 14 and 30 h because it is reabsorbed
in the proximal tubule of the kidney (Pea 2005). It is responsible for much of the
hyperuricaemic action of allopurinol. It is excreted almost entirely unchanged in
urine. Therefore the renal clearance of oxypurinol is therefore the most important
aspect of the clinical pharmacokinetics of allopurinol (Day et al. 2007). Patients
treated with allopurinol excrete 70% of the dose as oxypurinol and only 10% as
allopurinol which indicates that the vast majority of allopurinol is converted to
oxypurinol (Elion et al. 1966). Thus, the major route of allopurinol elimination is
via oxidation to oxypurinol (Turnheim 1999). Turnheim et al. showed that although
allopurinol elimination is not reduced in the aged, the elimination of its metabolite
oxypurinol is reduced due to age-related reduction in renal function (Turnheim
1999).

The mechanism of XO inactivation by oxypurinol was determined by Massey
et al. (Massey et al. 1970). Oxypurinol strongly binds at the active site of XO,
resulting in the reduction of MoVI to MoIV. Its inhibition is time-dependent, and it is
important to maintain an effective concentration of the inhibitor as spontaneous
oxidation back from MoIV to MoVI will result in concomitant recovery of enzyme
activity. It is an excellent substrate with a Vmax which is sixfold faster than xanthine.
The mechanism of oxypurinol inhibition of its own production has been termed
“suicidal” (Spector 1977). In a healthy individual with a creatinine clearance of
120 mL/min, the clearance of oxypurinol is 23 mL/min. As oxypurinol is a small
molecule that is not bound to plasma proteins, it is freely filtered at the glomerulus
(Elion et al. 1968)

2.2 Dose-Response Studies

Dose-response studies of the hyperuricaemic effect of allopurinol suggest that this
increases relatively little with increasing doses of the drug (Day et al. 2007). The

Table 1 Steady-state oxypurinol concentration in healthy volunteers (adapted from Ref. (Graham
et al. 1996))

Allopurinol dose (mg) Oxypurinol concentration (mg/L) [approx concentration in mmol/L]

50 1.77 � 1.59 [0.01]

100 2.67 � 1.59 [0.02]

300 5.59 � 1.5 [0.04]

600 9.56 � 1.92 [0.07]

900 12.21 � 2.13 [0.09]
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EC50 for allopurinol has been calculated as 5.6 � 1.3 mg/L, which is identical to the
trough level for the 300 mg/day dose (5.6 � 0.6 mg/L). The steady-state oxypurinol
concentration over a dose range of 50-900 mg allopurinol/day is shown in Table 1.

The oxypurinol concentration in steady-state was found to increase in a linear
fashion up to the 600 mg/day dose of allopurinol. The concentration of oxypurinol
did not increase proportionally between 600 mg/day and 900 mg/day (Graham et al.
1996) suggesting that tubular reabsorption of oxypurinol may be saturated at higher
doses. The other possible explanation could be the saturation of xanthine oxidase,
but this is unlikely as Spiekermann et al. (Spiekermann et al. 2003) have recently
shown that complete inhibition of plasma XO activity in vivo requires an oxypurinol
concentration of 1 mmol/L. Beneficial effects seen with higher dose could then be
related to other effects of allopurinol. Although it is tempting to relate the efficacy of
allopurinol to the degree of urate lowering it produces, there are many more factors
that contribute to urate levels such as exogenous contributions from diet, endoge-
nous production as well as renal function.

2.3 Pharmacodynamics

Allopurinol is generally safe and well tolerated since it was introduced into clinical
practice 40 years ago. By the end of the 1980s, more than five million patient years
of treatment and over 240 million doses had been prescribed (Vazquez-Mellado et al.
2001). Common adverse effects of allopurinol are gastrointestinal disturbance,
hypersensitivity reactions (up to 8% of patients, sometimes occurring months to
years after commencing medication) and skin rash (Committee 2007). In a study by
McInnes et al., 6.2% of hospitalised patients monitored in a drug surveillance
programme received allopurinol. After the exclusion of skin reactions, the most
frequent reactions found were haematological abnormalities (0.6%), diarrhoea
(0.3%) and pyrexia (0.3%). These adverse effects were found to be dose-related
(McInnes et al. 1981). The rare allopurinol hypersensitivity syndrome (fever, rash,
vasculitis, eosinophilia and renal failure) occurs in 0.4% of patients but can have a
mortality of up to 25% (Gutierrez-Macias et al. 2005). It has been recently discov-
ered that the HLA-B*5801 allele is a very significant risk factor for the allopurinol
hypersensitivity syndrome (Hung et al. 2005) in Chinese patients. Whether or not
this allele confers the same risk to other populations is yet to be known.

Clinically significant interactions between allopurinol and the endogenous
purines mercaptopurine and azathioprine have been reported. As mentioned earlier,
the initial discovery of allopurinol was as an agent to potentiate the anti-tumour
effects of mercaptopurine so it is unsurprising that mercaptopurine levels are aug-
mented by allopurinol because it is metabolised by XO into inactive metabolites (Pea
2005). Allopurinol enhances the anticoagulant effect of warfarin and increases the
plasma concentration of didanosine, ciclosporin and theophylline (Committee
2007). The risk of allopurinol hypersensitivity syndrome is increased in elderly
patients on thiazide diuretics (Schlesinger 2004) and ampicillin (Vazquez-Mellado
et al. 2001) Both allopurinol and urate are removed by dialysis (Day et al. 2007).
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2.4 Indirect Antioxidant Action (XO-Inhibition Mediated)

Allopurinol has also been shown to normalise endothelial dysfunction in individuals
with Type 2 diabetes with mild hypertension and reduced plasma malondialdehyde
(MDA) levels (Butler et al. 2000). MDA results from acid hydrolysis of lipid
peroxides which are formed by free radical attack on plasma lipoproteins. It is
therefore used as an indirect measure of oxidised LDL.

In the experimental murine myocardial infarction model, allopurinol significantly
attenuated LV dilatation, hypertrophy, fibrosis and dysfunction. Once again, XO
expression (as determined by electron spin resonance spectroscopy) and myocardial
ROS generation were markedly increased in the post-MI ischemic model
(Engberding et al. 2004). This suggests a role for allopurinol in LV remodelling, a
possibility that we are investigating at present in our unit. Allopurinol has also been
shown to be beneficial in conditions such as post coronary artery bypass surgery
where it reduced ischemic events and produced less ST segment depression (Sisto
et al. 1995) as well as in hypercholesterolaemic patients (Cardillo et al. 1997).
Animal studies in other conditions such as diabetic retinopathy have yielded similar
results both in terms of indirect and direct (see below) action of allopurinol.
Allopurinol significantly improved the b-wave amplitude on electroretinography as
well as 8-isoprostanes, a biomarker of ROS formation. Despite lowering urate to a
similar degree, Benzobromarone did not result in any beneficial effect (Goharinia
et al. 2017).

A recent placebo-controlled clinical trial (n ¼ 100) in patients with acute coro-
nary syndrome (ACS) showed early (1 month) reduction of markers of oxidative
stress malondialdehyde (MDA), oxidised LDL. This reduction was sustained for up
to 2 years (Huang et al. 2017).

Allopurinol in chronic heart failure (CHF) was assessed by Doehner et al.
(Doehner et al. 2002) and by Farquharson et al. (Farquharson et al. 2002). Doehner
et al. showed that the degree of improvement in forearm blood flow correlated with
the degree of urate lowering. Interestingly, they also measured allantoin, a marker of
oxygen free radical generation, which was reduced by 20% following 300 mg/day
allopurinol. Farquharson et al. (Farquharson et al. 2002) from our unit found a 181%
change in forearm blood flow with 300 mg allopurinol. They also found a 33%
reduction in plasma MDA levels in patients treated with 300 mg allopurinol
suggesting that the improvement in endothelial function and NO bioavailability
seen was due (at least in part) to a reduction of ROS. Allopurinol also reduced
B-type Natriuretic peptide (BNP) in stable CHF patients, although the reduction did
not correlate with the fall in urate (Gavin and Struthers 2005). Uric acid also directly
inactivates NO (Gersch et al. 2008), and therefore allopurinol may increase NO
bioavailability through this indirect pathway also.

Our group demonstrated, for the first time, the antioxidant effect of high-dose
allopurinol in reducing vascular oxidative stress. We studied patients with chronic
heart failure and found that the effect of allopurinol on endothelial vascular function
was due to xanthine oxidase inhibition and not urate lowering (George et al. 2006).
We also demonstrated that there was a steep dose-response curve with high dose
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allopurinol (600 mg/day) significantly better than standard dose (300 mg/day) in this
respect. At high dose, allopurinol completely negated the benefits seen with high
dose intra-arterial vitamin C infusions (Fig. 1). This is further strengthened by
evidence that the beneficial effect of vitamin C co-infusion in patients with CHF
was greatest in patients with the highest levels of oxidative stress as measured by
extracellular SOD (ecSOD) (Landmesser et al. 2002) and XO activity.

This finding has been further confirmed by two other studies in coronary artery
disease (Rajendra et al. 2011) and heart failure (Ogino et al. 2009) and is now widely
accepted as a possible mechanism for the benefits seen with allopurinol. Our group
has also previously demonstrated that high-dose (but not low-dose) allopurinol
reduced oxidised LDL, further confirming allopurinol’s antioxidant impact. How-
ever, as xanthine oxidase is significantly upregulated in acute ischemia or inflamma-
tion (Spiekermann et al. 2003) and otherwise constitutionally is expressed at low
levels (Panus et al. 1992), there remains doubt that treating high-risk stable patients
with long-term high-dose allopurinol will provide any benefit at all. Large ongoing
trials such as ALL-HEART are seeking to address this question (Mackenzie et al.
2016). The biology of XO suggests that allopurinol is most beneficial in the acute
ischaemia/reperfusion/inflammation setting rather than the chronic stable setting.

The other possible explanation which also relates to urate and superoxide forma-
tion is that in patients with low baseline oxidative stress, there are proportionately
more urate (a known antioxidant) molecules to combat oxidative stress. In patients
with high background or ischemia-induced oxidative stress however, inhibition of
XO will reduce proportionately more superoxide (due to the cascade formation of
superoxide). The reduction in urate with allopurinol may be an unfortunate price to
pay, and the system may already be overwhelmed at this stage. This is supported by
evidence in rat myocardium where the magnitude of functional improvement seen
with XO inhibitors was dependent on the initial level of XO activity (Kogler et al.
2003). In chronic diseases such as CHF, sustained high levels of ROS may exceed
the capacity of cellular enzymatic and non-enzymatic antioxidants (Deanfield et al.
2007) to counter its effects. Using electron spin resonance, Spiekermann et al.
demonstrated that both NADPH oxidase and xanthine oxidase are upregulated in

Fig. 1 Absolute forearm blood flow data for acetylcholine (50, 100 nmol/min) + vitamin C 25 mg/
mL vs acetylcholine alone for – placebo, 300 mg allopurinol and 600 mg allopurinol (mean� SEM)
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patients with coronary artery disease (Spiekermann et al. 2003). Others have
demonstrated increased levels in CHF (Landmesser et al. 2002; Amado et al. 2005).

2.5 Direct Antioxidant Action

Allopurinol directly scavenges free radicals as demonstrated by Das et al. and others
(Das et al. 1987; Hoey et al. 1988; Ricardo et al. 1995) in in vitro hearts where
evidence of free radical scavenging occurred in the absence of XO activity. Further
evidence for a possible direct antioxidant effect of allopurinol comes from models of
experimental colitis where tungsten (a potent XO inhibitor) failed to improve
symptoms whereas allopurinol did (Keshavarzian et al. 1990). Augustin et al.
suggested that this direct effect was only seen at higher doses (Augustin et al.
1994). This was also seen in mice paracetamol toxicity models where lower doses
(sufficient to block XO activity) of allopurinol failed to show antioxidant protection
but higher doses did (Knight et al. 2001). There have been other non-XO effects of
allopurinol suggested such as copper chelation, preventing LDL oxidation as
described above (Malkiel et al. 1993), inhibition of heat shock protein (hsp) expres-
sion (Nishizawa et al. 1999) and calcium sensitisation (below). Allopurinol treat-
ment reduces early changes in inflammation such as leukocyte activation by
reducing adherence, rolling and extravasation (Granger et al. 1989). Similarly,
animal studies in global cerebral ischemia-reperfusion have demonstrated that the
ROS lowering effect of allopurinol was not related to its XO inhibition activity but
rather due to its direct free radical scavenging activity. This was not evident with
febuxostat (Yamaguchi et al. 2015).

Animal studies in experimentally induced uveitis show that at very high doses
(up to 50 mg/kg), allopurinol behaves as a free radical scavenger with intrinsic
antioxidant properties. Crucially, this was only achieved far beyond the XO inhibi-
tion dose of 10 mg/kg and not at that dose itself.

2.6 Mechano-energetic Uncoupling

This phenomenon refers to an imbalance between left ventricular performance and
myocardial energy consumption (Kittleson and Hare 2005). The role of XO inhibi-
tion may either be to maintain cardiac output while reducing myocardial oxygen
consumption or even to increase cardiac output without increasing myocardial
oxygen consumption. In dogs with pacing-induced heart failure, allopurinol
improved myocardial contractility, efficiency in oxygen utilisation, prevented
increases in systemic vasoconstriction and ameliorates reductions in myocardial
contractility (Amado et al. 2005; Ekelund et al. 1999; Saavedra et al. 2002). In
murine post-ischaemic cardiomyopathy models, allopurinol attenuated the increase
in end-systolic and end-diastolic volumes (Naumova et al. 2006), increased survival,
augmented ventricular function as well as reduced products of lipid peroxidation
(Stull et al. 2004).
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Khan et al. found a direct protein-protein interaction between XO and neuronal
NOS in the sarcoplasmic reticulum of cardiac myocytes (Khan et al. 2004). Allopu-
rinol improved myofilament calcium sensitivity as contraction force increases with-
out a concomitant rise in systolic Ca2+ influx. The effects were not seen in
endothelial NOS-deficient mice suggesting a role for neuronal NOS preventing
XO inhibition of cardiac excitation-contraction coupling (Khan et al. 2004). The
finding that allopurinol is a potent myofilament Ca2+ sensitizer, particularly in the
setting of ischaemia, is thought to be due to the inhibition of basal XO production.
As with the previous study by Khan et al., Perez et al. found an almost exclusive
increase in force generation without a lowering of inward transient Ca2+ (Perez et al.
1998).

Despite the small sample size (n ¼ 9), Cappola et al. showed using cardiac
catheterisation that direct intra-coronary infusions of allopurinol in these patients
resulted in a marked decrease in myocardial oxygen consumption (MVO2) with no
decrease in the rate of left ventricular pressure rise (dP/dT), stroke work or ventricu-
lar load (Cappola et al. 2001). Patients post-CABG given allopurinol have also been
shown to require less inotropic support (Sisto et al. 1995).

As alluded to earlier, the most potent ROS-generating systems are the NADPH
oxidase and xanthine oxidase enzymes, and angiotensin II is the most potent inducer
of NADPH oxidase (Griendling et al. 1994; Harrison et al. 2003). However, as we
have previously demonstrated, patients already on an ACE inhibitor or an AT1
receptor blocker still derive improvement in vascular function from XO inhibition
suggesting that there is still a significant level of oxidative stress present even in
patients who are optimally treated with current evidence-based treatments (George
et al. 2006). These actions are summarised in Fig. 2.

3 Febuxostat

3.1 Pharmacokinetics

Febuxostat (2-(3-cyano-4-[2-methylpropoxyl]phenyl)-4-methylthiazole-5-carbox-
ylic acid) is a thiazolecarboxylic acid derivative, selective for inhibition of both
the oxidised and reduced forms of xanthine oxidase, and does not resemble a purine
or pyrimidine (Ernst and Fravel 2009). Febuxostat has selective affinity for both the
oxidised and reduced forms of xanthine oxidase, with an in vitro inhibition (Ki)
value of<1 nM (mean [SD], 1.2 [0.05] � 10�10) (Takano et al. 2005). The drug has
an oral bioavailability of 85% (Kamel et al. 2017), achieves maximum plasma
concentration in approximately 1.5 h and has a mean elimination half-life varying
between 1.3 and 15.8 h (Khosravan et al. 2006). Febuxostat is mainly metabolised
via glucuronidation (22–44% of the dose) and oxidation (2–8%) with only 1–6% of
the dose being excreted unchanged via the kidneys (Khosravan et al. 2006). There-
fore renal function is not a key determinant in its use. It is now recognised that
Febuxostat is at least as effective as allopurinol in urate reduction (Faruque et al.
2013).
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Data on the antioxidant effects of febuxostat are conflicting. Theoretically, it is a
better antioxidant agent as inflammatory/hypoxic conditions upregulate tissue XO
expression which results in sequestration and immobilisation of XO by endothelial
glycosaminoglycans (GAG) . Immobilised GAG-bound XO is resistant to allopuri-
nol but not febuxostat (Malik et al. 2011). Detailed crystallography studies revealed
that febuxostat reaction with XO is confined to critical amino acid residues in the
tunnel leading to the Mo cofactor, where it effectively blocks substrate access to the
active site (Okamoto and Nishino 2008). Thus, febuxostat should not be affected by
enzyme redox state and interaction with XO should not induce ROS formation
(Malik et al. 2011).

Animal models of renal ischemia-reperfusion have demonstrated amelioration of
ROS and therefore tubular injury and interstitial fibrosis by febuxostat (Tsuda et al.
2012). In studies using streptozocin-induced diabetic rat model, febuxostat reduced
both urinary 8-OHdG, significantly decreased renal infiltration of macrophages
resulting in reduced oxidative stress, transcription levels of inflammatory genes
(E-selectin and VCAM), inflammation-induced enzymes (COX-2), inflammatory
mediators (NF-kB) and renal cortical nitrotyrosine. This suggests a possible thera-
peutic effect for febuxostat in slowing deterioration of kidney function in the setting
of diabetic nephropathy (Lee et al. 2014).

In small studies of patients with gout, febuxostat has been shown to have superior
effects on oxidative stress and pulse wave velocity compared to low-moderate dose
allopurinol (Tausche et al. 2014). In a study of haemodialysis patients, febuxostat
was shown to significantly reduce high-sensitivity CRP and asymmetric
dimethylarginine (ADMA) levels and improve endothelial dysfunction (reduced
ADMA-mediated eNOS inhibition) compared to placebo (Alshahawey et al.
2017). Furthermore, the increase in ADMA levels and inhibition of nitric oxide
production seen with proton pump inhibitors (PPI’s) has been shown to be blunted
by febuxostat (Pinheiro et al. 2016). Febuxostat has also been shown to reduce other
markers of oxidative stress such as oxidised LDL and EPA/AA (eicosapentaenoic
acid/arachidonic acid) ratio (Sezai et al. 2013).

However when the impact of antioxidant defence is studied, febuxostat seems to
reduce both biological antioxidant potential (BAP) and ROS metabolites
(derivatives of reactive oxygen metabolites (d-ROMs) in equal measure (Fukui
et al. 2015). In a study of obese adults with Type 2 diabetic nephropathy, febuxostat
showed no effect on adipose tissue thiobarbituric acid reducing substances (TBARS)
and adiponectin concentrations (Beddhu et al. 2016).

Recent large multi-centre trials of febuxostat have been reported showing mixed
effects. The febuxostat for Cerebral and Cardiorenovascular Events Prevention
Study (FREED) trial (Kojima et al. 2019) met its primary composite cardiovascular
endpoint, but this was driven by a reduction in progression to renal dysfunction.
There was no evidence of cardiovascular or cerebrovascular event rate reduction
with febuxostat. This latter finding is consistent with the findings of the CARES
(Cardiovascular Safety with Febuxostat vs Allopurinol) trial (White et al. 2018)
which demonstrated no beneficial effect of febuxostat on cardiovascular events and
in fact demonstrated that all-cause mortality and cardiovascular mortality were
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higher with febuxostat than with allopurinol (hazard ratio for death from any cause,
1.22 [95% CI, 1.01 to 1.47]; hazard ratio for cardiovascular death, 1.34 [95% CI,
1.03 to 1.73]). However, as Choi et al. point out, the use of non-XOI or placebo
group is needed to determine whether the results of the CARES trial were due to the
beneficial effects of allopurinol or the deleterious effects of febuxostat (Choi et al.
2018). Other ongoing trials such as Febuxostat versus Allopurinol Streamlined Trial
(FAST) may provide some clarity to this issue.

3.2 Mechano-energetic Uncoupling

In a trial of hyperuricaemic patients undergoing cardiac surgery (NU-FLASH trial)
comparing febuxostat with low-dose (300 mg) allopurinol, patients in the febuxostat
arm showed significant reductions in systolic blood pressure, pulse-wave velocity
and LV mass index compared to allopurinol (Sezai et al. 2013).

4 Topiroxostat

Topiroxostat [4-[5-(4-Pyridinyl)-1H-1,2,4-triazol-3-yl]-2- pyridinecarbonitrile] is a
non-purine XOR inhibitor, approved in Japan in 2013 for the treatment of patients
with hyperuricaemia. There is limited experience internationally with this agent.
Topiroxostat behaves initially as a competitive type inhibitor to xanthine oxidore-
ductase before forming a strong covalent linkage to molybdenum via oxygen in the
hydroxylation reaction intermediate (Chen et al. 2016). It also displays a potent
non-covalent competitive type inhibition of XOR with a Ki value of 5.7 � 10�9 M
(Matsumoto et al. 2011). Topiroxostat has good oral bioavailability with a half-life
of up to 7.5 h after oral administration. It is predominantly eliminated in the urine. It
is a strong inhibitor of Cyp 2C9 and has no inducing effect on CYP enzymes.
Topiroxostat has a greater inhibitory effect on plasma XOR compared to tissue XOR
(the opposite is observed with febuxostat) (Nakamura et al. 2016).

Mouse models of minimal change nephrotic syndrome demonstrated that
nitrotyrosine and 8-hydroxy-2-deoxyguanosine (8-OHdG) were significantly
ameliorated by topiroxostat (Kawamorita et al. 2017). The recently reported
TROFEO trial (Sezai et al. 2017) in hyperuricaemic patients with cardiovascular
disease comparing the effects of febuxostat and topiroxostat showed similar urate,
antioxidant, anti-inflammatory and reno-protective effects for both drugs. The
renoprotective effects of topiroxostat for hyperuricemic patients with overt diabetic
nephropathy (ETUDE) study concluded that high-dose topiroxostat (160 mg/day)
significantly reduced L-Fatty Acid Binding Protein (FABP), a validated biomarker
of tubulointestitial damage and oxidative stress (Mizukoshi et al. 2018). There has
not been any direct head-to-head antioxidant effect comparison between allopurinol
and topiroxostat.

Table 2 summarises the current clinical trial evidence using XO inhibitors on
ROS and other CV outcomes.
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