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Abstract

Preclinical research struggles with its predictive power for drug effects in
patients. The clinical success of preclinically approved drug candidates ranges
between 3% and 33%. Regardless of the approach, novel disease models and test
methods need to prove their relevance and reliability for predicting drug effects in
patients, which is usually achieved by method validation. Nevertheless,
validating all models appears unrealistic due to the variety of diseases. Thus,
novel concepts are needed to increase the quality of preclinical research.

Herein, we introduce qualification as a minimal standard to establish the
relevance of preclinical models and test methods. Qualification starts with
prioritizing and translating scientific requirements into technical parameters by
quality function deployment. Qualified models use authenticated cells, which
resemble the corresponding cells in humans in morphology and drug target
expression. Moreover, disease models differ from normal models in the expres-
sion of relevant biomarkers. As a result, qualified test methods can discriminate
effects of treatment standards and the effects of weakly effective or ineffective
substances. Observer-blind readout, adequate data documentation, dropout inclu-
sion, and a priori power studies are as crucial as realistic dosage regimens for
qualified approaches. Here, we showcase the implementation of qualification.
Adjusting the level of model complexity and qualification to three defined phases
of preclinical research assures the optimal level of certainty at each step.

In conclusion, qualification strengthens the researchers’ impact by defining
basic requirements that novel approaches must fulfill while still allowing for
scientific creativity. Qualification helps to improve the predictive power of
preclinical research. Applied to human cell-based models, qualification reduces
animal testing, since only effective drug candidates are subjected to final animal
testing and subsequently to clinical trials.
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Abbreviations

3R Replacement, reduction, and refinement of animal experiments
ADME Absorption, distribution, metabolism, and excretion
AUC Area under the curve
CRISPR Clustered regularly interspaced short palindromic repeats
DXM Dexamethasone
EU European Union
FDA U.S. Food and Drug Administration
HOQ House of quality
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ICH International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use

iPS Induced pluripotent stem cells
LC Liquid chromatography
MS/MS Tandem mass spectrometry
N/TERT Human keratinocyte cell line
NASH Nonalcoholic steatohepatitis
OECD Organisation for Economic Co-operation and Development
QFD Quality function deployment
RhS Reconstructed human skin
STXM Scanning transmission X-ray microscopy

1 Current Efficiency in Preclinical Research

Despite major efforts in 3R from academia, industry, and legislation, the number of
animals being sacrificed in research every year still amounts to almost 9.4 and 1.8
million in the EU and Germany, respectively. Fundamental and applied research
account for 44% and 15%, respectively, of the animals in Germany (European
Commission 2019; Federal Ministry of Food and Agriculture 2019). Concomitantly,
preclinical testing often fails to collect data, being relevant for human patients.
Success rates in clinical trials are as low as 3% in oncology or 15% in neurology
and immunology and question the current methodology of assessing investigational
new drugs in preclinical science. The major shortcoming of preclinical research is
related to the complex architecture of organs like the brain or the immune system as
well as the heterogeneous nature of diseases. The translation from bench to bedside
is only sightly more successful for vaccines and drugs against cardiovascular and
infectious diseases (Table 1, Wong et al. 2019). Poor efficacy and safety stand out as
major reasons for the termination of drug development projects (Arrowsmith and

Table 1 Disease-group-related success rates (%) in clinical Phase 1 and overall (success in Phases
2 and 3) in clinical drug development; from Wong et al. (2019)

Disease groups
Clinical Phase 1 passed transfer
to Phase 2 (%) Overall success rate (%)

Oncology 57.6 3.4

Central nervous system 73.2 15.0

Autoimmune/inflammation 68.8 15.1

Metabolic/endocrinology 76.2 19.6

Genitourinary 68.7 21.6

Infectious disease 70.1 25.2

Cardiovascular 73.3 25.5

Vaccines 76.8 33.4

Ophthalmology 87.1 32.6
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Miller 2013), besides economic considerations of the pharmaceutical company
(Waring et al. 2015).

Despite the marked reduction of drug candidates in early and advanced preclini-
cal testing, still too many substances pass the preclinical phase but fail in clinical
studies. High numbers of volunteers and patients exposed to non-efficacious or
unsafe drugs demand a stricter preclinical selection. Recent developments in tissue
engineering should enable addressing these questions with human cell-based disease
models and rejecting unqualified drug candidates. Rethinking preclinical drug
development will avoid expendable applications to human and animal test subjects
and should reduce costs, from now 2,800 � 106 US dollars per year for preclinical
research that is not reproducible (DiMasi et al. 2016).

1.1 Phases of Preclinical Research

Preclinical drug research comprises all tests from drug discovery to the first-in-
human studies. The current approaches encompass in silico methods and high-
throughput screenings, tests in disease models and pharmacokinetic investigations
in vitro and in vivo, as well as regulatory toxicology and safety pharmacology
studies. Preclinical research starts with simple models to save time and costs,
while sophisticated approaches are used in later phases. This stepwise approach
could be grouped into three phases. We suggest summarizing in silico methods and
high-throughput screening in Phase I; simple pharmacological tests, regulatory
toxicology, and safety pharmacology in Phase II; and sophisticated pharmacokinetic
and pharmacodynamic tests in Phase III. Currently, animal experiments are predom-
inantly used in Phases II and III (according to our definition) and still remain the
backbone for preclinical drug research.

1.2 Models and Test Methods

Here, we define a preclinical model (normal, disease) as a system recapitulating the
hallmarks of the human tissue in animal or cell culture. A test method is an approach
to identify drug effects in the preclinical model, respectively. An efficient selection
of drugs, suitable for human use, requires a tiered procedure with models and test
methods that are as simple as possible but as complex as necessary. This means an
increasing complexity from Phase I to III.

2 Reasons for Poor Translational Success

Five reasons stand out from the causes which limit the translational success of
investigative new drugs from bench to bedside:
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• Animal models are confounded by a major gap between animal and human
biology (Seok et al. 2013; Warren et al. 2015). The animal-based disease fre-
quently aligns poorly with the human indication of interest. New technologies
like CRISPR/Cas offer new opportunities for more human-like disease models,
but transgenic mice and rats remain genetically engineered rodents, except for the
drug target.

• Heterogeneity is excluded, since young male animals from single inbred strains
are preferred (Hartung 2013). In contrast, diseases affect male and female, young,
adult, and senior patients with different genetic backgrounds.

• Currently, cell culture practice faces limitations with cells subcultivated in high
passages or not authenticated (Hartung 2007) and generally the lack of quality
control (OECD 2018).

• The use of cell lines can be unrepresentative of complex diseases. Moreover,
monolayer cultures lack the tissue-specific extracellular matrix (Nallanthighal
et al. 2019).

• Study design in preclinical research frequently does not apply to the same
standard as in clinical trials. In particular, randomization and blinding (van
Luijk et al. 2014) as well as statistical tests for differences are rarely considered.

• Quality assurance and validation for both the model itself and the pharmacologi-
cal test method appear to be expendable with respect to disease models, although
preclinical studies lack reproducibility (Begley et al. 2015; Simeon-Dubach et al.
2016).

Now the time has come to transform preclinical drug development into relevant
and reproducible research, while avoiding suffering animals wherever possible
(German Research Foundation 2019). Nevertheless, even less stressful testing in
the animal will not overcome the genetic differences between animals and humans.

Toxicologists have addressed this issue by the development and validation of
alternatives to animal testing (Leontaridou et al. 2017). Validated toxicological
methods use reconstructed human epidermis for the evaluation of skin corrosion
(OECD 2019a), skin irritation (OECD 2020), and phototoxicity (tier-2; OECD
2019b). Yet, it took about 25 years from the development of reconstructed human
skin (Green et al. 1979) to regulatory acceptance of the respective test methods, and
there is still a gap in fully accepting these in regulatory toxicology (Sauer et al.
2016).

Currently the so-called investigative toxicology shifts pharmaceutical toxicology
from a descriptive to an evidence-based, mechanistic discipline. Outside the
boundaries of regulatory toxicology, investigative toxicology embraces new
technologies to predict human responses. European leaders in the pharmaceutical
industry propose humanized in vitro test systems to improve preclinical decisions
(Beilmann et al. 2019). However, toxicity studies in animals remain essential for
regulatory toxicology because of the limited number of organs which can be
reconstructed and the approach to investigation of the whole organism is at its
infancy. In 2018 the European Medicines Agency started a consultation on the
regulatory requirements for drug development, and the pharmaceutical industry
requested harmonization with the US Food and Drug Administration.
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3 From Validation to Qualification

The ICH M3(R2) guideline clearly states that in vitro alternative methods can be
used to replace current standard methods, if validated and accepted by all regulatory
authorities.

3.1 Validation

A validation study provides the documented approval that a model or a test method
reproducibly shows the desired effect. The extensive requirements make validation
highly time-consuming and costly (Basketter et al. 2012) and might prevent innova-
tive methods from their application in preclinical drug development. Moreover, the
broad spectrum of drug effects and the heterogeneity of diseases increase the
complexity and stand against a timeline in using in vitro disease models.

The overarching goal of validation, proof-of-concepts, performance standards,
and best practice guidelines is to demonstrate the quality of a model or test method.
According to the Latin origin of qualitas, quality is defined by the nature of an
object. Modern perceptions of quality assume that quality must be produced rather
than assured in retrospective validations (Kamiske and Brauer 1993). Quality should
originate from a company- or research group-wide spirit with a clear vision of
quality; it is an inherent responsibility which cannot be delegated or outsourced, as
it is the basis of scientific and industrial success. To apply the vision of quality into
real work, management tools such as “quality management systems” or “failure
mode and effects analysis” have been developed for industrial applications and
recently translated to scientific and academic use (Dirnagl et al. 2018). Even
evidence-based medicine strives to improve model and test method development
(Lefevre and Balice-Gordon 2019). Most often the high aims of such guidance are
perceived to stand against scientific creativity, publication output, and fundraising.
Consequently, the compliance to such guidelines varies among research institutions
which might contribute to the overall low success of preclinical research.

Since the best strategy is useless if not applied, the two major questions to be
answered are:

• How to deploy quality planning and management in the development of novel
in vitro methods for preclinical research?

• Which level of certainty is required for the model and test method, respectively?

We suggest starting with compiling the scientific requirements, which a model or
test method must fulfill. According to the industrial definition “Quality is confor-
mance to customer requirements” (Crosby 1996), these scientific requirements
should be in accordance to the user of the model or test method, from industry or
academia.

34 M. Schäfer-Korting and C. Zoschke



3.2 Quality Function Deployment: Learning from Industry

A relevant model or test method depends on the quality of its planning. Researchers
aiming for a high impact and short time to application should focus on structured
method planning, since in industry 80% of product flaws, which are occurring during
product assembly and product use, originate from insufficient product design. The
car industry took major profit from introducing quality function deployment (QFD)
into the product planning. Thereby, QFD reduced the costs for product development
to 40% of the initial value and diminished the changes necessary to optimize the
original product design (Fig. 1).

The major parts of QFD include the formation of a quality planning team and the
correlation matrix “house of quality” (HOQ, Zoschke 2009). The quality planning
team should consist of the leading and first-stage researchers as well as technical
assistants to involve all concerned group members into the planning. The HOQ
fosters a systematic assessment, categorization, and prioritization of scientific
requirements and technical parameters and clearly documents the results of the
quality planning team’s discussion. To the best of our knowledge, QFD has not
yet been introduced to the development of in vitro models. Here, we present the first
example with the development of an immunocompetent model of head and neck
cancer for the evaluation of local drug effects (Fig. 2). The selection of scientific
requirements and technical parameters and their weighting are the author’s choice to
serve as an example to further develop a recently published tumor oral mucosa
model (Gronbach et al. 2020). However, the definition and weighting of
requirements and parameters must be adapted to the disease model or test method
of interest.

Fig. 1 Impact of quality function deployment in industry. The higher efforts and costs of structured
product planning with quality function deployment (QFD) in the beginning of a car development
are counterbalanced by shorter development times and less flaws of the product following start of
production. Transfer to in vitro model and test method development should reduce the time-to-
application similarly, from Zoschke (1993)
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Fig. 2 House of quality (HOQ) for an immunocompetent 3D model of head and neck cancer. red:
Scientific requirements with weighting. yellow: Technical parameters of the in vitro model. blue:
Correlation between scientific requirements and technical parameters. green: Importance of techni-
cal parameters. white: Interdependencies between technical parameters, from Zoschke (1993)
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First, the scientific requirements need to be listed in the left part (Fig. 2, red).
Since not all requirements are equally important, the next step is to prioritize them.
Therefore, a decision must be made for each requirement if it is less, equal, or more
important than the other requirement. Having done this paired comparison for all
requirements, a rank order of the requirements as well as a weighting factor will be
obtained. Next the technical parameters need to be listed in the upper part of the
HOQ (Fig. 2, yellow). Technical parameters can always be measured and quantified,
which makes them very specific in contrast to scientific requirements. Next, the
quality planning team determines the correlation between the technical requirements
and the scientific requirements. Use an exponential scale with 1 for little correlation,
3 for medium correlation, and 9 for strong correlation; multiply the correlation by the
weighting of the scientific requirements. The results are noted in the correlation
matrix (Fig. 2, blue). Furthermore, the direction of optimization of each technical
parameter is listed in the yellow part to better fulfill the scientific requirements. The
roof of the HOQ serves to list the interdependencies between each technical param-
eter, since the optimization of one parameter can affect the optimization of another
parameter synergistic or antagonistic (Fig. 2, white). If there is an antagonistic
interference between two technical parameters, this will be a major target for
innovation to overcome this antagonism. Moreover, in a synergistic interference,
the deterioration of one parameter can also impair the other. The target values for
each technical parameter are listed at the bottom of the correlation matrix (Fig. 2,
green). The values are either minima, maxima, or a range which should be achieved
for the in vitro model. The quality planning team can also assess the level of
difficulty to achieve these target values. The final output of the HOQ is the impor-
tance of technical parameters. Therefore, the weighted correlations between the
technical parameter and each scientific requirement are summed up. An overestima-
tion of single parameters can be avoided by dividing the sum of one technical
parameter by the sum of all technical parameters (relative relevance). Almost equally
relevant technical parameters should be clustered together. The technical parameter
with the highest value is most important, while the parameter with the lowest value
needs to be addressed at last. After completing the HOQ, the quality planning team
should check for plausibility by confirming that:

• Every scientific requirement correlates strongly to at least one technical parameter
(no empty rows)

• Every technical parameter correlates strongly to at least one scientific requirement
(no empty columns)

• The direction of optimization fits to the target value for each technical parameter
• Antagonistic technical interdependencies should be solved or prioritized
• The correlation matrix should be filled to at least one third to be able to prioritize

technical parameters.

Additionally, the HOQ can be extended by comparisons of the approach to
already existing models or test systems (Zoschke 2009). In conclusion, the HOQ
cannot take the decision for the researcher, but the HOQ helps to systematically
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translate vague scientific requirements into quantifiable and prioritized technical
parameters. According to QFD, the outcome of the HOQ is the basis for the planning
of the in vitro model or test method parts. Quality planning for the parts is the basis
for planning the processes, which is finally leading to the final test method protocol.
This deployment ensures the translation of the scientific requirements for the in vitro
model or test method into feasible protocols for each step of the model or method
development.

3.3 Qualification

We define qualification as minimal standard in model or test method development.
Qualification comprises the sum of evidences that a model or test method is relevant
for the disease at hand. Qualification is based on QFD and uses the state of the art in
tissue engineering and testing in molecular medicine and pharmacology. Qualifica-
tion does not replace validation but will provide a sufficient basis for decision-
making in preclinical drug development.

3.4 Qualification of 3D In Vitro Models

Irrespective of the envisioned use in fundamental research or drug development, a
qualified 3D in vitro model has to fulfill the following key features:

• Use of authenticated human cells
• Comparability between tissue morphology and function with the human disease
• Expression of drug targets in accordance to the human disease
• Concurring endpoints in models and patients, i.e., the change of biomarkers

relevant for disease outcome

If relevant for the disease at hand, assessing graded drug effects should be
preferred over simple yes or no assessments. The model features have to be repro-
ducible over time and in different laboratories. Qualification is not limited to disease
models but also applicable to models for normal tissue and the target structures used,
e.g., in molecular modeling and high-throughput testing. Moreover, we suggest
applying the same requirements for qualified normal models as described for
qualified disease models. On the one hand, the normal models will serve as control
to assess a potential restitutio ad integrum and on the other hand to provide insights
into local adverse effects of drugs.

3.5 Qualification of Test Methods

Test procedures need to be qualified for preclinical drug research. Changes observed
due to drug exposure are only signified if a suitable test protocol is used and the test
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is run under quality assurance. Protocol adaptations during larger test series have to
be avoided as they exclude comparisons over time. Hallmarks of a qualified test
method in all phases include if not indicated otherwise:

• Relevant controls
– Untreated
– If available, an already approved standard treatment with maximum efficacy

(Phase III only)
– If available, an already approved treatment with minimal efficacy (Phase III

only)
– A treatment that showed no or insufficient efficacy in clinical trials (Phase III

only)
• Observer-blind readout when using subjective endpoints
• Adequate data documentation, including dropouts
• Evaluation by explorative data analysis
• A priori definition of the relevant effect size and adapted sample size (power

study, Phase III)
• Relevant dosage regimen and treatment period (Phase III)

Test methods can be qualified only by a range of performance standards, which
are related to the respective drug targets. Thus, test methods designed for evaluating
anticancer drugs are unlikely to be suitable for evaluating, e.g., antimicrobial
endpoints. Yet, the transfer of a test method from one disease model to another
disease model appears easier to achieve than a qualification from scratch. Testing of
investigational new drugs with targets unrelated to the qualification process requires
a requalification for the new performance standards.

3.6 Selection of Relevant Drug Doses

Currently, the extrapolation of drug doses from animal studies to first-in-human
studies remains empirical. The most common approaches are dose-by-factor based
on no observed adverse effect levels (NOAEL or benchmark dose),
pharmacokinetically guided approaches, based on minimal anticipated biological
effect levels, pharmacokinetic-pharmacodynamic models, similar drug approach,
and data from human microdosing (Nair et al. 2018). Nevertheless, interspecies
differences impede the calculation of human equivalent doses from animal data,
despite of the introduction of correction factors.

A failed translation of preclinical dosage regimen into clinical treatments results
in severe toxicity, prolonged dose escalation procedures or patients exposed to
ineffective doses. Dose finding for anticancer drugs is in particular challenging,
since they have steep dose-response curves and narrow therapeutic windows
(Mathijssen et al. 2014). In vitro studies frequently use drug doses far higher than
the maximum tolerated dose in cancer patients (Smith and Houghton 2013) and
contribute to the highest attrition rate of anticancer drug candidates in clinical trials
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(Wong et al. 2019). Moreover, ambiguous dosing in cell culture experiments due to
different physical conditions, like volume of medium and number of cells used,
hamper the reproducibility of in vitro experiments in different phases of preclinical
research (Doskey et al. 2015).

Testing the efficacy of anticancer drugs in 3D in vitro models that recapitulate the
tumor-specific extracellular matrix is crucial to emulate the drug uptake and metab-
olism in the tissue. The dense tumor stroma with extracellular matrix and cancer-
associated fibroblasts (Mueller and Fusenig 2004; Minchinton and Tannock 2006) as
well as the high interstitial fluid pressure may reduce drug uptake into the tumor
despite their endothelial hyperpermeability (Saleem and Price 2008; Dewhirst and
Secomb 2017). Thus, the failure of anticancer drugs in 3D models despite drug
efficacy in monolayer cultures could be related to the absence of a tumor stroma
(Cruz Rodriguez et al. 2019).

The determination of the drug concentration which is high enough to be active in
3D in vitro models, e.g., by automated UHPLC-MS/MS approaches (Joseph et al.
2020), might help to improve the translation of preclinical into clinical dosage
regimen. Another approach uses time-dependent or maximum biomarker modula-
tion as the matching metric, rather than a minimal threshold concentration (Spilker
et al. 2017).

4 Current Strategies to Rethink Preclinical Drug Research

Our concept of qualification can be applied to various approaches in preclinical
research. We highlight already existing strategies using human cell-based 3D in vitro
models and novel test methods. These five strategies in preclinical research fulfill the
criteria of qualification to different extents.

4.1 Strategy 1: Characterized Cell Lines

Studying the N/TERT keratinocyte cell line provides a deep insight into the MAPK/
ERK pathway and revealed the impact of histone deacetylase modulation in skin
diseases like psoriasis, atopic dermatitis, and cancer (Robertson et al. 2012). Induc-
ing filaggrin knockdown in the N/TERT cell line and supplementing the Th-2
cytokine IL-31 result in a skin model with clinical signs of atopic dermatitis: fostered
Staphylococcus aureus colonization, increased IL-8 levels, and reduced human
β-defensin upregulation (van Drongelen et al. 2014a, b). Moreover, patient-derived
material served to generate an iPS cell line for future use of, e.g., in vitro atopic
dermatitis models in drug development (Devito et al. 2018).

In cancer research, human-based models revealed the impact of the dermal
equivalent and the presence of a basement membrane on melanoma invasion
(Commandeur et al. 2014). A 3D in vitro model of cutaneous squamous cell
carcinoma was generated from primary human keratinocytes and fibroblasts as
well as SCC-12 tumor cells, recapitulates the tumor histology, and predicts the
activity of ingenol mebutate (Fig. 3). Ingenol mebutate induced abundant epidermal
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cell necrosis, acantholysis, and microvesicles in normal RhS (Zoschke et al. 2016).
The epidermal growth factor receptor inhibitor erlotinib induced beneficial effects in
another model of cutaneous squamous cell carcinoma and induced severe desqua-
mation in the normal RhS (Commandeur et al. 2012).

This strategy is not limited to skin models but is also used for chronic kidney
disease models. A human podocyte injury model of chronic kidney disease indicated
that the renoprotection induced by sodium-glucose co-transporter 2 (SLGT-2)
inhibitors is linked to normalized podocytes renewal and not to the lowering of
blood glucose in type 2 diabetes. Correction of podocyte morphology and of
associated cytoskeletal architecture renews the adhesion to the glomerulus mem-
brane. Inhibitors of adenosine kinase reduce AMP formation and rescue cell adhe-
sion and the actin cytoskeleton (Abraham et al. 2017).

4.2 Strategy 2: Primary Cells to Recapitulate Human
Heterogeneity

An advanced 3D in vitro model of nonalcoholic steatohepatitis (NASH) was
designed by co-culturing primary human hepatocytes in collagen sandwich with
macrophages and stellate cells, separated by a porous transwell membrane (Fig. 4,
Feaver et al. 2016). Tissue exposure to glucose, insulin, and free fatty acids
corresponding to plasma levels in NASH patients repeatedly induced the lipotoxic
milieu by activating key pathways spanning liver dysfunction in the hepatocytes.
Triacylglycerides, diacylglycerides, cholesterol esters, and glucose levels increased
significantly, and markers of inflammation (alanine amino transferase and caspase-
generated cytokeratin 18, IL-6 and IL-8) as well as of fibrosis triggering TGF-β and
osteopontin did so, too. Moreover, the secretion of smooth muscle α-actin increased.

Next, the model was challenged by the exposure to steady-state serum levels of
obeticholic acid that targets the farnesoid X receptor in hepatocytes. The responses
were compared to the vehicle control and the outcome in a clinical Phase II study
(Hirschfield et al. 2015). Lipid accumulation declined by 25% with the most
significant decrease in triacylglycerides. IL-6 and IL-8 declined significantly by
48% and 25% and other parameters of NASH including TGF-β and osteopontin
were also reduced, indicating beneficial effects. Yet, intracellular cholesterol and
several apolipoproteins including ApoB and ApoE increased (Feaver et al. 2016).

The interim analysis of 931 patients after 18 months treatment in clinical Phase
III study “REGENERATE” indicated a significant improvement of key NASH
factors and fibrosis by obeticholic acid 25 mg/d compared to placebo (Younossi
et al. 2019). According to the positive outcome of the interim analysis, rapid drug
EMA approval of obeticholic acid for NASH is applied for. The improvement of the
intermediate endpoint (histology of liver biopsies) regarded as risk factors for the
long-term outcome might be acceptable despite the lack of formal validation of
intermediate clinical endpoints (Angulo et al. 2015). Yet already today, the Phase III
study demonstrates the predictive power of this NASH model.
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Another NASH model used hepatic cells generated from human skin-derived
precursors. Exposure of these cells to lipogenic (insulin, glucose, fatty acids) and
pro-inflammatory factors (IL-1β, TNF-α, TGF-β) resulted in a characteristic NASH
response. Elafibranor attenuated in vitro key features of NASH and significantly
lowered the lipid load as well as the expression and secretion of inflammatory
chemokines, being responsible for the recruitment of immune cells in vivo. This
reduction in inflammatory response was mediated NFκB (Boeckmans et al. 2019).
The clinical outcome, however, failed to meet the hepatic endpoint (Ratziu et al. 2016).

Treatments for end-stage liver disease, nonalcoholic liver disease in particular,
are allograft liver or hepatocyte transplantation. Main obstacles are donor organ
shortage and the need for efficient immunosuppression. While hepatocytes are more
available than entire livers, the transplantation of hepatocytes tends to be less
successful and requires more immunosuppression than the organ replacement.
Allogeneic hepatocytes appear to be highly antigenic; alternatively, liver sinusoid
endothelial cells or hepatic stellate cells may induce a loss of the antigenicity of
hepatocytes in an allogeneic environment (Iansante et al. 2018). Immunosuppressive
therapy following hepatocyte and liver transplantation include calcineurin inhibitors
(cyclosporine, tacrolimus), everolimus, glucocorticoids, and basiliximab.

The suppression of immune responses was studied in a co-culture of primary
human hepatocytes and allogeneic peripheral blood mononuclear cells (PBMC).
Hepatocytes were isolated from six patients undergoing partial hepatectomy and
grown as monolayers, while PBMC were isolated from blood of healthy donors and
were added to the hepatocyte culture. Drug concentrations matched blood levels in
patients receiving solid organ transplantation. Hepatocyte co-culture for 10 days
strongly enhanced PBMC proliferation, and the secretion of Th-2 cell-associated
cytokines strongly increased. Immunosuppressive drugs like everolimus efficiently
suppressed the pro-inflammatory responses. A reduced metabolic activity of the
hepatocytes, however, may indicate a potential toxicity of everolimus (Oldhafer
et al. 2019). This interesting model demonstrates the immunosuppressive activity of
the clinically used drugs. Given the correct identification of agents failing in the
prophylaxis and therapy of allogenic rejections, the test may enable preclinical drug
research on drug candidates most suitable for use in hepatocyte transplantation. The
introduction of the missing innate immune system may improve predictive capacity.
Moreover, these insights may allow for a pretest of the suitability of hepatocytes
from donor livers for transplantation. Currently, hepatocytes are often isolated from
livers unsuitable for transplantation, which appears to explain the lower success rate
compared to liver transplantation (Iansante et al. 2018).

Primary cells are also essential to study the heterogeneity of aging processes and
to evaluate differences in drug effects within the groups of aging. Monolayer
cultures of fibroblasts from intrinsically aged human skin exhibited more signs of
aging including DNA segments with chromatin alterations reinforcing senescence
versus dermal fibroblasts from middle aged and young donors. Forty-three proteins
confirmed the known hallmarks of aging and led to a consistent picture of eight
biological categories involved in fibroblast aging, e.g., development and differentia-
tion, cell death, and response to stress. Most of the age-associated alterations are
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likely caused posttranscriptionally (Waldera-Lupa et al. 2014, 2015). Next,
fibroblasts from the donors aged 20–30 or 60–70 years were used to investigate
the impact of age and body region on skin homeostasis, epidermal differentiation,
and drug uptake on cell monolayers and reconstructed human skin. Fibroblasts from
juvenile foreskin (<10 years old) served as control. 3D in vitro models containing
aged fibroblasts differed from its juvenile and adult counterparts, especially in terms
of the dermal extracellular matrix composition, IL-6 levels, and wound healing
(Fig. 5). The region of the body from which fibroblasts are derived appears to affect
the epidermal differentiation of the construct. Emulating patient heterogeneity in
preclinical studies might improve the treatment of age-related skin (Hausmann et al.
2019).

4.3 Strategy 3: Patient-Derived Cells

The access to patient-derived cells is limited, and only a few subcultivations are
feasible without cellular dedifferentiation. Plucking hair follicles offers a noninva-
sive approach for the generation of skin disease models. Only minor differences in
morphology, ultrastructure, expression of important structural proteins, or barrier
function are observed between normal reconstructed human skin and the in vivo
counterpart generated from hair follicle-derived or interfollicular keratinocytes and
fibroblasts (Löwa et al. 2018). Next, fibroblasts were isolated from plucked scalp
hair follicles of six healthy volunteers and six atopic dermatitis patients. Some of the
RhS with fibroblasts from atopic dermatitis patients show epidermal thickening and
parakeratosis independent from filaggrin mutations. Moreover, the thymic stromal
lymphopoietin and protease-activated receptor 2 are significantly upregulated in
hyperproliferative RhS (Löwa et al. 2020).

For cancer research, tumor cells are used to generate patient-derived organoids
in vitro and patient-derived xenografts in vivo. One of the largest collections of
patient-derived material is the OncoTrack preclinical platform for colorectal cancer.

Fig. 5 Impact of normal human dermal fibroblast culture (fibroblast monolayers and reconstructed
human skin) on gene expression. (a) Venn diagrams showing the number of genes altered due to
culture conditions. (b) Hit ratios of the altered genes for different biological processes. The
diagrams consider fold changes in gene expression > |1.3| and Ct values � 35 for the 19 groups
of biological processes; the maximum proportion of altered gene expression per biological process
(hit ratio) ¼ 1; from Hausmann et al. (2019)
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The biobank consists of 116 resected tissue samples with matched blood samples,
comprising 89 primary tumors (stage I to IV) and 27 metastases from 106 patients.
Organoids and xenografts are treated with drugs representing the therapeutic gold
standard and experimental substances that address major pathways relevant in
colorectal cancer. The OncoTrack study provides an unprecedented repository of
data and models, which can be exploited further for improved drug discovery and
understanding of cancer biology (Schütte et al. 2017).

4.4 Strategy 4: New Technologies in Tissue Engineering

The ongoing change in drug development will significantly increase the need for
standardized tissues in high numbers. Bioprinting of the tissues, in particular, has the
potential to enhance the delivery of the essential test platforms. For example,
functional cardiac constructs can be printed. The inclusion of conductive gold
nanorods improved the electrical propagation between adjacent cardiomyocytes
(Zhu et al. 2017). Inter alia, bioprinted cardiac tissue reflects the activity of
β-adrenoceptor and m-receptor antagonist as well as the reversibility of the effects
after removal as reviewed recently (Lind et al. 2017). Bioprinting allows for the
generation of models closer to the human morphology and the control of culture
environment. Injecting the cell suspension into a micromold can ensure cell cluster
growth sufficient nutrient supply to avoid cell death and the formation of blood
vessel (Huh et al. 2013; Prabhakarpandian et al. 2013; Hagiwara and Koh 2020).

Transforming the human-on-the-chip technology to the patient-on-the-chip by
the use of miniaturized disease models is ahead of us. For example, a cancer chip has
been developed for drug testing in a vascularized tumor model (Nashimoto et al.
2020). Tissue banks, providing vital tissues and replicable cells of defined quality
over years (Palechor-Ceron et al. 2019), should allow the inclusion of human
heterogeneity into Phase III of preclinical drug development.

The implementation of human-based testing may even open up the path to
improve the therapeutic outcome of the most severe, non-acute diseases by
personalized therapy.

4.5 Strategy 5: Comparing New Test Methods to Current
Standards

The ongoing introduction of high-end analytics will allow for a much more detailed
insight into pharmacokinetics and pharmacodynamics. Recently the label-free quan-
tification of drugs at the highest local resolution of 70 � 5 nm became possible by
scanning transmission X-ray microscopy (Fig. 6a, Yamamoto et al. 2015, 2017).
STXM and LC-MS/MS quantified dexamethasone equally in reconstructed human
skin (Fig. 6b). Moreover, this study compared the drug penetration into
reconstructed human skin with human and SKH1-mouse skin ex vivo. SKH-1 is
reported to be the most human-like (Radbruch et al. 2017). The inter-model
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comparison revealed an overall similar dexamethasone uptake with minor
differences in the penetration rate (Fig. 6c, Wanjiku et al. 2019).

5 Phases of Innovative Preclinical Drug Research

To keep the efforts for the qualification of novel models and test methods as low as
possible, we suggest categorizing preclinical research in three phases and defined the
requirements for qualified approaches accordingly (Fig. 7). Human cell-based
models are preferred in all phases of preclinical testing. The combination of different
in vitro models will provide higher levels of predictive power than relying on only
one sophisticated model. Although human cell-based models are already
revolutionizing fundamental and applied research, today, the entire organism cannot
be recapitulated in vitro. Although animal tests have the clear advantage of getting
an insight into systemic drug effects, risk will remain as seen in the almost fatal

Fig. 6 Dexamethasone penetration of RhS, human, and murine skin determined by LC-MS/MS
and STXM. Dexamethasone (DXM) in hydroxyethyl cellulose gel (600 μg/cm2 DXM, 70%
ethanol) was applied topically for up to 300 min. (a) Spatial analysis of DXM concentrations in
human skin and RhS (STXM) following 10 min of exposure. Tissue surface: 0 μm. (b) STXM
quantification shows the same skin penetration results as observed by LC-MS/MS for t � 100 min.
(n ¼ 1). (c) DXM slowly penetrates into human skin compared to murine skin and RhS. Grouped
bars in order from left to right: human skin (H), murine skin (M), reconstructed human skin (R).
Stacking order from top to bottom: epidermis (dark), dermis (light), heat separation water (white;
human and mouse). LC-MS/MS measurements, mean � SD, n ¼ 3, from Wanjiku et al. (2019)
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cytokine release in the first-in-human study of TGN 1112 (Costello et al. 2018). To
date, we consider final toxicology testing in animals prior to first-in-human studies
indispensable for those drug candidates which passed preclinical efficacy tests.

5.1 Preclinical Phase I

In Phase I, physicochemical parameters of drug candidates like molecular size and
hydro-/lipophilicity are the basis for in silico methods like molecular modeling, read-
across, and quantitative structure-activity relationship screening. This is exemplified
by the in silico identification of hit and lead structures for G-protein-coupled
receptors (Wacker et al. 2017) as well as by recent breakthroughs in the treatment
of HBV, HCV, and HIV as well as of cancer and severe eosinophilic asthma.

The vast knowledge of essential physicochemical features of drugs (Egner and
Hillig 2008) helps to predict their bioavailability and the drugability of the pharma-
cological target (Zuang et al. 2018). Progress in machine learning allows calculating
drug absorption, distribution, metabolism, and excretion very quickly (Tao et al.
2015).

Fig. 7 Assumed impact of qualification on the predictive power of preclinical research. iPS
induced pluripotent stem cells
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Subsequently, high-throughput screening provides a first insight into the profile
of drug effects. Moreover, biotransformation has to be assessed. The metabolism of
substances into carcinogenic intermediates would complicate the therapeutic use of
this drug candidate. Furthermore, the FDA has recently published a guidance
document to plan and evaluate studies on drug-drug interactions (FDA 2020).

Focusing on anticancer drugs, screening can be done in authenticated well-
characterized human tumor cell lines, but the genetic aberrations and epigenetic
modifications will increase with the number of subcultivations. The effects of the
tumor-specific extracellular matrix on tumor progression and drug efficacy cannot be
captured by monolayer cultures at all. Tumor cell lines are known to be more
sensitive to drug treatment than patients, as observed in the false-positive prediction
of effects for more than 90% of the test agents in large surveys (Palechor-Ceron et al.
2019).

If substances appear active without severe adverse effects in Phase I, the drug
candidate will pass to Phase II preclinical development.

5.2 Preclinical Phase II

The desired drug effects predicted by in silico approaches and high-throughput
screening need to be verified in qualified models that reflect the human disease.
Using the right targets, adequate biomarkers and endpoints will allow narrowing the
panel of drug candidates generated in Phase I. Models in Phase II include different
cell types, extracellular matrix, and tissue architecture to obtain a more precise effect
profile of the drug candidate. However, the complexity of models should increase
stepwise with models in Phase II still based on co-cultures of cell lines and/or iPS
cells (Zoschke et al. 2016; Wolff et al. 2019). Another example is the investigation in
the barrier function of skin models generated from the N-TERT keratinocyte cell
line, which corresponds to skin models generated from primary human cells (van
Drongelen et al. 2014a). Yet, the filaggrin knockdown did not alter stratum corneum
lipids in the cell-line-based skin models (van Drongelen et al. 2013), but in primary
cell-based, skin models (Vávrová et al. 2014). Slight deviations to the human patient
as well as the loss of patient heterogeneity will be tolerated in Phase II studies to
limit the numbers of repeats, necessary to observe effects with statistical signifi-
cance. Nevertheless, disease models in Phase II need to be qualified as outlined in
the qualification section.

5.3 Preclinical Phase III

Models in Phase III include different cell types, extracellular matrix, and tissue
architecture to obtain a more precise effect profile of the drug candidate. Testing in
Phase III needs to consider patient heterogeneity by using primary human cells as
well as pharmacodynamics and pharmacokinetics. Models and test protocols must be
qualified for predicting human responses.
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The lack of sufficient amounts of patient-derived cells is increasingly addressed
by the establishment of various biobanks (Simeon-Dubach et al. 2016; Palechor-
Ceron et al. 2019), but cannot satisfy the needs yet. Together with potential ethical
concerns in biopsy taking, e.g., in children, this limitation further supports testing
only the most promising drug candidates in on primary cell-based models in Phase
III. Current approaches to retransform iPS cells of various donors might facilitate the
use of patient-derived material, but the potential dedifferentiation as well as the fact
that all these cultures are juvenile (embryonic) tissues already showed some
limitations in aging research (Christensen et al. 2018).

The use of flow-through chambers in organ-on-a-chip cultures continuously
supplies fresh medium, removes waste, and induces sheer stress related to the
blood flow (Prantil-Baun et al. 2018). These dynamic culture conditions increase
the cultivation times to 28 days, potentially useful for evaluating the efficacy and
toxicity of several treatment cycles. Moreover, microfluidic platforms are suitable to
investigate cancer metastasis (Lin et al. 2020) as well as hematopoietic stem cells
(Sieber et al. 2018). The human-on-the-chip technology can connect several tissue
chambers to an in vivo organ system (Maschmeyer et al. 2015).

The major challenge in preclinical drug development will be the transition to the
patient-on-the-chip. Beyond efficacy testing, the consideration of the higher vulner-
ability of patients can provide a more relevant toxicological risk analysis, currently
lacking in preclinical toxicity testing (Menshykau 2017). Finally, the drug
candidates need to pass the standard tests of regulatory toxicology and safety
pharmacology.

In particular, Phase III studies must be conducted in accordance to clinical trial
protocols: blinding, randomization, and proper controls. Dosage should consider
both the effective concentrations as derived from Phase I and II studies as well as
pharmacokinetic calculations of Phase I.

6 The Price of Quality

The implementation of qualification and quality function deployment into model or
test method development involves higher costs in the beginning and might slow
down the time to the first publication. Moreover, these concepts require the avail-
ability of clinical data. Taking the development of models for skin aging as an
example, reliable clinical data are scarce (Hausmann et al. 2020). Preclinical models
for evaluating drug effects can hardly be better than the clinical knowledge of the
disease. Once human cell-based in vitro models have been qualified, their modular
design offers the opportunity to manipulate single parameters to better understand
the underlying mechanisms of the disease. Despite several strategies in nonclinical
research that already use parts of qualification, the final proof-of-concept is still to be
awaited. Therefore, we suggest developing and qualifying a disease model first and
perform a full validation subsequently. The best proof of our concept will be an
increased success rate of investigative new drugs in clinical trials that have been
evaluated before by qualified models in preclinical drug development.
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The time of wasting costs and time for poorly predictive models and test methods
in preclinical research should come to an end. The increased efforts in model
development will pay off, since publishing “just another disease model” will cost
more time and money than developing a model and test method that fulfill and have a
real impact on preclinical research.
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