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Abstract

Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation
of the metabolic syndrome (MetS) and comprises one of the largest health
threats of the twenty-first century. In this chapter, we review the current state of
knowledge of NAFLD and underline the striking similarities with atherosclerosis.
We first describe current epidemiological data showing the staggering increase
of NAFLD numbers and its related clinical and economic costs. We then provide
an overview of pathophysiological hepatic processes in NAFLD and highlight
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the systemic aspects of NAFLD that point toward metabolic crosstalk between
organs as an important cause of metabolic disease. Finally, we end by
highlighting the currently investigated therapeutic approaches for NAFLD,
which also show strong similarities with a range of treatment options for
atherosclerosis.
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Abbreviations

ALT Alanine transaminase
ASK1 Apoptosis signal-regulating kinase 1
CCR2/CCR5 C-C chemokine receptor type 2/C-C chemokine receptor 5
CKD Chronic kidney disease
CPT-1 Carnitine palmitoyltransferase 1
DPP4 Dipeptidyl peptidase-4
ESLD End-stage of liver disease
FXR Farnesoid X receptor
GCKR Glucokinase regulator
GLP1R Glucagon-like peptide-1 receptor
HCC Hepatocellular carcinoma
HDL High-density lipoproteins
HmG-CoA 3-Hydroxy-3-methylglutarylcoenzyme A
HR-QOL Health-related quality of life
KCs Kupffer cells
LDL Low-density lipoproteins
LPS Lipopolysaccharide
LSECs Liver sinusoidal endothelial cells
LXR Liver X receptor
MetS Metabolic syndrome
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
OCA Obeticholic acid
oxLDL Oxidized low-density lipoproteins
PBPLA3 Patatin-like phospholipase domain-containing 3
PCOS Polycystic ovary syndrome
PPARα Peroxisome proliferator-activated receptor alpha
ROS Reactive oxygen species
SGLT2 Sodium-glucose transport protein 2
SREBP1c Sterol regulatory element-binding protein 1
T2DM Type 2 diabetes mellitus
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THR Thyroid hormone receptors
TM6SF2 Transmembrane 6 superfamily 2
UDCA Ursodeoxycholic acid
VLDL Very low-density lipoprotein

1 Epidemiology

1.1 Definition, Prevalence, and Incidence of NAFLD

Being the most prevalent chronic liver disease worldwide (Li et al. 2019),
nonalcoholic fatty liver disease (NAFLD) covers a diseases spectrum, initiating
with hepatic steatosis which is defined by the presence of �5% hepatic fat
(referred to steatosis) in the absence of any secondary cause of hepatic
steatosis such as chronic viral hepatitis and alcohol consumption (21 drinks/week
in men and 14 drinks/week in women) (Chalasani et al. 2012, 2018). In a
second, more advanced stage, hepatic steatosis may advance into nonalcoholic
steatohepatitis (NASH), which is characterized by a combination of hepatic steatosis
and inflammation in the presence or absence of fibrosis. Finally, NASH can progress
into advanced-stage liver diseases such as cirrhosis and hepatocellular carcinoma
(HCC) (Angulo 2002; Anstee and Day 2013; Calzadilla Bertot and Adams 2016;
Chalasani et al. 2018; Fazel et al. 2016; Jou et al. 2008; Sayiner et al. 2016; Younossi
and Henry 2016; Younossi et al. 2018a). Being the hepatic component of the
metabolic syndrome (MetS) (Chalasani et al. 2012), NAFLD is commonly
associated with other metabolic disorders such as obesity, which is also linked to
the development of cardiovascular diseases such as atherosclerosis (Chalasani et al.
2018; Paoletti et al. 2006). Considering these links between NAFLD, obesity, and
atherosclerosis, it is no surprise that NAFLD has become the most prevalent
liver disease worldwide (Li et al. 2019).

Indeed, in the last three decades, the prevalence of NAFLD has increased at
a constant rate. Numbers from a study from Younossi et al. showed the evolution
of NAFLD prevalence in the United States from 1988 to 2008 ranging from 5.51%
(1988–1994) to 9.84% (1999–2004) and 11.01% (2005–2008), indicating a twofold
increase over two decades (Younossi et al. 2011a). At a global level, it is currently
estimated that NAFLD affects about 25% of the general population. At the other
hand, NASH has been calculated at 2–5% of the general population and so far
represents the minority of NAFLD patients (10–20%) (Younossi et al. 2016a).
However, while hepatic steatosis seems less harmful for the liver, patients suffering
from steatosis are at increased risk for cardiac-related death (Targher et al. 2016).
Therefore, steatotic patients should be monitored even at an early stage of the
disease. For the future, Estes et al. predicted the NAFLD population to increase
with 21% in 2030, expecting a staggering 100.9 million NAFLD patients, of which
27.00 million patients would also suffer from NASH, the latter indicating a 63%
increase in prevalence compared to current numbers (Estes et al. 2018).
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From a regional perspective, the pooled incidence of NAFLD in the West (being
Europe and Northern America) was estimated to be 28 per 1,000 persons per year
(Chalasani et al. 2018; Younossi et al. 2016b). As mentioned previously, NAFLD
has been reported as the most common liver disease in the United States (Bellentani
and Marino 2009). However, within the Asian population, recent metadata also
indicated the global incidence rate of NAFLD at 50.9 cases per 1,000 individuals
per year (Li et al. 2019). Indeed, while it was initially perceived as a “Western
disease,” NAFLD is now highly prevalent in all continents with the highest rates
reported in South America (31%) and the Middle East (32%), followed by Asia
(27%), the United States (24%), and Europe (23%), while being less common
in Africa (14%) (Younossi et al. 2016b).

Taken these numbers into account, and especially those indicating the exponen-
tial increase of NASH patients, it is clear that NAFLD poses one of the largest
burdens on current healthcare systems, emphasizing the urge for early and fast
treatment to prevent further escalation of this disease.

1.2 Association with Other Diseases

NAFLD has been reported to be strongly linked to obesity, with a prevalence as
high as 80% in obese patients and only 16% in individuals with a normal BMI
and without metabolic risk factors (Bellentani et al. 2000; Williams et al. 2011).
Relevantly, obesity seems to play a role in both the initial process leading to simple
steatosis but also to its progression toward NASH (Polyzos et al. 2017). Indeed,
it has been demonstrated that the risk of NASH development is lower in lean
than overweight/obese individuals (Sookoian and Pirola 2018). Next to NASH,
also patients suffering from hepatic fibrosis tend to be rather obese than non-obese
(86% vs. 27%, respectively) (Fassio et al. 2004).

Besides obesity, it has been suggested that NAFLD is also tightly linked to
cardiovascular diseases (Patil and Sood 2017). Recently, clinical observations
indicated that NASH increases atherosclerosis and cardiovascular risks by local
overexpression of inflammatory mediators, endothelial damage, and regulators of
blood pressure (Targher et al. 2009, 2010). Others confirmed that NAFLD is
independently associated with atherosclerosis progression (Targher et al. 2010).
Additionally, other studies demonstrated that NAFLD patients have impaired
flow-mediated vasodilatation (Villanova et al. 2005), increased carotid artery
intimal-medial thickness and an increased prevalence of carotid atherosclerotic
plaques compared to healthy subjects (Sookoian and Pirola 2008), independently
of obesity and other established risk factors. These observations therefore emphasize
the link between NAFLD and atherosclerosis.

Additionally, NAFLD has also been suggested as a risk factor for gastrointestinal
tract malignancies, such as colorectal cancer (Lindenmeyer and McCullough 2018;
Muhidin et al. 2012; Wong et al. 2011). Also, NAFLD is also associated with
chronic kidney disease (CKD) (Musso et al. 2014), which is defined by the presence
of kidney damage or a reduced glomerular filtration rate for 3 months or more
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(Levey et al. 2005). Specifically, it has been suggested that the prevalence of CKD
in NAFLD patients is between 4 and 40% (Marcuccilli and Chonchol 2016).
This association has been partly explained by the NAFLD-associated microvascular
alterations that also affect the kidney (Musso et al. 2016). Moreover these
microvascular alterations have been linked to cerebrovascular disease, potentially
contributing to cognitive impairment (Lombardi et al. 2019). Finally, polycystic
ovary syndrome (PCOS), a condition that leads to the production of higher-than-
normal amounts of male hormones in women, is also associated with NAFLD
(Vassilatou 2014; Wu et al. 2018a). However, the clinical significance and its
pathophysiological basis remain to be further investigated.

1.3 Clinical, Economic, and Social Burden of NAFLD

In spite of its increased prevalence over the last decades, to our knowledge, the
clinical burden of NAFLD has not been characterized in detail (Boursier et al. 2018;
Lam et al. 2016; Mullerova et al. 2019; Welte et al. 2012). Notwithstanding
that all stages of NAFLD contribute to its clinical burden, the more progressive
stages of NALFD are expected to have the largest impact (Sayiner et al. 2016).
As a progressive form of NAFLD, NASH is currently the second leading cause
for liver transplantation in the United States and even the leading cause for liver
transplantation in females (Noureddin et al. 2018). Furthermore, it is known that
NAFLD has become one of the leading causes for cirrhosis (Kadayifci et al. 2008),
the end-stage liver disease which is associated with high risks for development of
bacterial infections leading to hospitalization (Albillos et al. 2014; Li et al. 2018;
Singal et al. 2014). Additionally, the presence of advanced fibrosis (stage �2) in
NAFLD has been directly associated with liver-related mortality (Angulo et al. 2015;
Younossi et al. 2011b). There is also accumulating evidence that NAFLD is an
important risk factor for hepatocellular carcinoma (HCC), which is the fifth most
common type of cancer and third most common cause of cancer mortality (El-Serag
and Rudolph 2007; Piscaglia et al. 2016; Younossi et al. 2015a). Translating the
latter described observations into exact numbers, a recent study showed that in 2015,
28,000 deaths (2.2% of all deaths in the NAFLD population) were related to
cirrhosis, HCC, or liver transplantation, while 162,560 deaths (accounting for
12.8% of all NAFLD deaths) were due to cardiovascular diseases (Angulo et al.
2015; Ekstedt et al. 2015). Indeed, these data point toward an important role for
cardiovascular diseases in NAFLD-related mortality. In line with the previously
estimated increased prevalence of NAFLD in the future, reports have indicated that
the total number of deaths resulting from NAFLD will increase 44%, reaching 1.83
million deaths at an annual basis by 2030 (Estes et al. 2018). Regarding to the
healthcare expenditure, Lam et al. demonstrated that more frequent clinical visits are
associated with improved outcomes in pediatric NAFLD patients, substantiating the
importance of frequent monitoring and follow-up to manage NAFLD progression
(Lam et al. 2016). Moreover, Boursier et al. evaluated the hospitalization
of NAFLD-/NASH-related end-stage liver disease (ESLD) patients by a 7-year
follow-up study in France. This report described that ESLD patients experience
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more hospitalization per year (over 400%), which are longer (400% increase in
length) and are associated with a 300% increase in hospitalization costs (Boursier
et al. 2018). These numbers therefore indicate the gigantic investments that are
required to manage NAFLD.

In line with the increasing prevalence of NAFLD, the economic costs related to
NAFLD have also been predicted to rise in the future. In the United States alone,
approximately 103 billion dollars are annually spent on NAFLD-related costs, while
in European countries (i.e., France, the United Kingdom, Germany, and Italy), these
costs account for approximately €35 billion (Abdelmalek 2016). Of particular
concern is the rising prevalence of obesity as well as the increase in general
healthcare costs, which contributes to a tenfold increase in the current economic
burden of NAFLD by 2025 (Abdelmalek 2016; Younossi et al. 2016a). Several
studies also investigated the relationship between NAFLD patients and healthcare
utilization and associated costs. These studies demonstrated that the number of
outpatient visits for patients with NAFLD significantly doubled over time and
underlined the fact that, between 2005 and 2010, the healthcare costs of inpatients
and outpatients were increased 5% and 10%, respectively (Baumeister et al. 2008;
Younossi et al. 2014, 2015b). Additionally, a study of the hepatology clinics in the
West Suffolk area of the United Kingdom showed that the total annual hepatology
budget for these specialized clinics was £130,000, including £58,000 for resources
and £72,000 for clinic attendances. Moreover, the latest research estimating the
economic burden of NASH patients by using a Markov decision analytic model
demonstrated that lifetime costs of all NASH patients was approximately $222.6
billion in the United States in 2017, with $95.4 billion reflecting the advanced NASH
population (Younossi et al. 2019).

From an individual perspective, NALFD patients have to contend with a range
of symptoms such as fatigue, decreased physical activity, and emotional
health impairment which affect their quality of life (health-related quality of life
(HR-QOL)) (Golabi et al. 2016; Loria et al. 2013; Younossi and Henry 2015, 2016).
Several studies have demonstrated that NAFLD patients had poorer HR-QOL
compared to other chronic liver diseases and also showed that NAFLD-related
fatigue associated with impairments in physical functioning (Afendy et al. 2009;
Dan et al. 2007; Newton et al. 2008). Potential explanations for the decrease of
HR-QOL in NAFLD patients that have been raised are related to obesity and
psychological processes as well as psychiatric issues such as depression and anxiety
(Stewart and Levenson 2012; Surdea-Blaga and Dumitrascu 2011; Weinstein et al.
2011). Indeed, several studies have demonstrated that depressive disorders, as
well as anxiety disorders, are more frequent in patients with NAFLD/NASH
and are associated with more advanced liver histological abnormalities, such as
severe hepatocyte ballooning (Elwing et al. 2006; Macavei et al. 2016; Stewart
et al. 2015; Weinstein et al. 2011).

Altogether, these numbers substantiate the impact of NAFLD on healthcare,
economy, and also the daily life of individual patients. To prevent further escalation
of the disease, it is therefore of utmost importance to increase the understanding
of the disease to find approaches to diagnose and treat (and if possible prevent) the
progression of NAFLD.
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2 Pathophysiology of NAFLD

As NAFLD comprises a spectrum of diseases, multiple pathophysiological
processes are involved including dysregulation of lipid metabolism, increased
hepatic inflammation, and the presence of hepatic fibrosis. However, how patients
with steatosis develop inflammation is still unclear, leaving a blind spot in
the understanding of how NASH exactly arises. Nevertheless, scientists have
succeeded in unraveling several disease processes in NALFD, which appear
to show striking similarities with disease processes described in atherosclerosis.
Furthermore, increasing evidence links different metabolic organs to NAFLD
development, emphasizing the presence of metabolic crosstalk during NAFLD.

2.1 Intrahepatic Disturbances During NAFLD

The liver constitutes a key role in regulating whole body metabolism, which
involves a complex interplay between different hepatic cell types ranging from
hepatocytes as parenchymal cells to Kupffer cells (KCs), stellate cells, and liver
sinusoidal endothelial cells (LSECs) among other cell types. As such, each of
these cell types is influenced by pathophysiological processes during NAFLD,
eventually leading to hepatic disturbances at whole organ level.

2.1.1 Lipo- and Glucotoxicity
Due to low physical activity and increased consumption of fats, lipotoxicity has
arisen as one of the main players to contribute to NAFLD pathogenesis (Ibrahim
et al. 2011). Lipotoxicity is defined by the excess generation of cytosolic lipids
(mainly triglycerides and subtypes of free fatty acids) that have direct adverse
effects on metabolic pathways of the cell (Schaffer 2016). Under normal conditions,
triglycerides and free fatty acids are stored in adipose tissue, where they can be
employed as energy source during periods of energy deprivation or during
extreme exercise (Muro et al. 2014). However, in obesity, when the storage
capacity of adipose tissue is exceeded, free fatty acids accumulate in ectopic organs,
including the liver (but also in the arteries). As such, hepatic steatosis (Wojcik-Cichy
et al. 2018) develops, resulting in the formation of adverse metabolites that
hamper normal cellular physiology. For example, an excess of free fatty acids
such as palmitic or stearic acids induces the generation of toxic metabolites, leading
to caspase-dependent apoptosis of hepatocytes (Kakisaka et al. 2012; Pfaffenbach
et al. 2010) but also of cardiomyocytes (Drosatos and Schulze 2013; Zou et al. 2017)
and endothelial cells (Artwohl et al. 2008; Chinen et al. 2007). Indeed, while free
fatty acid-induced apoptosis of hepatocytes is a key feature of lipotoxicity in the
context of NAFLD (Trauner et al. 2010), other reports have shown that excess
palmitate induces endoplasmic reticulum stress and apoptosis in the context
of atherosclerosis as well (Erbay et al. 2009). Therefore, free fatty acid-induced
apoptosis of parenchymal cells appears to be a shared mechanism between NAFLD
and atherosclerosis development.
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Besides inducing apoptosis, free fatty acid influx into hepatocytes also
influences the function of key enzymes and nuclear receptors involved in
hepatic de novo lipogenesis, fatty acid oxidation, and cholesterol metabolism,
thereby further disturbing hepatic lipid metabolism. Indeed, expression levels
of acetyl-coenzyme-A carboxylase 1, a key enzyme in fatty acid metabolism
(Barber et al. 2005), were shown to decrease in advanced stages of NASH
compared to individuals with steatosis (Nagaya et al. 2010). Moreover, in the
transcriptional levels, liver X receptor (LXR), a nuclear receptor involved with
regulation of cholesterol, fatty acid, and glucose metabolism (Kalaany and
Mangelsdorf 2006), correlated with intrahepatic inflammation and fibrosis in
NAFLD patients (Ahn et al. 2014; Ni et al. 2017). In line, macrophage-targeted
delivery of LXR agonist inside the atherosclerotic plaque reduced atherosclerosis
progression (Guo et al. 2018), pointing toward a key function of LXR in
both NAFLD and atherosclerosis development.

Lipotoxic responses also affect LSECs, a type of non-parenchymal cell that
is specifically involved in maintaining hepatic vascular tone and quiescence of
hepatic stellate cells that are responsible for the fibrotic response. Upon treatment
with oxidized lipids (Zhang et al. 2014) or palmitic acid (Matsumoto et al. 2018),
LSCEs directly or indirectly triggered the release of reactive oxygen species
(ROS) production (Peters et al. 2018), which influences mechanisms related to
inflammation and fibrosis (Ni et al. 2017).

Increased hepatic fat accumulation has also been associated with reduced
levels of high-density lipoproteins (HDL) and increased levels of total plasma
cholesterol, low-density lipoproteins (LDL), and very low-density lipoprotein
particles (Koruk et al. 2003), the latter being involved with hepatic lipid
export. Moreover, besides triglycerides and fatty acids, it has become evident that
cholesterol is a key player in inducing hepatic inflammatory responses (Caballero
et al. 2009; Plat et al. 2014; van Rooyen et al. 2011). Indeed, in the context of
obesity-associated diseases, it was shown that cholesterol levels are associated with
hepatic inflammation (Musso et al. 2003; Puri et al. 2007) and atherosclerosis
(Ference et al. 2017) in humans. In agreement with these data, it has previously
been shown that omitting cholesterol from the diet was able to prevent liver
inflammation in hyperlipidemic and atherosclerosis-prone mice (Wouters et al.
2008), pointing toward cholesterol as a significant risk factor for early onset of
NASH and progression of atherosclerosis.

In addition to lipotoxicity, glucotoxicity is a metabolic condition linked to
increased intake of dietary sugars, resulting in hyperglycemia which may cause
hepatotoxic effects by increasing steatosis (Mota et al. 2016). For instance, it
was shown that high carbohydrate intake plays a role in de novo lipogenesis
and hepatic steatosis (Ackerman et al. 2005; Neuschwander-Tetri et al. 2012),
presumably via activation of lipogenic enzymes such as fatty acid synthase
and stearoyl-CoA desaturase-1 (Maslak et al. 2015). In addition, high-fructose
intake was shown to correlate with the severity of fibrosis in NAFLD patients
(Basaranoglu et al. 2015; Mota et al. 2016) and carbohydrate intake associated
with the progression of coronary atherosclerosis (Mozaffarian et al. 2004).
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Glucotoxic and lipotoxic products, including free fatty acids, cholesterol, and
ceramides, among others (Han et al. 2008), are also involved in the activation
of cellular stress responses. For instance, it has been shown that saturated
long-chain fatty acids can disturb metabolic fluxes, thereby increasing the
production of harmful lipid intermediates (Kakisaka et al. 2012). These
intermediates can promote the release of ROS, leading to oxidative stress
and hence the progression from steatosis to NASH (Matsuzawa et al. 2007;
van Herpen and Schrauwen-Hinderling 2008) and the development of
atherosclerosis (Nowak et al. 2017).

Overall, these evidences show that triglycerides, fatty acids, and cholesterol
overload disturb essential processes in the liver that result in NAFLD features,
placing lipids at the center of NAFLD development. Moreover, as these processes
show striking similarities with disturbances present in atherosclerosis, lipotoxicity
is a denominator linking NAFLD to atherosclerosis.

2.1.2 Oxidative Stress and Mitochondrial Dysfunction
As mentioned in the previous paragraph, part of the lipotoxic response involves
the generation of ROS, resulting in oxidative stress. Oxidative stress comprises
a state during which there is an imbalance between generation of ROS at one hand
and an inability to detoxify (i.e., via antioxidant mechanisms) these oxygenated
intermediates (Masarone et al. 2018). As a consequence, free radicals, peroxides,
and related products are generated and react with biological components such as
proteins, DNA, but also lipids (Finkel and Holbrook 2000). Indeed, considering
the increased amount of lipids present during NAFLD conditions, larger quantities
of lipid peroxidation products are present in the liver of NAFLD patients (Sumida
et al. 2013) and contribute to the transition toward more serious stages of NAFLD
(Busch et al. 2017; Feldstein et al. 2010). In addition, ROS is known to mediate
endoplasmic reticulum stress, thereby causing the formation of misfolded
proteins, which is a critical factor in NAFLD (Ashraf and Sheikh 2015) as well as
the progression of atherosclerosis (Hotamisligil 2010; Tabas 2010). Moreover,
cholesterol oxidation products that are part of oxidized low-density lipoproteins
(oxLDL) are majorly involved in inflammatory and fibrotic responses in the liver
(also further discussed in next section) (Bieghs et al. 2013).

Considering the key role of mitochondria in cellular oxygen consumption
and production of ROS, lipotoxic influences on mitochondria have the potential
to further aggravate oxidative stress (Dominguez-Perez et al. 2019). Under physio-
logical conditions, fatty acid transport into the mitochondria is mediated via
carnitine palmitoyltransferase 1 (CPT-1) in order to stimulate beta-oxidation.
Nevertheless, the expression of Cpt-1 was shown to be reduced in NAFLD
(Kohjima et al. 2007), findings that were further supported by Francque et al.,
showing that peroxisome proliferator-activated receptor alpha (PPARα), an
important nuclear receptor regulating CPT-1, inversely correlated with disease
severity in patients with NASH (Francque et al. 2015). By using isolated
mitochondria, it was also shown that short chain ceramides increase mitochondrial
permeability due to the generation of ceramide channels and increased cytochrome C

Nonalcoholic Fatty Liver Disease 241



release (Colombini 2010), thereby mediating toxic effects. Moreover, mitochondrial
cholesterol accumulation caused mitochondrial dysfunction (Balboa et al. 2017), and
based on studies in the context of neurotoxicity (Barbero-Camps et al. 2014),
mitochondrial cholesterol may play a role in endoplasmic reticulum stress and
subsequent apoptosis.

2.1.3 Hepatic Inflammation and Fibrosis
An essential pathophysiological process during NAFLD that also unites the
lipotoxic response with the generation of oxidative stress is the presence of
hepatic inflammation which can progress into hepatic fibrosis. In contrast to the
uptake of non-modified LDL, it has been established that the uptake of oxLDL
contributes to cholesterol-induced foam cell formation and metabolic inflammation
(Lara-Guzman et al. 2018) in NASH (Houben et al. 2017) but also in the context
of atherosclerosis (Binder et al. 2003). Moreover, the accumulation of oxidized
lipids into the lysosomal compartment of macrophages activates inflammatory
cascades including inflammasome complexes and apoptosis (Bieghs et al. 2013;
Grebe et al. 2018; Hendrikx et al. 2013; Jerome 2010). Indeed, recent studies
show that specific inhibition of the NLRP3 inflammasome not only reverses hepatic
inflammation and fibrosis (Mridha et al. 2017) but also reduces atherosclerotic
lesion development (van der Heijden et al. 2017), pointing toward an important
role for the inflammasome in chronic inflammatory diseases (Cai et al. 2017;
Duewell et al. 2010; Pan et al. 2018). Furthermore, cholesterol-mediated activation
of inflammasomes decreases cholesterol efflux, thereby disturbing the regulation
of bile acid metabolism. Previously, it was indeed shown that mice lacking the
bile acid receptor farnesoid X receptor (FXR) had pro-atherogenic lipoproteins
(Mencarelli and Fiorucci 2010) and increased hepatic bile acid levels (Sinal
et al. 2000), pointing toward a potential role for FXR in cholesterol-induced liver
inflammation. Indeed, improving cholesterol efflux in hepatic macrophages by
overexpressing Cyp27a1, an enzyme responsible for the conversion of cholesterol
into bile acids, reduced hepatic inflammation and fibrosis in an experimental
model (Hendrikx et al. 2015). Via accumulation of oxidized lipids into lysosomes,
also disturbances in autophagy contribute to increased levels of inflammation
both during NAFLD (Wu et al. 2018b) and atherosclerosis (Martinet and
De Meyer 2009). Besides cholesterol, also other lipids such as phospholipids
(Lee et al. 2012) and fatty acids (Reinaud et al. 1989), can (non)enzymatically
interact with free radicals, triggering inflammation by a wide variety of underlying
processes (Houben et al. 2017).

While macrophages play a key role in the inflammatory response, hepatic
stellate cells are the main drivers of the fibrotic response (Friedman 1993).
After a damaging insult, stellate cells are activated, thereby secreting collagens
and related matrix proteins that lead to generation of scar tissue or fibrosis
(Peters et al. 2018; Schneiderhan et al. 2001), a pathological process also described
in atherosclerosis (Ostovaneh et al. 2018). Relevantly, Chu et al. recently
demonstrated that exposing hepatic stellate cells to fatty acids resulted in an
increased secretion of CCL20, resulting in a switch from a quiescent to an activated
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hepatic stellate cell. These findings were further confirmed in humans, showing
increased circulating CCL20 protein levels in patients with NAFLD-related fibrosis
(Chu et al. 2018). Further data based on an elegant co-culturing system using
primary liver cells pointed toward CCL5 as an important hepatic stellate cell-derived
chemokine capable of mediating steatosis and pro-inflammatory responses in
initially healthy hepatocytes (Kim et al. 2018). Moreover, in vivo induction of
CCL5 in response to high-fat diet was also shown to serve as an important regulator
of vascular remodeling, revealing a role for CCL5 and its receptor in atherogenesis
(Lin et al. 2018). Therefore, multiple reports indicate that lipids enable fibrotic
responses by influencing hepatic stellate cells.

2.2 Metabolic Crosstalk in NAFLD

As previously mentioned, the capacity of adipose tissue to store lipids
determines the quantity of free fatty acids to be released into the circulation
under high lipid conditions. However, besides its storage capacity, adipose tissue
is known as a “secretory” organ, releasing adipokines and adipocytokines that
influence other organs (Ouchi et al. 2011). For this reason, lipid-induced adipose
tissue function increases the release of adipocytokines such as TNFα, IL6, IL18,
and ANGPTL, leading to inflammatory responses in other metabolic organs
such as the liver (Ouchi et al. 2011; Reilly et al. 2015). Moreover, the release
of these adipokines also influences circulating immune cells, contributing to a
state of chronic inflammation (Bijnen et al. 2018; Mancuso 2016; Nakamura
et al. 2014). Due to this systemic impact, it is not surprising that adipokines
also influence atherosclerosis development. Indeed, adipose tissue-released TNFα
directly influenced atherosclerosis development (Tanaka and Sata 2018). Besides
modulating inflammation, the increased release of free fatty acids also hinders
the anti-lipolytic role of insulin, aggravating insulin resistance (Engin 2017; Sears
and Perry 2015).

Another extrahepatic organ that has been linked to NAFLD development
is the thyroid. Being an endocrine organ, the thyroid secretes hormones that
have a role in the regulation of energy homeostasis including the metabolism of
cholesterol and fatty acids (Sinha et al. 2018). Specifically, hypothyroidism is
characterized by increased serum LDL and HDL levels and decreased triglyceride
levels (Duntas 2002). Besides indirectly influencing hepatic lipid metabolism by
modulating circulating lipid levels, thyroid hormones also directly affect hepatic
lipid metabolism mainly via the presence of hepatic thyroid hormone receptors
(THR) (Sinha et al. 2018). THRs are nuclear hormone receptors that function
as ligand-dependent transcription factors influencing downstream metabolic
genes (Davis et al. 2016) but also disturb other metabolic transcription factors
such as PPARy, LXR, and sterol regulatory element-binding protein 1 (SREBP1c)
(Araki et al. 2009; Wang et al. 2015). For this regulatory role on hepatic
lipid metabolism, THR agonists were also considered for the management of
hepatic steatosis (Cable et al. 2009) but later observed adverse effects resulted
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in discontinuation of these clinical trials (Lammel Lindemann and Webb 2016).
Nevertheless, thyroid hormones analogues (rather than THRs) are still considered
as potential future NAFLD treatment (Perra et al. 2008).

Another organ that has gained attention in the context of NAFLD is the brain.
At one hand, NAFLD-related inflammation has been demonstrated to influence
microglia in the brain, leading to alterations in microvasculature of the brain
(Ghareeb et al. 2011; Kim et al. 2016). Furthermore, NAFLD-associated endothelial
dysfunction and the procoagulant state were linked to the same microvascular
alterations, which may contribute to disturbances in brain circulation, damage, and
cognitive impairment (Lombardi et al. 2019). Besides the link to the aforementioned
cerebrovascular diseases (Airaghi et al. 2018), other brain-related associations
have been established to NAFLD. Firstly, a recent report from Horwath et al.
demonstrated that endoplasmic reticulum stress in the subfornical organ of the
brain, a brain region previously linked to appetite (Matsuda et al. 2017),
directly mediated hepatic steatosis, thereby directly linking the brain to the liver
in the context of NAFLD. Moreover, Weinstein et al. recently linked NAFLD
to lower cerebral brain volume hinting at a more profound role for the brain
in NAFLD (Weinstein et al. 2018). Finally, as a regulation center for energy
metabolism, brain regions such as the arcuate nucleus in the hypothalamus sense
the metabolic status and govern food intake (Schwartz et al. 2000), making
an obvious link to obesity-related NAFLD. An essential hormone involved with
the homeostatic regulation of energy and acting via the hypothalamus is leptin
(Kwon et al. 2016). Notably, variants of leptin receptors associated with increased
NAFLD susceptibility, pointing toward a potential role for hypothalamic leptin
sensitivity in NAFLD (Zain et al. 2013). Additional evidence linking hypothalamic
inflammation to hepatic steatosis further substantiated the potential involvement
of the hypothalamus in NAFLD (Valdearcos et al. 2015).

To end, multiple reports have indicated the involvement of the gastrointestinal
tract to play a role in NAFLD development. Under physiological circumstances, the
intestinal lining serves as a physical barrier that separates the host from contents
in the gut. Disruption of this barrier leads to intestinal permeability (Winer et al.
2016), allowing for leakage of intestinal bacteria and other products into the
circulation. Indeed, leakage of lipopolysaccharide (LPS) derived from intestinal
bacteria into the circulation (Kitabatake et al. 2017) can activate KCs in the liver
(Ye et al. 2012), thereby directly resulting in NASH development (Kitabatake
et al. 2017; Wigg et al. 2001). Relevantly, gut-derived serum LPS was similarly
associated with atherosclerosis development, reaffirming the tight link between
NASH and atherosclerosis (Pastori et al. 2017). Though there are limited studies
providing a causal role of the gut microbiome in NAFLD pathogenesis, the current
amount of evidence suggests that the gut microbiota are at least involved with
the development of NAFLD (Gregory et al. 2015; Kaden-Volynets et al. 2018;
Martinez-Guryn et al. 2018; Turnbaugh et al. 2006) (Wang et al. 2018). Other
well-known factors linking the gut to NAFLD are bile acid metabolism
(Dumas et al. 2006; Tremaroli and Backhed 2012), bacterial-derived short-chain
fatty acids (Canfora et al. 2019), and the toxic compounds dimethylamine and
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trimethylamine that were converted by bacteria from choline (Spencer et al. 2011;
Wang et al. 2011). In line with our other descriptions, each of these compounds
has also been associated with atherosclerosis development (Chambers et al. 2018;
Charach et al. 2018; Tang et al. 2013).

Based on these evidences, it is clear that the development of NAFLD is linked to
pathophysiological processes that arise in other (metabolic) organs. This information
fuels a view of NAFLD being a complex, systemic disease influenced by a range
of other organs. It is therefore likely that future management of NAFLD will require
a systemic rather than a liver-specific approach.

2.3 Genetic Predisposition to NAFLD

NAFLD is considered a polygenic disease, implying the involvement of a variety
of genetic factors in predisposing individuals to disease onset. While mutations
in the patatin-like phospholipase domain-containing 3 (PNPLA3) gene were
initially associated with hepatic steatosis (Romeo et al. 2008), other reports
have also correlated the PNPLA3 variation to NASH progression (BasuRay et al.
2019; Valenti et al. 2010). Similarly, PNPLA3 genetic variants are also associated
with carotid atherosclerosis in younger patients NAFLD (Petta et al. 2013).
Though PNPLA3 variants were recently linked to the ubiquitylation processes
(BasuRay et al. 2017), the exact underlying mechanism explaining the onset
of NAFLD is still unclear.

Additionally, based on several population studies, it was recently described
that mutations in the transmembrane 6 superfamily 2 (TM6SF2), a key regulator
of very low-density lipoprotein (VLDL) export, correlated with NASH progression
(Manne et al. 2018) and cardiovascular disease (Li et al. 2018), most likely via
changes in plasma lipids. Indeed, plasma lipids appear to be one of the common
denominators predicting severity of both NAFLD and coronary artery disease
(Brouwers et al. 2019).

Further genetic screenings for NAFLD revealed that glucokinase regulator
(GCKR) (Santoro et al. 2012) and lysophospholipid acyltransferase 7 (known as
MBOAT7) (Mancina et al. 2016), key enzymes for glucose metabolism and
reacetylation of phospholipids, respectively, as well as neurocan were associated
with NAFLD development (Speliotes et al. 2011). Yet, a more recent study focusing
on the aforementioned NAFLD-risk alleles (PNPLA3, TM6SF2, GCKR, and
LYPLAL1) substantiated the heterogeneity of the NAFLD phenotype between
patients, emphasizing the complexity of the disease (Sliz et al. 2018). As such,
though genetic predisposition may influence disease onset, other pathophysiological
factors that are independent of genetic predisposition are likely a stronger contributor
to explain NAFLD development.

A line of research that has received increased attention is the influence of
epigenetic changes on NAFLD development (Eslam et al. 2018). Epigenetic
changes are induced by modifications in the regulators of DNA such as DNA
methylation reactions, histone proteins, chromatin structure, and RNA-based
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mechanisms resulting in changes in genes expression (Eslam et al. 2018).
These epigenetic modifications influence aging-related processes which contribute
to NALFD (Horvath et al. 2014) but can also be transmitted to the progeny,
thereby combining genetic and environmental factors involved in the development
of disease. Mice that were rechallenged with a high-fat diet after being exposed
to this diet during fetal life showed more several hepatic steatosis, inflammation,
and fibrosis (Bruce et al. 2009). This influence of a detrimental fetal environment
on NAFLD has been further substantiated by studies linking intrauterine
growth retardation to increased risk of developing NAFLD (Nobili et al. 2007;
Suomela et al. 2016; Valenti and Romeo 2016). Furthermore, methylation patterns
of genes involved insulin signaling associated with the presence of NASH, which
disappeared after bariatric surgery (Ahrens et al. 2013). As such, though being
in its infancy, epigenetic modifications are expected to have an important role
on NAFLD progression (Eslam et al. 2018).

3 Therapeutics

The involvement of different mechanisms in the pathogenesis of NAFLD also
adds a level of complexity in finding appropriate therapeutic options to improve
the different aspects of NAFLD. While therapies to reduce hepatic steatosis are
known, a major problem is reversing the inflammatory component in the liver.
Indeed, at present, no effective therapeutic approaches exist for reducing hepatic
inflammation (Houben et al. 2017). From market size perspective, NASH-related
therapeutics generated $1,179 million in 2017 and is estimated to reach $21,478
million by 2025 (Shinde 2018), pointing toward the huge demand for NASH
treatments. Due to the magnitude of this health concern and its potential
impact on healthcare, multiple treatments are currently being investigated with
the aim to decrease inflammation and fibrosis (Oh et al. 2016). In this section,
we provide a selection of currently investigated therapeutic approaches for
NAFLD and demonstrate that these approaches are also investigated in the context
of atherosclerosis (see Fig. 1). From this perspective, we further highlight the link
between NAFLD and atherosclerosis.

3.1 Dietary/Lifestyle Intervention and Bariatric Surgery

Dietary changes and lifestyle interventions resulting in weight reduction are
currently the first-line therapy for NAFLD patients (Sumida and Yoneda 2018).
Indeed, dietary restriction is the most effective way to reduce liver fat
(Marchesini et al. 2016; Patel et al. 2015). Furthermore, it has been suggested
that hepatic triglyceride content normalizes after a few weeks under a strictly
hypocaloric diet (Patel et al. 2015), i.e., low fat and low carbohydrate, which
has been proposed as the optimal composition of a diet for NAFLD patients
(Asrih and Jornayvaz 2014). Apart from dietary changes, lifestyle modification
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is another way to lose weight, for instance, via physical activity instead of
sedentariness (Fabricatore 2007). However, compared to dietary restriction, physical
activity is less effective in losing weight due to reduced caloric consumption
as compared with dietary restriction (Marchesini et al. 2016; Zou et al. 2018).
While dietary change and lifestyle intervention are able to reduce body weight,
many patients cannot adhere to these interventions. Therefore, bariatric surgery,
and more recently termed metabolic surgery (Sasaki et al. 2014), typically results
in massive weight loss and in concordant improvements in liver histology
(Dixon et al. 2004). Indeed, Mummadi et al. reported that the resolution rates of
steatosis, steatohepatitis, and fibrosis were 91.6%, 81.3%, and 65.5% in 15 studies
using paired liver biopsies after bariatric surgery (Mummadi et al. 2008). Recently,
a 1-year follow-up study by Nickel et al. also supported bariatric surgery as
an effective treatment for NAFLD (Nickel et al. 2018). However, as not all
NAFLD patients qualify for bariatric surgery, other interventions are necessary to
combat NAFLD and related symptoms.

3.2 Targeting Lipotoxicity

As accumulation of lipids inside the liver comprises an essential component in
the development of NAFLD, multiple therapeutic approaches have aimed to reduce
hepatic lipids with the objective to concordantly reduce hepatic inflammation
and fibrosis. The best known example of cholesterol-reducing agents are statins,
which are drugs aimed at inhibiting 3-hydroxy-3-methylglutarylcoenzyme A
(HmG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthesis
pathway (Stancu and Sima 2001). Showing beneficial results in the context of
atherosclerosis (Bittencourt and Cerci 2015), statins were also investigated in

Fig. 1 Targets for NAFLD therapy. Besides exercise, changing the dietary pattern or surgical
intervention and pharmacological intervention to improve NAFLD targets the pathological
mechanisms of lipotoxicity, insulin/glucose metabolism, hepatic inflammation, fibrosis, as well as
bile acid metabolism. HmG-CoA 3-hydroxy-3-methylglutarylcoenzyme A, PPAR peroxisome
proliferator-activated receptor, GLP1R glucagon-like peptide-1 receptor, DPP4 dipeptidyl
peptidase-4, SGLT2 sodium-glucose transport protein 2, FXR farnesoid X receptor
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NAFLD progression. Though some improvements were observed in hepatic
damage and inflammation (Kargiotis et al. 2014), other reports declare only minor
improvements or even increasing levels of inflammation and fibrosis when statins
are administered over a longer period of time (Hyogo et al. 2008). Moreover,
recent observations pointing toward the detrimental effects of statins on aging
and associated processes (Cholesterol Treatment Trialists 2019; Izadpanah et al.
2015) raise drawbacks for using these drugs under certain conditions.

Finally, and potentially, the most promising pharmacological compound
currently under investigation to regress NASH are agonists of PPAR. PPARs are
nuclear receptor proteins exerting key regulatory functions as transcription
factors on metabolism, among other physiological processes (Dubois et al. 2017).
Currently, three types of PPARs (being PPARα, PPARβ/δ, and PPARγ) are
known and used as targets to improve MetS-related symptoms. In the context
of NAFLD, and specifically NASH, the PPARγ agonist class thiazolidinediones
has been shown to improve hepatic inflammation and advanced fibrosis (Bril
et al. 2018; Musso et al. 2017). Furthermore, a new agonist, named elafibranor
(or GFT505) that targets PPARα and PPARδ, was recently shown to
improve hepatic inflammation and fibrosis, along with improvements in systemic
inflammation, lipid, and glucose metabolism (Ratziu et al. 2016; Staels et al. 2013).

Due to these positive results, both thiazolidinediones and elafibranor are currently
under clinical investigation for the treatment of NASH (Connolly et al. 2018). With
regard to their application in atherosclerosis, thiazolidinediones have also been
proven to slow progression of atherosclerosis in patients (Saremi et al. 2013),
while elafibranor was so far not tested in this context. However, preliminary results
in an atherosclerotic mouse model suggest that this latter PPARα/δ dual agonist
might also be beneficial in the context of atherosclerosis (Graham et al. 2005).

Besides pharmacological intervention, a more convenient manner of reducing
lipids is by means of dietary intervention. Apart from following dietary regimens in
which the composition of lipids, protein, and carbohydrates is modulated and caloric
intake is minimized (Ratziu et al. 2015) in order to achieve improvements in energy
metabolism (Kargulewicz et al. 2014; Perumpail et al. 2017), another approach is to
increase the intake of food components named functional foods. Plant sterol and
stanol esters are examples of such functional foods that have been proven to reduce
serum total and LDL cholesterol (Lichtenstein and Deckelbaum 2001; Plat et al.
2019), leading to improvements in atherosclerosis (Kohler et al. 2017) and NAFLD
(Plat et al. 2014). However, more studies are necessary to prove the potential benefit
of plant sterol and stanol esters in NAFLD patients.

3.3 Targeting Insulin/Glucose Metabolism

As diabetes has been associated with several stages of NAFLD (Hazlehurst et al.
2016), researchers have investigated the impact of improving insulin and glucose
metabolism in order to improve aspects of NAFLD. Firstly, glucagon-like peptide-1
receptor (GLP1R) agonists, which mimic the function of incretins, are currently
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investigated in NAFLD (Gastaldelli and Marchesini 2016). GLP is a peptide
derived from the L cells of the lower gastrointestinal tract (the small intestine
and proximal colon) and known to enhance insulin secretion from pancreatic β
cells and inhibit glucagon release from pancreatic α cells (Campbell and Drucker
2013; Ratziu et al. 2015). Whereas the GLP1R agonist exenatide enhanced hepatic
steatosis (Tanaka et al. 2014), hepatic oxidative stress, and hepatic inflammation
(Shao et al. 2018) and improved adipose tissue lipolysis in different in vivo
models, the application of dulaglutide, lixisenatide, liraglutide, and, recently,
semaglutide also shows promising results in terms of improvements in hepatic
fat, damage, inflammation, and fibrosis (Armstrong et al. 2016; Cusi et al. 2018;
Ipsen et al. 2018; Koutsovasilis et al. 2018; Petit et al. 2017; Rakipovski et al. 2018).
As such, liraglutide (Armstrong et al. 2016) and semaglutide were under extensive
clinical investigation. While liraglutide will not be further evaluated in phase
3 development, Novo Nordisk has initiated a phase 2b trial (NCT02970942)
evaluating semaglutide versus placebo in 372 participants with stage F2-F3 fibrosis
and NAS �4 with a score of at least 1 for each of the components (steatosis,
ballooning, and lobular inflammation) (Connolly et al. 2018). Relevantly, as diabetes
has also been linked to formation and progression of the atherosclerotic plaque
(Beckman et al. 2002; Chait and Bornfeldt 2009; Katakami 2018), several GLP1R
agonists have also been shown to improve atherosclerosis including exenatide,
liraglutide, and semaglutide (Li et al. 2017; Marso et al. 2013; Rakipovski et al.
2018; Yang et al. 2017).

Besides the GLRP1 agonists, another approach to improve the GLP1-related
effects on insulin and glucose metabolism is by administration of dipeptidyl
peptidase-4 (DPP4) inhibitors. DPP4 (also referred to as CD26) is an enzyme
known to degrade GLP1. Hence, inhibition of DPP4 enhances the activity of
GLP1. While administration of the DPP4 inhibitor sitagliptin has been
successfully applied in diabetic patients (Derosa et al. 2015; Drucker and
Nauck 2006), several reports demonstrated only minor to no beneficial effects
on hepatic fat content or hepatic fibrosis (Cui et al. 2016; Joy et al. 2017).
Relevantly, these negative results in the context of NAFLD were also confirmed
in atherosclerosis, showing only minor effects on coronary artery plaque
improvement (Katakami et al. 2018; Nozue et al. 2016).

Another class of pharmacological compounds that specifically improve
glucose metabolism is inhibitors for sodium-glucose transport protein 2 (SGLT2),
a transporter protein in the kidney responsible for the reabsorption of glucose
(Hsia et al. 2017; Marshall 2018; van Baar et al. 2018). In contrast to the minor
effects of the DPP4 inhibitors on NAFLD, the SGLT2 inhibitors canagliflozin,
ipragliflozin, and luseogliflozin all show substantial improvements in hepatic
steatosis, apoptosis, and fibrosis in in vivo models and NAFLD patients
(Ito et al. 2017; Kabil and Mahmoud 2018; Shiba et al. 2018; Shibuya et al. 2018;
Sumida et al. 2019). In line with the previously described similarities between
NAFLD and atherosclerosis, SGLT2 inhibitors were shown to also positively
impact atherosclerosis progression and development (Nakatsu et al. 2017;
Nasiri-Ansari et al. 2018; Tanaka et al. 2016; Zelniker et al. 2019).
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Together, several treatments aimed at improving insulin or glucose metabolism
have positive effects on several aspects of NAFLD, substantiating the role of insulin
and glucose metabolism in the progression of NAFLD. Moreover, therapeutic
products that improve features of NAFLD also positively impact atherosclerosis,
providing further evidence for the similarities between NAFLD and atherosclerosis.

3.4 Targeting Hepatic Inflammation and Fibrosis

Another therapeutic approach to ameliorate NAFLD is to directly target
components of the inflammatory and/or fibrotic pathway, as these features are
the main cause for hepatic symptoms in NAFLD patients and are also
responsible for the development toward advanced liver diseases (Schuster et al.
2018). The caspase inhibitor, emricasan, is one of those investigated compounds
targeting the inflammatory aspect of NAFLD. Specifically, caspases are enzymes
involved with several physiological processes including inflammation, making
them an attractive inflammatory drug target. Administration of emricasan to
NAFLD patients showed improvements in hepatic damage (as evidenced by
reductions in alanine transaminase (ALT) levels) (Shiffman et al. 2019). However,
recent negative results with this compound have questioned its continuation
for further clinical investigation (Garcia-Tsao et al. 2019). Another potential
caspase-related target for inflammatory drugs is blocking the activation of
inflammasomes (Schuster et al. 2018). Indeed, inhibition of the P2X7 receptor,
which is known to activate the NLRP3 inflammasome (Amores-Iniesta et al.
2017), via SGM-1019 resulted in improvements in hepatic inflammation and
fibrosis in mouse models and NASH patients (Dabbagh et al. 2018), substantiating
its further clinical investigation in NAFLD.

Another way to reduce inflammation and fibrosis is by blocking the effect
of cytokines and chemokines that propagate the inflammatory reaction.
With this regard, the C-C chemokine receptor type 2/C-C chemokine receptor
5 (CCR2/CCR5) inhibitor cenicriviroc has been successfully created. Specifically,
cenicriviroc reduced hepatic fibrosis, inflammation, as well as systemic
inflammatory parameters in NAFLD patients and animal models (Friedman
et al. 2018; Lefebvre et al. 2016; Tacke 2018). Currently, cenicriviroc is being
evaluated in phase 3 trials, targeting patients with F2-F3 fibrosis and having
an anticipated enrollment of 2,000 participants (Connolly et al. 2018). Additionally,
inhibition of galectin-3, a protein belonging to the lectin family and previously
linked to NASH severity, has provided promising first results (Harrison et al.
2016), which need to be further validated. Finally, inhibition of apoptosis signal-
regulating kinase 1 (ASK1) has also been investigated as drug target to reduce
hepatic inflammation and fibrosis. ASK1 is part of the mitogen-activated
protein kinase family and has been shown an essential role in NASH development
in patients and mouse models (Wang et al. 2017; Xiang et al. 2016;
Zhang et al. 2018). In line with this observation, inhibition of ASK1 using
selonsertib has shown impressive improvements in hepatic inflammation and fibrosis
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(Loomba et al. 2017; Younossi et al. 2018b). Selonsertib is currently under
evaluation in two phase 3 clinical trials (STELLAR-3 [NCT03053050] and
STELLAR-4 [NCT03053063]) for the treatment of NASH (Connolly et al. 2018).

Similar to the dual therapeutic effects of approaches targeting insulin and glucose
metabolism, therapeutic approaches targeting inflammation and fibrosis also show
dual positive influences in atherosclerosis and NASH. Galectin-3 has, for example,
been linked atherosclerotic plaque progression (Papaspyridonos et al. 2008), and
its inhibition results in reductions of atherosclerotic lesion size in vivo (MacKinnon
et al. 2013). However, compared to drugs targeting insulin and glucose metabolism,
targeting inflammation and fibrosis pathways is less investigated in the context of
atherosclerosis, as exemplified by no described clinical studies for selonsertib,
emricasan, ASK1 inhibitors, or cenicriviroc.

3.5 Targeting Bile Acid Metabolism

Hepatic components that have been extensively linked to different aspects
of NAFLD include bile acids. Bile acids have regulatory functions on lipid and
glucose metabolism, impact gut microbiota composition, and influence hepatic
inflammation and damage (Schuster et al. 2018), explaining why modulation
of bile acid metabolism has been an attractive therapeutic target for NAFLD.
Firstly, the hepatoprotective natural bile acid ursodeoxycholic acid (UDCA) has
been shown to exert beneficial effects on immune function, has anti-apoptotic and
insulin-sensitizing effects, and reduces harmful effects of reactive oxygen species
(Kars et al. 2010; Ljubuncic et al. 1996; Rodrigues et al. 1998), all aspects present
during NAFLD. Indeed, besides improvements in hepatic steatosis, inflammation,
and damage in NASH animal models, two randomized controlled trials showed
improvements in lobular inflammation and hepatic fibrosis along with reductions in
ALT levels upon UDCA administration (Leuschner et al. 2010; Ratziu et al. 2011).
However, other studies showed no effect of UDCA administration in NASH patients
(Liechti and Dufour 2012), emphasizing the need for further investigation. In
addition, agonists of FXR, a nuclear receptor that has been linked to NAFLD
(Zhang et al. 2009), have also been tested in NAFLD. Obeticholic acid (OCA), a
semisynthetic variant of chenodeoxycholic acid, showed reductions in steatosis
and fibrosis (Fiorucci et al. 2005; Goto et al. 2018), and recently, the first promising
results were published from the FLINT study, investigated OCA in NAFLD patients
(Neuschwander-Tetri et al. 2015). Currently, OCA is being evaluated in the
phase 3 study REGENERATE (NCT02548351) for the treatment of NASH
(Connolly et al. 2018).

Strikingly, though bile acids are produced by the liver, multiple evidences
have pointed toward their systemic effects on inflammation, cell death, and apoptosis
(Chiang 2013). As such, recent evidences have also shown beneficial effects
of UDCA (Bode et al. 2016) and OCA (Hageman et al. 2010; Moris et al. 2017)
in atherosclerotic models.
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4 Conclusion

As the hepatic component of the MetS, NAFLD comprises one of the largest
global health threats of the twenty-first century. Though the exact etiology of
why NAFLD patients progress from hepatic steatosis to hepatic inflammation
and fibrosis is unclear, several studies have established key pathophysiological
processes contributing to hepatic inflammation. Considering this large amount of
processes involved with NAFLD (which have intra- and extrahepatic origins), it is
clear that NAFLD is a complex, systemic disease with high interindividual variation,
pointing toward combination therapies or personalized medicine as potential future
directions for NAFLD. Moreover, due to this systemic nature, it is clear that NAFLD
and atherosclerosis are very closely linked (Bieghs et al. 2012), implying the liver
as a potential target to manage atherosclerosis.
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