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Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglan-
din E2 (PGE2), are abundantly produced by cells of both the bone-forming
(osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible
cyclooxygenase, COX-2, is largely responsible for most PGE2 production in
bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced
by multiple agonists – hormones, growth factors, and proinflammatory factors –
and the resulting PGE2 may mediate, amplify, or, as we have recently shown for
parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2

can directly stimulate osteoblast differentiation and, indirectly via stimulation of
RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net
balance of these two effects of PGE2 in vivo on bone formation and bone
resorption has been hard to predict and, as expected for such a widespread local
factor, hard to study. Some of the complexity of PGE2 actions on bone can be
explained by the fact that there are four receptors for PGE2 (EP1–4). Some of the
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major actions of PGE2 in vitro occur via EP2 and EP4, both of which can
stimulate cAMP signaling, but there are other distinct signaling pathways,
important in other tissues, which have not yet been fully elucidated in bone
cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has
been examined with positive results. Further studies to clarify the pathways of
PGE2 action in bone may allow us to identify new and more effective ways to
deliver the therapeutic benefits of PGE2 in skeletal disorders.

Keywords
Bone formation · Bone resorption · Cyclooxygenase · EP receptors · NSAIDs ·
Prostaglandin

1 Introduction

Prostaglandins (PGs) are highly bioactive unsaturated fatty acids. PGs are not stored
but are synthesized and released, as needed, and rapidly metabolized. This chapter
will focus on prostaglandin E2 (PGE2), which is abundantly produced by cells of
both the bone-forming and bone-resorbing lineages. Production of PGs depends on
the availability of substrate; one of two cyclooxygenases (COXs), constitutively
expressed COX-1 or inducible COX-2; and a specific downstream synthase. Most
PGE2 in bone is produced by COX-2. COX-2 is induced by multiple hormones and
proinflammatory factors, and the resulting PGE2 can mediate or modify responses
to the agonist, sometimes in very unexpected ways, as we discuss for the COX-2
agonist, parathyroid hormone (PTH). PGE2 can act on four G-protein-coupled
receptors whose signaling pathways have not been fully elucidated in bone cells. It
has been 50 years since PGE2 in bone was first shown to stimulate cyclic AMP
(cAMP) production and resorption in bone organ cultures (Klein and Raisz 1970).
The early studies in cell and organ cultures led to the conclusion that PGE2 could
increase both bone formation and resorption, and this has led to continuing interest in
the potential for therapeutic manipulation of PGE2 or its receptors.

2 PGE2 Production

Eicosanoids are bioactive lipids derived from arachidonic acid (AA) and other
20-carbon polyunsaturated fatty acids (PUFAs) (Buczynski et al. 2009; Smith
et al. 2011). The term “prostanoid” refers to products of the COX pathway: PGE2,
prostaglandin D2 (PGD2), prostaglandin F2a (PGF2a), prostacyclin (PGI2), and
thromboxane (TXA2). PGs are 20-carbon fatty acids with a cyclopentane ring.
Although TXAs have an oxane ring, they are generally discussed under the “PG”
heading. The subscript for prostanoids denotes the number of double bonds (e.g.,
PGE1, PGE2, and PGE3). The two series of prostanoids are the most abundant and
the best characterized.

158 C. Pilbeam



There are three steps in the production of PGs (Fig. 1). The first is the mobiliza-
tion of AA from membranes by phospholipases. The second step is catalyzed by a
bifunctional enzyme that converts free AA to prostaglandin G2 (PGG2), first by a
cyclooxygenase (hence, the name COX) reaction and then a peroxidase reaction, to
prostaglandin H2 (PGH2). PGH2 is then converted by terminal synthases to the
various prostanoids.

AA Release Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of mem-
brane phospholipids, from membrane glycerophospholipids, releasing free fatty
acids, such as AA. The PLA2 superfamily has 16 groups and many subgroups
(Dennis et al. 2011; Murakami et al. 2011, 2015; Vasquez et al. 2017). The most
important PLAs for PG production are probably the Ca2+-independent PLA2s
(iPLA2), the Ca2+-dependent cytosolic PLA2s (cPLA2), and the secreted PLA2s
(sPLA2). As a general summary, iPLA2 is the primary PLA2 in cells, producing
low levels of free fatty acids, some of which may be AA, needed for daily cellular
functions; cPLA2 is the major inducible enzyme hydrolyzing AA-containing
phospholipids during infection or inflammation; sPLA2 is also inducible and
augments cPLA2 function (Dennis and Norris 2015).

COX Enzymes The bifunctional enzyme is formally named prostaglandin endo-
peroxide H synthase or prostaglandin G/H synthase (PGHS), and the gene name is
ptgs. However, because the COX reaction site is inhibited by nonsteroidal anti-
inflammatory drugs (NSAIDs), the interest in developing new inhibitors selective for
COX-2 led to calling PGHS simply COX and the inhibitors coxibs. The two
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PGIS

TXS

PGDS

PGES

TXA2PGF2α

Membrane phospholipids 

Arachidonic
acid

Phospholipases

Cyclooxygenase
(COX-1 and COX-2)

Fig. 1 Major prostanoids generated from arachidonic acid. Free arachidonic acid, released from
membrane phospholipids by phospholipases, is converted by a bifunctional enzyme, called cyclo-
oxygenase, to prostaglandin G2 (PGG2) in a cyclooxygenase reaction followed by reduction of
PGG2 to prostaglandin H2 (PGH2) in a peroxidase reaction. PGH2 is then converted to specific
prostanoids by the terminal synthases
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enzymes for COX, COX-1 and COX-2, are encoded by separate genes (Herschman
1994; Smith et al. 2000). Both COX-1 and COX-2 are N-glycosylated dimeric
proteins inserted into the luminal face of the ER and the contiguous inner membrane
of the nuclear envelope (Smith et al. 2011).

Despite having similar catalytic mechanisms, COX-1 and COX-2 are indepen-
dently functioning pathways (Simmons et al. 2004; Smith and Langenbach 2001).
COX-2 is rapidly and transiently inducible by multiple factors in many tissues (Kang
et al. 2007). COX-1 is expressed at relatively low, stable levels in most tissues and is
considered to be “constitutive.” The half-life of COX-2 protein is reported to be
2–7 h in various tissues, while the half-life of COX-1 protein is much longer (Kang
et al. 2007; Mbonye et al. 2006). However, it is now evident that COX-2 mRNA is
also expressed constitutively at low levels in many tissues and cells. A recent study
examined signaling pathways underlying constitutive expression of COX-2 in the
kidney, gastrointestinal tract, and brain (Kirkby et al. 2016). It is still unclear how
much this expression contributes to PG production. Another difference is that
COX-2 is much more efficient at using low AA concentrations (below 5 μM) than
COX-1 (Swinney et al. 1997). This difference may explain why osteoblasts from
COX-2 KO mice make little or no measurable PGE2 in culture despite the constitu-
tive expression of COX-1 (Chikazu et al. 2005; Choudhary et al. 2003; Okada et al.
2000a; Xu et al. 2007).

It was initially hypothesized that COX-2 was responsible for acute pathological
PG responses, while COX-1 produced prostanoids for ongoing “housekeeping”
functions, such as maintenance of renal blood flow, platelet aggregation, and gastric
cytoprotection. Once highly selective inhibitors of COX-2 activity were available, it
became apparent that COX-2 also has physiologic functions and COX-2 selective
NSAIDs turned out to have serious adverse side effects, especially on the cardiovas-
cular system, that would limit their use (Grosser et al. 2017a, b).

PG Synthases PGH2 is converted to each PG by specific PG terminal synthases
(Fig. 1), and the synthases may determine the major PG synthesized in a tissue.
Prostaglandin E synthase (PGES), which converts PGH2 to PGE2, occurs in multiple
forms (Hara et al. 2010; Hara 2017). The predominant PGES, mPGES-1, is induc-
ible, located in ER and perinuclear membranes, and regulated similarly to COX-2.
mPGES-1 may also be located in the Golgi apparatus, and because COX-2 and
cPLA2 may also be located there, the Golgi apparatus may be a dedicated PGE2

synthesis site (Leslie 2015; Yuan and Smith 2015). mPGES-2 is constitutively
expressed and functionally coupled with both COX-1 and COX-2. A third form,
cytosolic PGES (cPGES), is preferentially coupled to COX-1 and thought to main-
tain PGE2 production for cellular homeostasis (Tanioka et al. 2000). Knockout
(KO) mice for the synthases are reviewed in Hara et al. (2010) and Hara (2017).
Mice deficient for mPGES-1 have reduced inflammatory and pain responses, and
potential inhibitory drugs have been developed (Psarra et al. 2017). Mice deficient
for mPGES-2 have no specific phenotype, and deficiency of cPGES in mice is
perinatal lethal.
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PGE2 Degradation Degradation of circulating PGE2 occurs rapidly (Ferreira and
Vane 1967), and measurement of PGE2 metabolites in the urine may be the preferred
way to track changes in PGE2 production in vivo. The first step in degrading PGE2 is
mediated by the enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD, also
known as 15-PGDH), which generates metabolites that are orders of magnitude
less potent than PGE2 itself. Many tissues make HPGD, but it is not clear how
quickly bone cells degrade PGE2. It is common practice to follow PGE2 production
in vitro by measuring PGE2 accumulation in osteoblastic or marrow stromal cell
cultures over 2–3 days between medium changes, suggesting shared knowledge of
some stability in culture.

In humans, mutations in HPGD are associated with a rare genetic disorder called
idiopathic hypertrophic osteoarthropathy, characterized by chronically elevated
PGE2, coarse or thickened skin, and periostosis in bone (Uppal et al. 2008). In
mice, inhibition of HPGD increases PGE2 and potentiates recovery in marrow
transplant models and accelerates tissue generation in models of colon and liver
injury (Antczak et al. 2017; Desai et al. 2018; Zhang et al. 2015b). Although
the known associations of elevated PGE2 with increased inflammation and
tumorigenesis might be thought to limit the usefulness of inhibiting HPGD, initial
studies in animal models suggest that a small molecule inhibitor can promote
transplant recovery without limiting side effects (Desai et al. 2018).

3 PGE2 Receptors

There are four G-protein-coupled receptors (GPCRs), called EP1, EP2, EP3, and
EP4, mediating actions of PGE2 (Fig. 1) (Woodward et al. 2011). The EP1 receptor
is known to increase Ca2+ and may couple to Gαq because studies have reported
involvement of the PLC/PKC pathway (Tang et al. 2005). The major signaling
pathway for EP3 receptors is Gαi-induced adenylate cyclase inhibition. EP2 and
EP4 are the receptors most extensively studied in bone. Mice deficient in each EP
receptor subtype have been generated, and highly selective agonists for the receptors
have been developed (Sugimoto and Narumiya 2007; Woodward et al. 2011).

The first major pathway for PGE2 signaling identified in bone was cAMP (Klein
and Raisz 1970). Both EP2 and EP4 can stimulate Gαs to activate adenylyl cyclases
(ACs) and produce cAMP, which can then activate protein kinase A (PKA) or a
PKA-independent pathway mediated by EPAC (exchange protein directly activated
by cAMP). The PKA pathway is able to crosstalk with other pathways that regulate
cell growth, motility, migration, and apoptosis, including the Wnt/β-catenin signal-
ing pathway (Buchanan and DuBois 2006; Castellone et al. 2006; Estus et al. 2016;
Hino et al. 2005; Shao et al. 2005). EP2 and EP4 may also transactivate the
epidermal growth factor receptor (EGFR) signaling pathway, leading to multiple
signaling pathways, including PI3K/Akt/β-catenin. The recruitment of β-arrestin
by EP receptors may also activate c-Src, resulting in EGFR transactivation
(O’Callaghan and Houston 2015). There was much interest in studying EP receptors
in bone in the early days because of the possibility of developing drugs that could
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target a specific receptor to increase bone mass and fracture healing without the side
effect of inhibiting COX. In more recent years, most of the data on EP signaling has
come from studies on other tissues.

4 Bone Remodeling and PGE2

Bone remodeling, the cycle of bone resorption followed by bone formation, occurs
throughout our adult life. The net bone balance of these cycles determines whether
bone is lost, gained, or maintained. Agents used to prevent or treat osteoporosis, that
is, skeletal fragility associated with a high risk of fracture, are aimed at manipulating
this cycle. Exogenously applied PGE2 has been shown to stimulate both resorption
and formation in bone, but the role of endogenous PGE2 in remodeling is still being
defined (Blackwell et al. 2010). The potential involvement of endogenous PGE2 is
shown in Fig. 2.

Bone Resorption Early work adding PGs in organ culture showed that exogenous
PGs of the E series were potent activators of resorption (Klein and Raisz 1970).
Studies with inhibitors of PG production showed that the resorptive effects of many
agonists were mediated in part by PGs (Pilbeam et al. 2008). In the early 1990s, the
inducible COX-2 was identified (O’Banion et al. 1991; Kujubu et al. 1991; Xie et al.
1991). Subsequently, many resorption agonists were shown to induce COX-2
expression and PGE2 production in osteoblastic cells that contributed to increasing
osteoclasts, including interleukin-1 (IL-1) (Kawaguchi et al. 1994; Sato et al. 1996;
Lader and Flanagan 1998; Min et al. 1998), IL-6 (Tai et al. 1997), tumor necrosis

Stimulators of 
formation
(e.g., serum, 
PTH, BMP-2, 
TGFβ, strontium 
ranelate, PGE2) 

Osteoblast 
precursors PGE2

(B)  Bone formation(A)  Bone resorption

OsteoblastsRANKL

Stimulators of 
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(e.g., PTH,
IL-1, IL-6, 
PGE2) 
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Fig. 2 Potential roles of PGE2 in bone resorption and formation. (a) Agonists of resorption,
including PGE2, act on osteoblastic cells to induce RANKL, which then binds with its receptor,
RANK, on bone marrow macrophages (BMMs) and drives them to differentiate into osteoclasts.
These agonists are often also inducers of COX-2 expression in osteoblastic cells, as well. The PGE2

can act back on osteoblasts to induce more RANKL. (RANKL can also induce COX-2 in BMMs.)
(b) Some stimulators of osteoblastic differentiation also induce COX-2 and produce PGE2. PGE2

can then act on the osteoblastic precursors to stimulate osteoblastic differentiation. In some cases,
such as serum and strontium ranelate (see text), the major stimulatory effect in cell culture is due to
PGE2
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factor-α (TNF-α) (Lader and Flanagan 1998), parathyroid hormone (PTH)
(Kawaguchi et al. 1994; Inoue et al. 1995; Okada et al. 2000a), and 1,25(OH)2D3

(Okada et al. 2000a). PGE2 can amplify its own production by inducing COX-2
(Pilbeam et al. 1994). PGE2 has receptors on both osteoblastic and osteoclastic
lineage cells, but stimulates osteoclast differentiation largely indirectly via
upregulation of expression of receptor activator of NFκB ligand (RANKL) and
inhibition of expression of the decoy RANKL receptor, osteoprotegerin (OPG), in
osteoblastic lineage cells (Li et al. 2000) (Fig. 2a). Although both EP2 and EP4 may
be involved in PGE2-stimulated resorption, a number of in vitro studies have
suggested that EP4 is the more important receptor for resorption (Miyaura et al.
2000; Suzawa et al. 2000; Raisz and Woodiel 2003; Zhan et al. 2005).

Bone Formation Many studies have shown that PGE2 stimulates osteoblastic
differentiation in murine or rat bone marrow stromal cell and primary osteoblast/
calvarial cell cultures (Choudhary et al. 2013; Flanagan and Chambers 1992). In
cultured marrow stromal cells or primary osteoblasts from mice with deletion of
ptgs2 or treated with NSAIDs to inhibit COX-2 activity, osteoblastic differentiation
is decreased (Choudhary et al. 2013, Okada et al. 2000b, Xu et al. 2007, Zhang et al.
2002). Systemic injections of PGE2 can increase both periosteal and endosteal bone
formation in the rat and produce substantial increases in bone mass (Jee and Ma
1997; Lin et al. 1994; Suponitzky and Weinreb 1998). Systemic administration of
PGE2 in humans (Faye-Petersen et al. 1996; Ueda et al. 1980) and dogs (Norrdin and
Shih 1988) has also been shown to increase cortical and cancellous bone mass. Local
infusion of PGE2 has been shown to increase bone in mice (Yoshida et al. 2002).

Similar to resorption agonists, many osteogenic factors induce COX-2 (Fig. 2b),
including transforming growth factor β (TGFβ) (Pilbeam et al. 1997), basic fibro-
blast growth factor (FGF-2) (Kawaguchi et al. 1995), bone morphogenetic protein
(BMP-2) (Chikazu et al. 2005), strontium (Choudhary et al. 2007), and fluid shear
stress or mechanical loading (Klein-Nulend et al. 1997; Pavalko et al. 1998;
Wadhwa et al. 2002). Serum is also a potent inducer of COX-2 expression and
PGE2 production in cultured osteoblasts (Pilbeam et al. 1993). For some osteogenic
factors, such as serum, BMP-2, and strontium ranelate, their ability to stimulate
osteoblast differentiation in vitro is due largely to their induction of COX-2 pro-
duced PGs (Pilbeam et al. 1993; Chikazu et al. 2005; Choudhary et al. 2007).

Both EP2 and EP4 receptors have been positively implicated in the osteogenic
and anabolic effects of PGE2 (Alander and Raisz 2006; Choudhary et al. 2008; Li
et al. 2007), while mice deficient in EP1 receptors have enhanced fracture healing,
higher trabecular bone volume, increased bone formation, and accelerated osteoblas-
tic differentiation compared to WT mice (Zhang et al. 2011, 2015a). It has been
difficult to study EP4 receptors in vivo because EP4 KO murine neonates in a pure
C57Bl/6 background die shortly after birth due to patent ductus arteriosus (Segi et al.
1998). Reduced bone mass and impaired fracture healing were found in aged EP4
receptor KO mice compared to WT mice (Li et al. 2005) in contrast to another study
which did not find any difference in bone formation between aged WT and EP4 KO
mice (Gao et al. 2009). Both of these studies were done in mice with mixed
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backgrounds to circumvent the patent ductus arteriosus problem, and the difference
in phenotypes might be due to variability in backgrounds.

Agonists of EP2 and EP4 can increase fracture healing in animals. Local applica-
tion of an EP2 agonist and local and systemic application of EP4 agonists have been
shown to accelerate bone repair (Li et al. 2003; Paralkar et al. 2003; Tanaka et al.
2004; Yoshida et al. 2002). Clinical studies have not been done with these agonists,
perhaps because increased PG can have adverse effects (Markovic et al. 2017).

5 Skeletal Phenotypes of Mice with COX-2 Deficiency

Disruption of genes for PG production has given us some indications of the role of
endogenous PGs in vivo. It was clear in early studies that COX-1 KO mice were
healthy and survived normally, while COX-2 KO mice had more profound effects
(Dinchuk et al. 1995; Langenbach et al. 1995, 1999; Morham et al. 1995). However,
one study reported 35% of neonatal COX-2 KO mice died with a patent ductus
arteriosus and the mortality increased to 100% when both genes for COX-1 were
inactivated, indicating the dependence of COX-2 effects on levels of COX-1 expres-
sion (Loftin et al. 2001). Other studies found 20% of COX-2 KO mice dying
between 7 and 23 weeks of age secondary to renal dysplasia, despite normal renal
development at birth (Morham et al. 1995; Norwood et al. 2000). COX-2 KO female
mice were infertile, with multiple failures in female reproductive processes, includ-
ing ovulation, fertilization, and implantation (Lim et al. 1997). Initial studies of
skeletal phenotypes in the C57Bl/6,129 background also reported early death in
COX-2 KO mice, gave variable phenotypic results, and suggested that older COX-2
KO mice might have primary hyperparathyroidism (HPTH) (Alam et al. 2005; Xu
et al. 2005; Robertson et al. 2006).

Effects of Background Strain Mice for all these initial studies were in the C57Bl/6
inbred strain or mixed C57Bl/6 and 129 inbred strains. Both C57Bl/6 and 129sv
mice have been shown to have a natural mutation that results in lack of the gene for
the serum phospholipase (GIIA sPLA2) that is important for releasing AA (Kennedy
et al. 1995; MacPhee et al. 1995). Hence, COX-2 KOs in these backgrounds are
really double KOs, and this may impair the ability of COX-1 to produce PGs and
compensate for absent COX-2. The MC3T3-E1 osteoblastic cell line, commonly
used to study osteoblastic cells in vitro, was derived from C57Bl/6 mice and may
also lack GIIA PLA2.

Mice in the outbred strain, CD-1, were reported to be heterozygous for the GIIA
sPLA2 mutation (Kennedy et al. 1995). We bred COX-2 KO mice into the CD-1
background and found that COX-2 KO mice had no increased mortality and no
renal dysfunction and that COX-2 KO females were fertile (Xu et al. 2010). Despite
being healthy, 5-month-old male COX-2 KO mice had twofold elevated serum PTH
compared to WT mice. COX-2 KO mice also had increased serum markers of bone
formation and resorption, decreased femoral BMD by DXA (dual-energy X-ray
absorptiometry) and cortical bone thickness by μCT, and small but nonsignificant
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decreases in trabecular bone volume by μCT or dynamic histomorphometry. We
concluded that this bone phenotype could be due to hyperparathyroidism, COX-2
deficiency, or both.

PGE2 and Sympathetic Activity Recently it was reported that PGE2 secreted by
osteoblastic cells activated EP4 in sensory nerves to increase bone formation by
inhibiting sympathetic activity through the central nervous system (Chen et al.
2019). They found that EP4 KO targeted to sensory nerves or COX-2 KO targeted
to mature osteoblasts in 3-month-old mice significantly reduced bone volume in
adult mice. They postulate that low bone mineral density is sensed by osteoblasts,
perhaps because of increased mechanical stresses and stimulated PGE2 production
by osteoblasts. PGE2 then acts via EP4 on sensory nerves to downregulate sympa-
thetic tone, which then leads osteoblast to increase bone formation. Because so many
different genetically engineered mice were subjected to so many different protocols,
it is difficult to assess reproducibility. If these results are confirmed, it would mean
that targeted COX-2 KO in mature osteoblasts has a larger effect than global COX-2
KO on bone phenotype in mice. Part of the argument for doing this study was the
skeletal effects in congenital disorders with insensitivity to pain, disorders caused by
several mutations (Nahorski et al. 2015). However, it seems likely that most skeletal
problems involving fractures and joint disorders in these patients initially arise from
repeated injury due to the lack of pain sensitivity and not from bone loss (Zhang and
Haga 2014; Phatarakijnirund et al. 2016; Kayani et al. 2017).

6 COX-2 and PTH: A Special Relationship

PTH is the major hormone responsible for maintenance of calcium homeostasis. It is
a major stimulator of bone resorption, acting via a GPCR, which is highly expressed
by osteoblast lineage cells and activates both Gαs and Gαq signaling pathways
(Vilardaga et al. 2011; Mahon 2012). PTH stimulates bone resorption by increasing
RANKL and decreasing osteoprotegerin (OPG) (Boyce and Xing 2008). When PTH
is injected intermittently, bone formation is increased more than resorption resulting
in bone gain. Intermittent PTH was the first anabolic agent approved for osteoporosis
therapy in the USA (Potts and Gardella 2007; Augustine and Horwitz 2013).

Intermittent PTH Both PTH and PGE2 stimulate cAMP signaling, and both can
induce both resorption and formation. We hypothesized that PGE2 might mediate
some of the anabolic effects of PTH but found instead that the anabolic effects of
intermittent PTH were increased in COX-2 KO mice (Xu et al. 2010). This led us to
consider that PGE2 might inhibit the osteogenic effects of PTH in vitro. We found
that continuous PTH inhibited or had no effect on osteoblastic differentiation in WT
marrow stromal cultures but stimulated osteoblastic differentiation in COX-2 KO
cultures (Choudhary et al. 2013). The COX-2-dependent inhibition of the osteogenic
effects of PTH was shown to be due to a factor secreted by the hematopoietic lineage
(bone marrow macrophage) cells in the cultures in response to a combination of
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RANKL, from osteoblastic lineage cells, and PGE2, produced by either osteoblastic
or hematopoietic lineage cells, acting via the EP4 receptor (Choudhary et al. 2013).
We subsequently identified the COX-2-dependent secreted inhibitor in vitro as
serum amyloid A3 (SAA3) (Choudhary et al. 2016) and showed that secreted
SAA3 acted back on osteoblastic cells to inhibit PTH-stimulated cAMP signaling.

Continuous PTH In contrast to intermittent PTH, continuous PTH infusion causes
bone loss (Iida-Klein et al. 2005; Robling et al. 2011). It was generally thought that
this difference was due to increased resorption when PTH was given continuously.
We examined effects of continuous PTH infusion in COX-2 KO mice, which did not
express SAA3 in bone marrow macrophage cells when stimulated by PTH-induced
RANKL, and in SAA3 KO mice, which have a normal COX-2 response to PTH
(Choudhary et al. 2015, 2018). Continuous PTH increased bone formation in both
COX-2 KO mice and SAA3 KO mice but suppressed bone formation in WT mice.
There was no effect of COX-2 KO or SAA3 KO on PTH-stimulated bone resorption.
Because the PTH stimulated increase in bone formation was greater than the PTH
stimulated increase in bone resorption, continuous PTH was anabolic in both COX-2
KO and SAA3 KO mice. Hence, our data suggest that the effects of continuous PTH
on bone are due to the PGE2-dependent secretion of SAA3, which suppresses bone
formation, and not due to increased bone resorption. Our working hypothesis is
shown in Fig. 3.

7 Effects of NSAIDS on Bone

Early studies in animals suggested that NSAIDs impaired fracture healing (Einhorn
2003; Brown et al. 2004; Simon and O’Connor 2007). However, other studies
proposed that the effects of NSAIDs on fracture healing were dose and duration

(3) SAA3 blocks PTH-stimulated
cAMP and osteoblast differentiation
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lineage cells

Osteoblast 
differentiation
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Fig. 3 Role of PGE2-dependent SAA3 in blocking the osteoblastic response to continuous PTH.
(1) PTH acts on osteoblastic precursors to induce cAMP, which causes them to differentiate into
mature, bone-forming osteoblasts. PTH also induces COX-2/PGE2 and RANKL. (2) RANKL acts
on bone marrow macrophages (BMMs) to induce them to become osteoclast precursors. RANKL
also induces COX-2/PGE2. RANKL combined with PGE2 causes the osteoclastic precursors to
produce and secrete SAA3. (3) SAA3 acts on the osteoblastic cells to block PTH-stimulated cAMP
and suppress osteoblastic differentiation
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dependent and reversible after discontinuation of brief treatment (Gerstenfeld et al.
2007). Recent reviews of animal studies indicate that loss of COX-2 activity
primarily affects fracture healing via callus chondrogenesis or endochondral ossifi-
cation (Geusens et al. 2013; O’Connor et al. 2014; Janssen et al. 2017). Recent
reviews of fracture healing in humans conclude that short-term use of NSAIDs does
not impair fracture healing (Kurmis et al. 2012; Marquez-Lara et al. 2016; Pountos
et al. 2012) or spinal fusion surgery (Sivaganesan et al. 2017). On the other hand,
6 weeks of indomethacin increased risk for non-union after acetabular fracture
surgery (Sagi et al. 2014), and chronic use of NSAIDs increased risk for a second
hip fracture after hip fracture surgery (Huang et al. 2015). Hence, NSAIDs should
probably be used at low dose and for a short duration in situations of bone repair.

It is difficult to obtain data in humans on the effects of NSAIDs on bone loss,
given the wide range of NSAID dose, drug adherence, physical activity, inflamma-
tory conditions, and considerable variability at an individual level in the degree of
COX-2 inhibition and selectivity attained by selective COX-2 inhibitors (Fries et al.
2006). In a study of men age 65 and older, daily COX-2 inhibitor use in men was
associated with lower hip and spine bone mineral density (BMD) compared to
nonusers (Richards et al. 2006). In postmenopausal women not on estrogen replace-
ment therapy, it was associated with a higher BMD. There was no effect of COX-2
inhibitor in women on estrogen replacement. A review of the literature on controlled
randomized clinical trials with bone remodeling outcomes found some evidence for
increased BMD and decreased rate of resorption and no evidence for increased bone
formation in NSAID users, but the data were too limited for firm conclusions
(Konstantinidis et al. 2013).

8 Summary

PGs are highly bioactive fatty acids, produced by most cells in the body and rapidly
released and rapidly degraded. PGE2 is abundantly produced by both the mesenchy-
mal lineage cells and the hematopoietic cell lineages, which give rise to the bone-
forming osteoblasts and the bone-resorbing osteoclasts, respectively, as well as
multiple other cells in the bone environment. The production of PGE2 in bone is
highly regulated by multiple factors that induce COX-2. Cell and organ culture
studies, as well as in vivo studies of animals given exogenous PGE2, have
demonstrated that PGE2 can stimulate both bone resorption and bone formation.
However, studies of mice with globally absent COX-2 have not shown a major
skeletal phenotype. PGE2 acts at four G-protein-coupled receptors, EP1–4, with
distinct signaling pathways. Many of the actions of PGE2 in bone have been
attributed to increasing cAMP via the EP2 and EP4 receptors, and agonists of the
EP2 and EP4 receptors have been investigated for their ability to stimulate bone
formation and enhance fracture repair. Because COX-2 is induced by multiple
hormones, growth factors, and proinflammatory factors, PGE2 may integrate,
amplify, or actually mediate, the responses to these factors, a possibility that is
often overlooked. Recent studies have shown that when PTH is given continuously,
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PTH-stimulated COX-2/PGE2 leads to the production of a factor that blocks the
osteogenic effects of PTH in vitro and the anabolic effects of PTH in vivo.

As might be expected for a local factor with widespread production, regulated by
many factors, and acting at multiple receptors, it has been difficult to define specific
functions of PGE2 in bone as therapeutic targets. As the signaling pathways in bone
are better characterized in physiologic and pathologic conditions, it may be possible
to identify therapeutic applications of manipulating PGs in skeletal disorders.
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