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Abstract
Metabonomics, also known as metabolomics, is concerned with the study of
metabolite profiles in humans, animals, plants and other systems in order to assess
their health or other status and their responses to experimental interventions.
Metabonomics is thus widely used in disease diagnosis and in understanding
responses to therapies such as drug administration. Pharmacometabonomics, also
known as pharmacometabolomics, is a related methodology but with a prognostic
as opposed to diagnostic thrust. Pharmacometabonomics aims to predict drug
effects including efficacy, safety, metabolism and pharmacokinetics, prior to drug
administration, via an analysis of pre-dose metabolite profiles. This article will
review the development of pharmacometabonomics as a new field of science that
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has much promise in helping to deliver more effective personalised medicine, a
major goal of twenty-first century healthcare.

Keywords
Metabolic phenotyping · Metabolomics · Metabonomics · Metabotypes ·
NMR spectroscopy · Personalised medicine · Pharmacometabolomics ·
Pharmacometabonomics · Precision medicine · Systems medicine

1 Introduction

Metabolic profiling of biological fluids has a long history going back hundreds, if
not thousands, of years, to simple methods for detecting sweet-tasting urine as a
biomarker for diabetes (Burt and Nandal 2016; Lindon and Wilson 2016). The
science of metabolic profiling developed rapidly in the 1980s as huge advances
were made in the power and sensitivity of the nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS) detection technologies used in most
metabolic profiling studies. Then in the late 1990s the sciences of metabonomics
and metabolomics were named and defined. Metabonomics was defined in an
interventional, i.e. experimental paradigm by the groups of Jeremy Nicholson and
Jeremy Everett at Birkbeck College/Imperial College and Pfizer respectively as “the
quantitative measurement of the multiparametric metabolic response of living
systems to pathophysiological stimuli or genetic modification” (Lindon et al.
2000). The alternative term metabolomics was defined in an observational fashion
a few years later by Fiehn as “a comprehensive analysis in which all the metabolites
of a biological system are identified and quantified” (Fiehn 2002). The two terms are
now used inter-operatively in spite of the stark differences between the definitions.
The blanket term metabolic profiling is also used interchangeably with both terms
(Lindon et al. 2007, 2019).

Metabonomics has many uses in the clinical arena including studies of disease
mechanisms and biomarkers, disease diagnosis, detection of inborn errors of metab-
olism, the effects of therapeutic interventions on patients, drug metabolism, drug
efficacy and drug safety (Lindon et al. 2007, 2019). The experiments are typically
performed using NMR and MS technologies to detect and identify large numbers of
metabolites in biological fluids such as urine, blood plasma, sweat, cerebrospinal
fluid, tears, etc., but occasionally in body tissues as well. The metabolites detected
in these metabonomics experiments are derived from a variety of sources including
human endogenous, non-human endogenous (mainly the microbiome) and exoge-
nous (external) sources including food, drink, drugs and the exposome. The pheno-
type of an organism is dictated by both the metabolites and the proteins that it
contains and these may derive from many sources (Fig. 1).

Metabonomics experiments are typically conducted in an interventional or a
diagnostic paradigm. Differences in metabolite profiles following an experimental
intervention such as drug treatment are used to interpret the biological and biochem-
ical effects of that treatment. In some cases, the intervention will produce a simple
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change, such as the reduction or increase in the concentration of one or a small
number of key metabolites. In other cases, the intervention may produce widespread
changes in the concentrations of a large number of metabolites and multivariate
statistical analysis methods such as principal components analysis (PCA) can be
used to simplify the data analysis and visualise the changes in metabolite space
(Fig. 2a). In this “event interpretation” mode of metabonomics, the changes from
pre-intervention (open circles) to post-intervention metabolic state (black squares)
are interpreted in relation to the nature of the intervention applied. Another typical
use of metabonomics is to distinguish between different groups of subjects, such as
patients with a disease, such as liver failure (orange squares), compared to age- and
gender-matched healthy human controls (green circles, Fig. 2b). In fact, the diag-
nostic paradigm of metabonomics is equivalent to the interventional paradigm if one
considers that the intervention could be, for example, the presence or absence of a
disease.

The technologies with which metabonomics experiments are conducted are
important. There are two main technologies in use for metabolite detection and
identification in biological fluids and tissues/tissue extracts today: mass spectrometry
(MS), usually hyphenated together with a separation technology such as HPLC,
UPLC, GC or CE, and NMR spectroscopy (Lindon et al. 2007, 2019; Markley et al.
2017; Nicholson et al. 2016; Wehrens and Salek 2019; Wilson 2015). Good
protocols and guides for conducting the experiments by MS (Chen et al. 2016;
Scalbert et al. 2009) or NMR (Beckonert et al. 2007; Gowda and Raftery 2017) and
good methodologies for identifying the metabolites by MS (Kind and Fiehn 2010;
Watson 2013) or NMR (Dona et al. 2016; Markley et al. 2017) are available.

Metabonomics experiments typically analyse the concentrations of metabolites
before and after an intervention (Fig. 2a). Modern NMR spectrometers are capable
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Fig. 1 The metabolites and proteins found in the human body may originate from inside the body
(endogenous) or from various sources outside (exogenous). The pathway from gene to product is
shown for the human endogenous metabolites and proteins, and the origins of non-human endoge-
nous and exogenous metabolites and proteins are given

Pharmacometabonomics: The Prediction of Drug Effects Using Metabolic Profiling 265



of accurately quantifying the biofluid concentrations of dozens to hundreds of
metabolites in a few minutes (Fig. 3).

A comparison of the attributes of MS and NMR for conducting metabonomics
experiments is given in Table 1. Although far more studies are reported using
MS-based detection (see Table 2 below), there is currently a trend to the increasing
use of NMR due to its greater stability, ease of automation and reliability, which are
important when dealing with large sample number studies, often the case in a clinical
setting.

Metabonomics experiments can however be conducted not just by measuring
metabolite levels. Metabolite concentration trajectories through time, metabolite
entropies and metabolite correlations or networks can also be measured (Fig. 4)
and these can often give additional information relative to that obtained from simple
concentration measurements before and after an intervention (Everett et al. 2019).

Metabonomics experiments are sometimes categorised as to whether they are
targeted or untargeted (Wishart 2016). In the targeted experiments, a selected group
of metabolites is analysed, often quantifying the metabolite concentrations relative to
an authentic reference standard. In the untargeted experiments, an unbiased approach
is used and all the metabolites detected above the sensitivity threshold of the
technology employed are analysed. Given the current lack of knowledge of mam-
malian biology and the complexities of genome –microbiome interactions, adopting
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Fig. 2 Schematic representations of the outcomes from the two key experimental approaches to
metabolic phenotyping, based on multivariate analysis, e.g. principal components scores, of the
metabolic profiles of a number of individuals and showing the first two components (factor 1 and
factor 2). Each square or circle represents an individual subject in the study. (a) Metabonomics
approach 1 (effect of intervention), where open circles represent pre-intervention biofluid metabolic
spectral profiles, and black squares represent post-intervention metabolic profiles in the same
individuals, where some metabolic perturbation has occurred. The arrows indicate the metabolic
trajectory that each individual underwent across metabolic hyperspace as a consequence of the
intervention; (b) metabonomics approach 2: diagnosis. The metabolite profiles of patients with a
disease (orange squares) are distinct from those of healthy controls (green circles) and thus a
diagnosis can be made; (c) the predictive or prognostic approach. The difference in the pre-
intervention metabolic profiles of two sub-groups of subjects (white circles v grey circles) allows
prediction of different post-intervention states for these sub-groups (red and blue squares, respec-
tively). For pharmacometabonomics, the intervention will be drug treatment and the prediction will
be of drug PK, metabolism, efficacy or toxicity

266 J. R. Everett



a targeted approach to metabonomics is only recommended when there is a well-
understood biological hypothesis regarding the subjects and the intervention of the
experiment. Many surprising and important discoveries are to be made by untargeted
methods particularly because our understanding of mammalian biology is so
primitive.

Metabonomics experiments can be conducted on a wide variety of sample types
including biological fluids such as urine, blood plasma, cerebrospinal fluid, breath
condensate, joint fluids, etc. (Lindon et al. 2007). The choice of sample will
influence the sort of information that the experiments can provide. Analysis of
breath condensates will provide information on the large number of volatile, low
molecular weight compounds in exchange with lung tissue, whereas the analysis of
blood plasma will provide information on low molecular weight metabolites
including sugars, organic acids and amino acids, together with macromolecular
compounds such as proteins, glycoproteins and lipoproteins. The analysis of urine
(Emwas et al. 2015) can be advantageous: it contains a wide variety of metabolites
including amines, organic acids, amino acids and sugars and in mammals, reports on
both endogenous mammalian and endogenous microbial metabolites, as well as

Fig. 3 The 600 MHz 1H NMR spectrum of the urine of a control, male C57BL/6 mouse together
with expansions of two low frequency regions, demonstrating the large number of metabolites that
can be detected. The identities of some key metabolites are given: 2OIV 2-oxoisovalerate, 3M2OV
3-methyl-2-oxovalerate, all allantoin, cr creatine, crn creatinine, eth ethanol, lac lactate, DMA
dimethylamine, hipp hippurate, MA methylamine, succ succinate, TMA trimethylamine, TSP
trimethylsilylpropionate-d4 (the chemical shift and quantification reference), UP ureidopropionate,
water the residual signal after water suppression
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mammalian – microbial co-metabolites. When the metabolism of a mammal such as
a human is perturbed by disease or perhaps the effects of another intervention, such
as drug treatment, the metabolic control systems will try to re-establish homeostasis.
This will frequently occur by the elimination of unwanted metabolites via the urine,
leaving the plasma less affected, thus giving the opportunity to identify the nature of
the metabolic perturbation. Frequently, changes to the status of the gut microbiome
can be detected by the observation of metabolic perturbations in urine samples.

Although most metabonomics experiments are diagnostic or interventional in
mode, some experiments can be prognostic; that is, the metabolite patterns observed
can be used to predict future events. The rest of this chapter will be devoted to
prognostic metabonomics.

Table 1 The attributes and capabilities of mass spectrometry and NMR spectroscopy in
metabonomics experiments

NMR spectroscopy Mass spectrometry

Powerful structure elucidation capability for
small molecules in solution giving information
on molecular structure, isomerism,
conformations and dynamics

Powerful structure analysis capability to
generate metabolite mass and molecular
fragment information together with molecular
formulae at high resolution

Relatively insensitive, but sensitivity improved
recently with digital spectrometers, cryoprobes
and low volume probes

Highly sensitive

Instrumentation expensive but per sample cost
relatively low

Instrumentation relatively inexpensive but
running costs high and isotopically-labelled
reference standards for quantitation can be
expensive

Absolute quantitative measurements and no
reference standard required when used with
ERETIC technology(Bharti and Roy 2012)

Not absolutely quantitative in absence of
specific reference standards, but has relative
quantification capability

Highly stable as no contact between sample
and spectrometer
Little effect of history on data
Suitable for large-scale experiments on
hundreds to thousands of samples in full
automation

Relatively unstable, and may have detector
gain changes with large sample numbers
Column and spectrometer performance can be
affected by history
Large sample number runs are difficult due to
challenges of maintaining instrument stability

Minimal sample preparation and direct
analysis of biological samples

Generally requires a chromatographic
separation step prior to MS analysis
Gas chromatographic (GC) analysis requires
metabolite derivatisation in order to obtain
metabolite volatilisation

One set of unique signals for each isomer of
each metabolite

Soft ionisation mass spectra may be
complicated by multiple adduct formation with
multiple spectra for different metal ion and
solvent adducts observed for each metabolite
GC-MS analyses may be complicated by
formation of multiple derivatives

Completely non-destructive technique:
Samples can be stored and re-analysed

Sample destroyed in analysis
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Table 2 A list of pharmacometabonomics studies from 2006 to 2019, sorted by study type and
date order

# Study and reference Species Metabolite profiling technology

Prediction of pharmacokinetics (PK)

1 Prediction of tacrolimus PK in healthy
volunteers (Phapale et al. 2010)

Human LC-MS

2 Prediction of pharmacokinetics of triptolide
(Liu et al. 2012)

Rat GC-MS

3 Prediction of atorvastatin pharmacokinetics
in healthy volunteers (Huang et al. 2015)

Human GC-MS

4 Prediction of methotrexate clearance in
patients with lymphoid malignancies
(Kienana et al. 2016)

Human GC-MS

5 Prediction of midazolam clearance in
female volunteers (Shin et al. 2016)

Human GC-MS

6 Pharmacometabonomic prediction of
busulphan clearance in haematopoietic stem
cell transplant recipients (Navarro et al.
2016)

Human LC-MS

7 Prediction of intravenous busulphan
clearance by endogenous plasma
biomarkers using global
pharmacometabolomics (Lin et al. 2016)

Human LC-MS

8 Prediction of busulphan AUC in
haematopoietic stem cell transplantation
patients (Kim et al. 2017)

Human LC-MS

9 Prediction of d4-cholic acid
pharmacokinetics (Zhang et al. 2017b)

Rat LC-MS

10 Integrated use of pharmacometabonomics
and pharmacogenomics to predict the
pharmacokinetics of a novel transient
receptor potential vanilloid type 1 (TRPV1)
antagonist (Oh et al. 2018)

Human LC-MS

11 Prediction of zonisamide pharmacokinetics
parameters in volunteers (Martinez-Avila et
al. 2018a, b)

Human LC-MS

12 Prediction of methylphenidate PK in
healthy volunteers (Kaddurah-Daouk et al.
2018)

Human LC-MS

13 Prediction of midazolam clearance in male
volunteers (Lee et al. 2019)

Human GC-MS

Prediction of drug metabolism

1 Prediction of paracetamol/acetaminophen
metabolism (Clayton et al. 2006)
** First demonstration of
pharmacometabonomics

Rat NMR

2 Prediction of metabolism of paracetamol/
acetaminophen in human volunteers
(Clayton et al. 2009)
** First demonstration of
pharmacometabonomics in humans

Human NMR

(continued)
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Table 2 (continued)

# Study and reference Species Metabolite profiling technology

3 Prediction of CYP3A4 induction in
volunteer twins (Rahmioglu et al. 2011)

Human NMR

4 Prediction of CYP3A activity in healthy
volunteers (Shin et al. 2013)

Human GC-MS

5 Prediction of losartan metabolism in healthy
volunteers (He et al. 2018)

Human NMR and LC-MS

6 Prediction of methylphenidate (Ritalin [for
ADHD]) metabolism in healthy genotyped
volunteers (Kaddurah-Daouk et al. 2018)

Human LC-MS

Prediction of drug efficacy

1 Prediction of simvastatin efficacy in
patients on the cholesterol and
pharmacogenomics study (Kaddurah-
Daouk et al. 2010; Trupp et al. 2012)

Human TLC plus GC and GC-MS

2 Prediction of chemotherapy efficacy in
breast cancer patients (Stebbing et al. 2012)

Human NMR

3 Prediction of citalopram/escitalopram
response in patients with major depressive
disorder (MDD) (Ji et al. 2011)
** First demonstration of
pharmacometabonomics-informed
pharmacogenomics approach to
personalised medicine
See also Abo et al. (2012) and Gupta et al.
(2016)

Human GC-MS and LC-ECA (LC-
electrochemical coulometric
array detection)

4 Prediction of sertraline and placebo
responses in patients with MDD
(Kaddurah-Daouk et al. 2011, 2013;
Zhu et al. 2013)

Human LC-ECA and GC-MS

5 Prediction of efficacy of anti-psychotics in
schizophrenia patients (Condray et al. 2011)

Human LC-ECA

6 Prediction of response to aspirin in healthy
volunteers (Ellero-Simatos et al. 2014;
Lewis et al. 2013; Yerges-Armstrong et al.
2013)

Human LC-MS and GC-MS

7 Prediction of efficacy with anti-TNF
therapies in rheumatoid arthritis
(Kapoor et al. 2013)

Human NMR

8 Prediction of thiopurine-S-
methyltransferase phenotype in Estonian
volunteers (Karas-Kuzelicki et al. 2014)

Human HPLC

9 Prediction of efficacy of L-carnitine therapy
for patients with septic shock (Evans et al.
2019; Puskarich et al. 2015, 2018)

Human NMR and LC-MS

10 Prediction of acamprosate treatment
outcomes in alcohol-dependent patients
(Nam et al. 2015)

Human LC-MS

(continued)
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Table 2 (continued)

# Study and reference Species Metabolite profiling technology

11 Prediction of blood pressure lowering in
hypertensive patients treated with atenolol
and hydrochlorothiazide (Rotroff et al.
2015)

Human GC-MS

12 Prediction of response in lung cancer
patients (Hao et al. 2016a)

Human NMR and GC-MS

13 Prediction of patient response to
trastuzumab-paclitaxel neoadjuvant therapy
in HER-2 positive breast cancer
(Miolo et al. 2016)

Human LC-MS

14 Prediction of patient response in SSRI
treatment of major depressive disorder
(Gupta et al. 2016)

Human LC-ECA

15 Prediction of clopidogrel high on treatment
platelet reactivity (HTPR) in CAD patients
[NMR] (Amin et al. 2017)

Human NMR

16 Prediction of chemosensitivity of treatment
of AML patients with cytarabine and
anthracycline (Tan et al. 2017)

Human LC-MS

17 Prediction of efficacy in pancreatic ductal
adenocarcinoma patients receiving
gemcitabine (Phua et al. 2017)

Human GC-TOFMS

18 Prediction of blood pressure lowering by
hydrochlorothiazide [lipidomics and
pharmacogenomics] (Shahin et al. 2017)

Human

19 Prediction of efficacy of gemcitabine and
carboplatin treatment of metastatic breast
cancer patients (Jiang et al. 2018)

Human NMR

20 Prediction of gemcitabine efficacy in
pancreatic ductal adenocarcinoma patients
(Phua et al. 2018)

Human GC-MS

21 Prediction of response to metformin
treatment in early T2DM patients
(Park et al. 2018)

Human GC-MS

22 Prediction of efficacy of propranolol in
reducing hepatic venous pressure gradient
(HPVG) in patients with liver cirrhosis
(Reverter et al. 2019)

Human LC-MS

23 Prediction of efficacy of meglumine
antimonite efficacy if patients with
cutaneous leishmaniasis
(Alejandro Vargas et al. 2019)

Human LC-MS

24 QUASI-prediction of dexamethasone
steroid treatment efficacy in pre-term
infants with respiratory syndrome
(Cao et al. 2019)

Human GC-TOF-MS

(continued)
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Table 2 (continued)

# Study and reference Species Metabolite profiling technology

25 Prediction of warfarin efficacy in atrial
fibrillation patients (Bawadikji et al. 2019)

Human NMR

Prediction of adverse events

1 Prediction of toxicity from paracetamol/
acetaminophen dosing (Clayton et al. 2006)
** First demonstration of
pharmacometabonomics

Rat NMR

2 Prediction of weight gain in breast cancer
patients undergoing chemotherapy
(Keun et al. 2009)
** First demonstration of
pharmacometabonomics in patients

Human NMR

3 Prediction of onset of diabetes in rats
administered with streptozotocin
(Li et al. 2007)

Rat GC-MS

4 Prediction of liver injury markers in patients
treated with ximelagatran
(Andersson et al. 2009)

Human NMR, GC-MS and LC-MS

5 Prediction of toxicity of paracetamol/
acetaminophen (“early-onset
pharmacometabonomics”)
(Winnike et al. 2010)

Human NMR

6 Prediction of nephrotoxicity of cisplatin
(Kwon et al. 2011)

Rat NMR

7 Prediction of toxicity in patients with
inoperable colorectal cancer treated with
capecitabine (Backshall et al. 2011)

Human NMR

8 Prediction of toxicity of isoniazid in rats
(Cunningham et al. 2012)

Rat NMR

9 Prediction of hyperglycaemia in Caucasian
hypertensive patients on the PEAR study
with atenolol (Weng et al. 2016)

Human LC-MS

10 Prediction of variability in response to
galactosamine treatment (Coen et al. 2012)

Rat NMR

11 Prediction of hyperglycaemia in Caucasian
hypertensive patients on the PEAR study
with atenolol (de Oliveira et al. 2016)

Human GC-TOF-MS and genomics

12 Prediction of toxicity from
lipopolysaccharide treatment in rats
(Dai et al. 2016)

Rat LC-MS and GC-MS

13 Prediction of ‘high on treatment platelet
reactivity (HTPR)’ in patients on
clopidogrel anti-platelet therapy to prevent
stent thrombosis in urine (Amin et al. 2017)

Human NMR

14 Prediction of nephrotoxicity of cisplatin in
rats (Zhang et al. 2017a)

Rat GC-MS and LC-MS

(continued)
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Table 2 (continued)

# Study and reference Species Metabolite profiling technology

15 prediction of “high on treatment platelet
reactivity (HTPR)” in patients on
clopidogrel anti-platelet therapy to prevent
stent thrombosis in plasma (Amin et al.
2018)

Human NMR

16 Prediction of peripheral neuropathy in
breast cancer patients treated with Paclitaxel
(Sun et al. 2018)

Human NMR

17 Prediction of irinotecan gastrointestinal
toxicity (Gao et al. 2019)

Rat GC-MS and LC-MS

Predictive metabonomics

1 Prediction of developing diabetes
(Wang et al. 2011)
** First predictive metabonomics study

Human LC-MS

2 Prediction of pre-diabetes
(Wang-Sattler et al. 2012)

Human LC-MS and flow-injection
analysis-MS

3 Prediction of renal function recovery after
relief of obstructive uropathy
(Dong et al. 2013)

Human NMR

4 Prediction of all-cause death
(Fischer et al. 2014)

Human NMR

5 Prediction of stroke recurrence after
transient ischemic attack (Jove et al. 2015)

Human LC-MS

6 Prediction of breast cancer risk
(Bro et al. 2015)

Human NMR

7 Prediction of preeclampsia and gestational
hypertension (Austdal et al. 2015)

Human NMR

8 Prediction of development of obesity
(Ni et al. 2015)

Human LC-MS

9 Prediction of 1-year outcome in
subarachnoid haemorrhage
(Sjoberg et al. 2015)

Human GC-MS

10 Prediction of survival of lung cancer
patients undergoing treatment
(Hao et al. 2016a, b)

Human GC-MS and NMR

11 A predictive metabolic signature for the
transition from gestational diabetes to type
2 diabetes (Allalou et al. 2016)

Human GC-MS and LC-MS

12 Prediction of survival of patients with
decompensated cirrhosis s 2016
(McPhail et al. 2016)

Human NMR and LC-MS

13 Prediction of postoperative hypoxaemia
(Maltesen et al. 2016)

Human NMR

14 Prediction of ALS clinical progression
(Blasco et al. 2018)

Human LC-MS

15 Prediction of all-cause death
(Deelan et al. 2019)

Human NMR

Significant studies are highlighted with double asterisks in italic **
Some studies have several publications associated with them
The table is unlikely to be exhaustive due to the different keywords used for some studies
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Fig. 4 A schematic representation of the four principal approaches to the measurement of
metabonomic data: via (a) metabolite levels, (b) trajectories, (c) entropies or (d) correlations/
dependencies. In Box (a), the levels of five different metabolites M1–M5 in one normal individual
(white circles) are superimposed on a chart that represents the normal population distribution of
metabolite levels. Symbols μ and σ are the mean and standard deviations of the levels of the
metabolites for that population and with normal distribution. In Box (b), we see the trajectories over
time for the same five metabolites M1–M5 in one individual subjected to an intervention of some
kind. The time course of the metabolic trajectory moves from left to right in each metabolite column
and is represented by circles, whose shading gets lighter over time. Arrows connect the time points
for metabolite M1 but others are omitted for clarity. It can be seen that as a result of the challenge,
the levels of some metabolites (M1, M2 and M5) undergo positive and negative excursions from the
normal population values, whereas other metabolites are less affected. In Box (c), the metabolic
entropies of a cohort of four individuals that have been subjected to a challenge are represented. The
metabolite level for each individual is coloured differentially (red, blue, yellow and green circles
represent individuals 1, 2, 3 and 4, respectively). It can be seen that in this cohort there is high
metabolic entropy for metabolite M3 (metabolite levels are distributed across a very wide range of
values/configurational states following the intervention) and significant disturbances in the metab-
olite levels for M4 and M5, but much lower metabolic entropy for metabolites, M1, M2, M4 and
M5. In Box (d), the metabolite correlations seen for five metabolites (M1–M5) in four human
subjects (red, blue, yellow and green circles represent individuals 1, 2, 3 and 4, respectively) are
shown following an intervention. The intervention causes a significant increase in the
concentrations of metabolite M1 for all four subjects (white vertical arrows), although to differing
degrees. The same pattern of disturbance is seen for metabolite M3 in all four subjects. It is clear that
the concentrations of metabolites M1 and M3 are correlated, with the excursions from the mean
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2 Discovery of Pharmacometabonomics

A high degree of “biological variation”, i.e. widely varying results, was often
observed in early drug metabolism and drug safety studies in Beecham
Pharmaceuticals and Pfizer R & D in the 1980s and 1990s. The causes of this
variance were unknown but could lead to widely disparate results, sometimes to
the extent that doubts were raised as to whether the drug in question had been dosed
properly. Pfizer and Imperial College had established a panomics study of early drug
safety signals in the 1990s. At a collaboration meeting in Amboise, France on 18th
October 2000, the topic of widely varying safety data on galactosamine and isonia-
zid was discussed. The notion emerged from the meeting that the metabolic pheno-
type of the animals prior to dosing was influencing differential responses to the drug
post-dose. A series of experiments was designed to test this notion, and the concept
of pharmacometabonomics was born.

The first key experiment was to test the hypothesis that pre-dose rat metabolite
profiles could predict post-dose drug metabolism and safety for the common anal-
gesic paracetamol, also known as acetaminophen (Clayton et al. 2006). A dose of
600 mg/kg was administered to 65 Sprague-Dawley rats, and urine samples were
collected both pre- and post-dosing and then analysed by 600 MHz 1H NMR
spectroscopy. A validated projection to latent structure (PLS) model showed a
statistically significant correlation between pre-dose urine metabolite concentrations
and the post-dose ratio of the metabolite paracetamol glucuronide (G) to the parent
drug paracetamol (P, Fig. 5).

In addition, unbiased principal components analysis (PCA) of the pre-dose urine
1H NMR spectra showed a partial correlation between the mean liver histopathology
score (MHS) and principal component 2 (PC2) of the data (Fig. 6). A Mann–
Whitney U test showed the statistical significance of the separation of the pre-dose
NMR data for rats in class 1 (minimal/no liver pathology) and class 3 (significant
liver pathology) with p ¼ 0.002. The pre-dose levels of taurine were negatively
correlated with the post-dose degree of liver pathology, consistent with taurine’s
known role in protecting against paracetamol toxicity (Waters et al. 2001). The
taurine levels may have reflected the availability of inorganic sulphate to individual
rats. Inorganic sulphate is needed for the biosynthesis of both taurine and for the
paracetamol-sulphating agent phosphoadenosine phosphosulphate (PAPS). Consis-
tent with this, rats with a high degree of liver necrosis showed a low degree of
paracetamol sulphation (Clayton et al. 2006).

Thus it was clearly demonstrated that pre-dose metabolite profiles could enable
the prediction of post-dose effects including drug metabolism and toxicity. This is
pharmacometabonomics, which was defined as “the prediction of the outcome (for

�

Fig. 4 (continued) greatest for the yellow and blue subjects. By contrast the concentrations of
metabolites M4 and M5 are anti-correlated with those of M1 and M3. It could be inferred from the
correlations of the concentrations of these metabolites that they may be in the same or a related
biochemical pathway. The levels of metabolite M2 are relatively undisturbed
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example, efficacy or toxicity) of a drug or xenobiotic intervention in an individual
based on a mathematical model of pre-intervention metabolite signatures” (Clayton
et al. 2006). Pharmacometabonomics is a prognostic or predictive methodology, in
contrast to the diagnostic mode of metabonomics and it is the metabolic equivalent

Fig. 5 The molecular structures of paracetamol (P) and its major metabolites

Fig. 6 A plot of paracetamol liver toxicity as measured by the mean liver histopathology score
(MHS) against principal component 2 (PC2) of the pre-dose urine NMR spectral data. A partial
class separation is observed. Each point represents a single rat and is colour-coded by its histology
class with increasing degree of liver pathology: class 1 is green (minimal/no pathology), class 2 is
blue (intermediate pathology), class 3 is red (significant pathology). Figure reproduced from Nature
Publishing Group (Clayton et al. 2006)
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of pharmacogenomics, which is the use of genetic information to predict drug effects
in advance of dosing (Salari et al. 2012).

The initial success of pharmacometabonomics experiments in animals prompted
the question of whether the method would work in humans. A Pfizer/Imperial
College research team therefore set up an experiment to test the hypothesis that
pre-dose urine metabolite profiles could predict post-dose drug metabolism, again in
the analgesic paracetamol. A normal clinical dose of paracetamol (two 500 mg
tablets with water) was administered to 100, normal, male volunteers in March
and April 2003. Urine samples were collected both pre-dose and 0–3 and 3–6 h
post-dose and these were analysed by both 600 MHz 1H NMR spectroscopy (Fig. 7)
and UPLC-MS (Clayton et al. 2009).

The pre-dose 1H NMR spectrum of volunteer 1 (Fig. 7a) showed signals from
microbial metabolites such as hippurate (2) and human metabolites such as citrate
(5) in addition to an unknown metabolite (4) with a singlet methyl signal at ca
2.35 ppm and second-order aromatic doublet signals between ca 7.2 and 7.3 ppm.
This volunteer excreted more paracetamol glucuronide metabolite (8) than paraceta-
mol sulphate (7) as is clear in the 1H NMR spectrum of the 0–3 h post-dose urine
(Fig. 7b) where both methyl group singlet and second-order aromatic doublet signals
for these metabolites are clearly visible. By contrast, volunteer 2 excreted no visible
quantity of unknown metabolite 4 pre-dose but excreted a much higher ratio of
paracetamol sulphate (7) to glucuronide (8) post-dose (Fig. 7c, d).

Analysis of the remaining urinary 1H NMR data showed that this pattern was
present across all of the volunteers (Fig. 8).

It is clear from Fig. 8 that when the pre-dose ratio of metabolite 4 normalised to
creatinine is greater than 0.06, then the post-dose paracetamol sulphate (S) to
paracetamol glucuronide (G) ratio is always less than 0.8. The same pattern was
found when the 3–6 h post-dose urines were analysed. Mann–Whitney U tests in
conjunction with a Bonferroni correction to counter the effects of multiple hypothe-
sis testing showed that the association of high metabolite 4 to creatinine ratios with
low S/G ratios was statistically significant for both the 0–3 h ( p¼ 0.0001) and 3–6 h
( p¼ 0.00012) post-dose urines. With a Bonferroni correction of 100, the p value for
statistical significance is 0.0005 instead of 0.05 (Broadhurst and Kell 2006).

Thus, it was clear that there was a statistically significant correlation, between the
presence of metabolite 4 at high levels pre-dose and diminished paracetamol
sulphate (S) to paracetamol glucuronide (G) ratios post-dose. It therefore became
important to identify unknown metabolite 4.

Metabolite 4 possesses a singlet, three proton signal at ca 2.35 ppm indicating the
presence of a methyl group attached to an sp2 carbon on the basis of its chemical
shift. The metabolite also possessed two, second-order aromatic doublet signals of
two hydrogens each, indicating that metabolite 4 had a methyl group attached to a
benzene ring with a substituent para to the methyl group. Metabolite 4 was identified
as 4-cresolsulphate (HMDB11635) (Wishart et al. 2018) by both unambiguous
chemical synthesis and spiking and by enzymatic desulphation to 4-cresol in situ
(Fig. 9) (Clayton et al. 2009).
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Fig. 7 600 MHz 1H NMR spectra of the urines of volunteers taking a 1 g oral dose of paracetamol.
(a) Spectrum of pre-dose urine of volunteer 1 together with expansions of the aromatic and lower
frequency regions. (b) 0–3 h post-dose urine spectrum of volunteer 1. (c and d) The corresponding
pre-dose and post-dose urine spectra of volunteer 2, respectively. Key to NMR signal numbers:
1, creatinine; 2, hippurate; 3, phenylacetylglutamine; 4, unknown metabolite; 5, citrate; 6, cluster of
signals from N-acetyl groups from paracetamol-related compounds that resolves into 7, 8 and 9 on
expansion; 7, paracetamol sulphate; 8, paracetamol glucuronide; 9, other paracetamol-related
compounds. Reproduced with permission from PNAS (Clayton et al. 2009)
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Fig. 8 The urinary ratio of paracetamol sulphate (S) to paracetamol glucuronide (G) excreted 0–3 h
post-dose plotted against the pre-dose ratio of metabolite 4 normalised to creatinine. Reproduced
with permission from PNAS (Clayton et al. 2009)

Fig. 9 The molecular structures of 4-cresol and paracetamol and their corresponding sulphate
metabolites
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The revelation that 4-cresolsulphate was a biomarker that, at least in part, could
enable the prediction of the metabolic fate of paracetamol in humans was a surprise.
4-Cresolsulphate is made in humans by the sulphation of 4-cresol, itself a product of
gut bacteria, particularly Clostridia species. Thus the human metabolism of the
widely used analgesic paracetamol (acetaminophen) is at least in part under the
control of gut bacterial metabolites. The influence of the gut microbiome on drug
properties was not widely recognised at this time and this paper helped to highlight
these important effects (Wilson 2009).

The reason for the relationship between 4-cresol and paracetamol metabolism is
evident from an inspection of Fig. 9. The molecular structures of 4-cresol and
paracetamol are quite similar and both are sulphated by the same sulphotransferases,
particularly SULT1A1. In humans, as opposed to rodents, 4-cresol is metabolised
almost exclusively by sulphation with no significant glucuronidation. However,
this sulphation requires the sulphate donor cofactor 3-phosphoadenosine
5-phosphosulfate (PAPS) and its supply is limited in humans (Gamage et al.
2006). Therefore in a human with a high 4-cresol burden due to their gut
microbiome, a significant amount of PAPS is used in 4-cresol sulphation and a
challenge to the body of that person of a large dose of a drug requiring sulphation,
results in the body turning to the alternative elimination pathway of glucuronidation
and the consequent decreased S/G metabolite ratios. Note that these findings have
implications for all drugs metabolised by sulphation and implications also for
endogenous metabolism involving sulphation (Clayton et al. 2009). Finally, it is
worth noting that a number of diseases including childhood autism, childhood
hyperactivity and Parkinson’s disease are associated with increased
4-cresolsulphate levels or altered S/G ratios after paracetamol administration and it
is therefore likely that there is a microbiome influence on these disease states
(Clayton et al. 2009).

3 Recent Developments in Pharmacometabonomics
and the Delivery of Personalised Medicine

The prediction of paracetamol metabolism and safety described above represented
the first definitive demonstration of pharmacometabonomics. Since that study was
published (Clayton et al. 2006) numerous other studies have emerged demonstrating
the ability of pharmacometabonomics methodologies to predict drug pharmacoki-
netics, metabolism, efficacy and safety in animals and humans (Burt and Nandal
2016; Everett 2016; Everett et al. 2013, 2016). These studies are important because
they promise a new way to help deliver personalised medicine, which is a key
objective of twenty-first century healthcare (Nicholson et al. 2011, 2016). The aim
of personalised medicine is to select treatments that provide optimal efficacy with
minimal toxicity or side effects for a given patient group, rather than giving the same
standard treatment to all patients regardless of outcomes. It is a shocking fact that
many drugs are ineffective or even unsafe in a high percentage of patients. It has
been estimated that in the USA in 1994, over two million patients had serious

280 J. R. Everett



adverse drug reactions (ADRs), resulting in hospitalisation, disability or, in 106,000
cases, death (Lazarou et al. 1998). A more recent study put the cost of ADRs to the
US economy in the range $30 billion to $100 billion per year. Thus the need to be
able to prescribe medicines that are both effective and also safe for patients is clear.

Pharmacogenomics, i.e. the use of patient genetic information to predict drug
effects has been important in enabling the development of personalised medicine in
some areas especially in the prediction of the effects of “drug metabolising” enzymes
such as cytochrome P450s on drug efficacy and safety (Lee et al. 2014). However, in
many complex, multi-factorial diseases, the use of pharmacogenomics information
has had more limited success (Pirmohamed 2014). Given the impact of environmen-
tal factors on drug effects, such as the status of the gut microbiome (Clayton et al.
2009), and the impact of drug-drug interactions, especially in phenoconversion
(Shah and Smith 2015), it is not surprising that human pharmacogenomics studies
have encountered challenges in progressing from success in the laboratory to success
in clinical practice (Pirmohamed 2014). It is therefore encouraging that metabolic
studies in the form of pharmacometabonomics can assist in the prediction of drug
effects and with the implementation of personalised medicine. We will review
progress in this area in the remainder of this chapter.

Table 2 provides an overview of the key pharmacometabonomics and predictive
metabonomics studies that we are aware of, using the keywords pharmaco-
metabonomics and pharmacometabolomics in PubMed. However, the list is
unlikely to be exhaustive as some authors do not put these terms in either the title
or keyword list. In addition, there are a minority of authors who are using the
term pharmacometabonomics or pharmacometabonomics to describe diagnostic
experiments with no prognostic elements.

It can be seen from Table 2 that there are 13 studies dealing with the prediction of
drug pharmacokinetics, 6 on prediction of drug metabolism, 25 on prediction of
drug efficacy, 17 on prediction of adverse events and a further 15 predictive
metabonomics studies where the prediction is based on an intervention other than
drug administration. Thus we have at least 61 pharmacometabonomics studies in
the literature to date. Of these 61 pharmacometabonomics and 15 predictive
metabonomics studies, 65 were conducted in humans and 11 in the rat.

The development of pharmacometabonomics has been significant over the past
10 years especially. Several reviews of the field have already appeared (Burt and
Nandal 2016; Everett 2016), so in the remainder of this chapter, we will focus on
recent developments in the four key areas of prediction of drug pharmacokinetics,
metabolism efficacy and safety.

3.1 Prediction of Drug Pharmacokinetics (PK)

The prediction of drug PK is especially important in situations where the therapeutic
index (TI) of a drug is relatively low and also variable. Inappropriately high drug
doses may lead to adverse effects in individual patients. The group of Rima
Kaddurah-Daouk et al. used LC-MS methodologies to measure correlations between
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baseline plasma lipids of healthy volunteers and the PK of methylphenidate, trade
name Ritalin (Kaddurah-Daouk et al. 2018).

methylphenidate, Ritalin

The phosphatidylcholine PC(38:5) was negatively correlated with the drug AUC
and the blood plasma Cmax values and the ceramide Cer(d18:1/24:1) was positively
correlated with the plasma half-life of the drug metabolite ritalinic acid. Carboxyl-
esterase 1(CES1) metabolises methylphenidate and other drugs such as cocaine and
heroin via amide and ester bond hydrolysis. It was suggested that CES1 has a role in
lipid metabolism and that the findings could be used for the prediction of the PK not
only of methylphenidate, but other drugs metabolised by CES1 (Kaddurah-Daouk
et al. 2018).

Differences in cytochrome P450 3A activities are a major source of variability in
patient drug responses. Lee et al. (2019) developed a model for the prediction of
CYP3A activity in the presence of inhibitors and inducers that was able to predict the
clearance of midazolam with r2 ¼ 0.75. GC and GC-MS methodology was used in a
targeted fashion to measure the concentrations of a small number of endogenous
steroids in human volunteer urine and plasma samples.

midazolam

CI

N

N

N

H3C

F

These data were amalgamated together with CYP3A5 genotype information to
develop a model for the prediction of midazolam clearance. It was concluded that
use of the model could be valuable for predicting CYP3A activities generally in drug
development but that further validation was required.
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3.2 Prediction of Drug Metabolism

He et al. have shown that pre-dose profiling by NMR spectroscopy of volunteer
blood plasma could allow prediction of some metabolic and PK characteristics of
losartan and its metabolite EXP3174 (He et al. 2018).
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carboxylosartan, E3174
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Losartan and its bioactive metabolite EXP3174 show a large degree of inter-
individual differences in blood plasma concentrations that impact upon efficacy and
safety. He et al. showed that pre-dose LDL/VLDL, lactate, citrate, creatine and
glucose concentrations were positively correlated with, and HDL, creatinine,
choline, glycine and phosphorylcholine concentrations were negatively correlated
with the ratio of AUCs of EXP3174 and losartan. Pre-dose LDL/VLDL, lactate
and glucose concentrations were positively correlated with, and choline, citrate
concentrations were negatively correlated with the ratio of Cmax values of
EXP3174 and losartan. The switch of citrate from positively correlating with the
ratio of AUCs to negatively correlating with the ratio of Cmax values of EXP3174
and losartan was not commented upon. However, as Table 2 in the paper shows that
the FDR value for citrate in the pathway analysis was 0.64, i.e. a >60% chance of
a false discovery, then perhaps that switch is not surprising. Simple formulae
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involving creatinine and lactate and also choline and glucose were derived for
calculating the ratios of the AUCs and the Cmax values of EXP3174 and losartan,
respectively (He et al. 2018).

3.3 Prediction of Drug Efficacy

NMR spectroscopy of blood plasma was used to show a discrimination between
atrial fibrillation patients on warfarin treatment that had stable versus unstable blood
thickness. However, the study was not able to demonstrate any such discrimination
for patients who were newly treated with warfarin and it was concluded that further
studies were required (Bawadikji et al. 2019).

warfarin 

O O

OH
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Park and co-workers used GC-MS analysis of urine metabolites in early-phase
type 2 diabetes mellitus (T2DM) patients to show that baseline levels of citrate and
hippurate were significantly different for responders and non-responders to metfor-
min treatment (Park et al. 2018).
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The response to treatment was assessed on the basis of changes in glycated
haemoglobin A1c (HbA1c) levels from baseline. Pre-dose levels of myo-inositol
were also marginally significantly different between these groups. This study was
seen to be important in the context of developing personalised medicine, given the
significant global burden of T2DM and the variability of patient response to treat-
ment with metformin, a key medicine for treatment of the disease.
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3.4 Prediction of Drug Safety

Paclitaxel (brand name Taxol) is a natural product widely used in the treatment of
breast cancer. However, its usage is limited by many side effects including the
development of peripheral neuropathy, which causes treatment delays or discontin-
uation in about one quarter of the patients (Sun et al. 2018).

paclitaxel, HMDB0015360, (Wishart et al. 2018)

The group of Sun et al. used an NMR spectroscopic approach to show that
pre-treatment levels of blood histidine, phenylalanine and threonine were inversely
associated with maximal change in the peripheral neuropathy index CIPN8 (Sun
et al. 2018). This work promises to inform personalised medicine approaches to the
selection of patients for treatment who will not suffer peripheral pain side effects.
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Colorectal cancer is commonly treated with the topoisomerase I inhibitor,
irinotecan.

irinotecan (HMDB14900, (Wishart et al. 2018)

However, several adverse effects are associated with its use, including gastroin-
testinal toxicity (delayed onset diarrhoea) and myelosuppression. Gao et al. used
untargeted GC-MS and LC-MS as well as other targeted metabonomics methods to
analyse biofluids from rats treated with the drug (Gao et al. 2019). OPLS-DA
analysis of pre-dose serum metabolites showed a significant discrimination between
sensitive rats displaying adverse drug side effects and non-sensitive rats. The bile
acids cholic acid, deoxycholic acid and glycocholic acid together with phenylalanine
were predictors for late-onset diarrhoea. The ketogenic amino acids phenylalanine,
lysine and tryptophan were predictive of myelosuppression (Gao et al. 2019).

3.5 Not Pharmacometabonomics!

One issue that readers should be aware of is that many studies purporting to be
pharmacometabonomics studies are merely metabonomics studies of the effects of
drugs and nothing to do with predicting the effects of drug treatment. This growing
confusion in the literature is to be regretted and resisted (Balashova et al. 2018;
Kaddurah-Daouk et al. 2015).
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3.6 Prediction of Interventions Other Than Drug Treatment:
Predictive Metabonomics

In the original discovery of pharmacometabonomics, it was envisaged that the
methodology would work for interventions other than drug treatment, such as diet
changes, physical exercise or even just the passage of time (Clayton et al. 2006).
This type of experiment is termed predictive metabonomics rather than
pharmacometabonomics. Indeed, pharmacometabonomics is one member of the
broader class of predictive metabonomics experiments, where the intervention is
drug treatment. Predictive metabonomics has been defined as “the prediction of the
outcome of an intervention in an individual based on a mathematical model of
pre-intervention metabolite signatures” (Everett 2015). We will now illustrate the
application of this prognostic methodology with some recent examples (see Table 2
for a fuller listing).

Pulmonary dysfunction resulting in hypoxaemia is a common complication
following cardiac surgery. No predictive biomarkers are available to help identify
patients that might suffer from this disease, which is characterised by low partial
pressure of oxygen in arterial blood (PaO2). Maltesen et al. used 1H NMR spectros-
copy to study blood serum taken from the pulmonary artery and left atrium of
47 coronary artery bypass graft patients, 16 h after weaning off their cardiopulmo-
nary bypass (Maltesen et al. 2016). At day 3 post-operation, 32 patients had
developed hypoxaemia. It was found that levels of carnitine, arachidonic and
eicosapentaenoic acid, glycoprotein, citrate, phenylalanine, glycine, plasmalogen,
and lysophosphocholine (Lyso-PC) were the most significant in the prediction of day
3 hypoxaemia from day 1 serum analysis. The concentrations of several of these
metabolites were found to be individually correlated to day 3, PaO2 levels. Thus
predictive metabonomics methods are capable of prognosing later adverse effects of
surgery well before any clinical sign. The results are promising in terms of targeting
further treatments to affected patients and also directing research for new drugs to
treat this disease on the basis of the perturbed metabolic pathways discovered.

Estimating mortality risk in ageing patients is important for decisions on treat-
ment options. Current methods of mortality prediction are limited and some of the
parameters, including systolic blood pressure and total cholesterol show opposite
trends in the elderly compared with middle-aged people (Deelan et al. 2019). A
predictive method based on metabolite profiles would find great clinical utility.
Fischer and co-workers used 1H NMR spectroscopy of the plasma of 9,842
individuals (randomly sampled from the Estonian Biobank) to elucidate that albu-
min, glycoprotein acetyls, citrate and the mean diameter of VLDL particles are
associated with all-cause and cause-specific (cardiovascular and cancer) mortality
(Fischer et al. 2014). The group of Deelan et al. recently published the results of a
much larger study of 44,168 individuals, 5,512 of who died during follow-up, using
1H NMR spectroscopy of EDTA plasma and serum (Deelan et al. 2019). A set of
14 metabolic biomarkers was found to independently associate with all-cause
mortality. A mortality score based on gender and these 14 biomarkers led to an
improved risk prediction compared to the conventional risk score. The biomarkers
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included albumin, glycoprotein acetyls and mean diameter of VLDL particles, as
found by Fischer, but also included acetoacetate, glucose and a number of amino
acids. It was concluded that predictive metabonomics methods could be used in the
future to guide patient care, if further validated in other clinical settings (Deelan et al.
2019).

4 Conclusions

Metabonomics and predictive metabonomics, including pharmacometabonomics,
are starting to have an impact on biomedical and medical research, and in the future
it is expected that these technologies will be widely used for both diagnostic and
prognostic applications in real clinical settings. Metabolic profiling will be used
synergistically with genomic analyses to assist in the delivery of personalised
medicine. The approach of metabolite profiling, as opposed to genetic analysis,
benefits hugely from the fact that it is a systems biology approach that integrates
both genetic and environmental information and gives insights into the real-time
status of a subject, as opposed to information on genetic risk factors that may not
develop into a disease phenotype. In this context it is encouraging to see the work
done by the groups of Kaddurah-Daouk and Weinshilboum on the development of
pharmacometabonomics-led pharmacogenomics (Ji et al. 2011; Neavin et al. 2016).

The advent of large biobanks and the development of phenome centres such as
those in London, Singapore and Birmingham, amongst others, gives the opportunity
for very large-scale clinical studies that will undoubtedly lead to new insights
into patient treatments in many disease areas. The great stability and automation
capabilities of NMR spectroscopy as a metabolite detection technology are well
matched to the task of analysing these huge numbers of samples, as was seen above
in the work of Deelan and co-workers on all-cause mortality prediction (Deelan et al.
2019).

One major area that still needs much attention is metabolite identification. This is
a significant challenge for both NMR- and MS-based technologies and in spite of the
many advances in both areas in recent years, it is still the fact that most metabolites
detected in most untargeted metabonomics experiments are unidentified. Progress on
this issue promises to enable much more comprehensive biochemical insights into
complex organisms including humans and their diseases.

The future for the use of metabolic profiling in clinical pharmacology and
medicine in general is very bright.
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Glossary

Area under the curve (AUC) The integral over time of the concentration of a drug
in blood plasma: a measure of the exposure of a patient to the drug.

Capillary electrophoresis (CE) An electrophoretic separation methodology based
on molecular charge and mobility that can be hyphenated to mass spectrometry.

Cmax The maximal blood plasma concentration achieved by a drug.
Diagnosis The characterisation of an organism, disease state, phenotype or

response to an intervention.
GC Gas chromatography: a powerful method for the separation of volatile

compounds. For use in metabonomics, pre-derivatisation of metabolites is
required in order to achieve volatility.

HDL High density lipoprotein.
HPLC High performance liquid chromatography: a powerful analytical separation

technology often hyphenated with mass spectrometry.
LDL Low density lipoprotein.
Metabolic entropy The degree of disorder of metabolite concentrations in an

individual or in a group of subjects.
Metabolic phenotype Multicomponent metabolic characteristics that result from

the cumulative interactions of genetic variation, gene products and environmental
exposures and that can be related directly to disease risks and therapeutic
responses: also known as the metabotype.

Metabolic trajectory The changes in metabolite concentrations over time in
response to an intervention.

Metabolite A compound in a biological matrix of an organism that is produced in
that organism by an enzymatic pathway.

Metabolome The full set of metabolites within, or that can be secreted from, a
biological system such as a cell type or tissue.

Metabolomics Metabolic profiling defined in an observational fashion as “a com-
prehensive analysis in which all the metabolites of a biological system are
identified and quantified”.

Metabonome The full set of metabolites contained within an organism, i.e. the sum
of all the metabolomes.

Metabonomics Metabolic profiling defined in an experimental fashion as “the
quantitative measurement of the multiparametric metabolic response of living
systems to pathophysiological stimuli or genetic modification”.

Metabotype A probabilistic, multiparametric description of an organism in a given
physiological state based on analysis of its cell types, biofluids and tissues: see
metabolic phenotype.

Microbiome The collection of microorganisms present both in and on an organism,
in a variety of environmental niches.

MS Mass spectrometry: a sensitive analytical methodology for the detection and
characterisation of metabolites in biological matrices.

Multivariate analysis: MVA Multivariate (statistical) analysis: a method for the
analysis of multiple variables in an experiment or observation at a time and the
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simplification of the analysis problem by reduction of the large number of initial
variables to a small number of key factors.

NMR spectroscopy Nuclear magnetic resonance spectroscopy: the most powerful
method for molecular structure identification in solution, including metabolites in
biological fluids.

OPLS-DA Orthogonal projection to latent structures with discriminant analysis: a
supervised (and therefore potentially biased) approach to multivariate data analy-
sis with the aim of finding metabolites that are statistically significantly discrimi-
nating between two groups, e.g. responders and non-responders, and which also
discards metabolite variations that are orthogonal to the group discrimination.

Personalised medicine The use of genomic, molecular and clinical information to
select treatments or medicines that are more likely to be both effective and safe for
that patient: also known as precision medicine or stratified medicine.

Pharmacogenomics The prediction of the effects of a drug on the basis of individ-
ual genetic profiles.

Pharmacokinetics (PK) The measurement of the time course of the absorption,
distribution, metabolism and excretion of a drug.

Pharmacometabolomics This term is used synonymously with pharmaco-
metabonomics (see below), but is sometimes erroneously used to describe the
investigation of the effects of a drug on an organism: this is just diagnostic
metabonomics.

Pharmacometabonomics The prediction of the effects of a drug on the basis of a
mathematical model of pre-dose metabolite profiles.

Phenotype The quantitative or qualitative measurement of specific parameters or
traits that characterise individual functional biological classes or groups.

Predictive metabolic phenotyping or predictive metabonomics The prediction
of the outcome of an intervention in an individual based on a mathematical model
of pre-intervention metabolite profiles. The intervention could be a change in diet,
exercise, the passage of time, surgical treatment, etc. Pharmacometabonomics is
one case of predictive metabonomics, which covers the prognosis of any
intervention.

Principal components analysis (PCA) An unsupervised (and therefore unbiased)
multivariate statistical method for analysing high dimensional data, such as
spectral data from metabonomics experiments. The PCA effects a drastic
dimensionality reduction and transformation so that new principal components
readily display the variance present in the dataset and therefore patterns in the
data like clusters or groupings can be readily discerned and outliers identified.

Prognosis The prediction of disease onset, disease outcome or the outcome of an
intervention such as drug treatment.

T2DM Type 2 diabetes mellitus.
Therapeutic index (TI) The TI measures the ratio of the effective dose of a drug

for 50% of patients (expressed as ED50) to the toxic dose expressed as the TD50.
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Usually a minimal TI of 10 is required in drug development: some companies will
aim for a more conservative TI of 30.

UPLC Ultra-performance liquid chromatography: a more efficient and effective
form of HPLC using smaller column packings and higher pressures.

VLDL Very low density lipoprotein.
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