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Abstract
Adolescent alcohol use in human populations dramatically increases the likeli-
hood of adult alcohol use disorder. This adolescent vulnerability is recapitulated
in preclinical models which provide important opportunities to understand basic
neurobiological mechanisms. We provide here an overview of GABAergic and
glutamatergic neurotransmission and our current understanding of the sensitivity
of these systems to adolescent ethanol exposure. As a whole, the preclinical
literature suggests that adolescent vulnerability may be directly related to
region-specific neurobiological processes that continue to develop during adoles-
cence. These processes include the activity of intrinsic circuits within diverse
brain regions (primarily represented by GABAergic neurotransmission) and
activity-dependent regulation of synaptic strength at glutamatergic synapses.
Furthermore, GABAergic and glutamatergic neurotransmission within regions/
circuits that regulate cognitive function, emotion, and their integration appears to
be the most vulnerable to adolescent ethanol exposure. Finally, using documented
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behavioral differences between adolescents and adults with respect to acute
ethanol, we highlight additional circuits and regions for future study.
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1 Background and Overview

There is a robust literature in humans on the vulnerability of adolescents for the
development of alcohol use disorders (AUDs) following early drinking experiences.
Over seven million individuals ages 12–20 (~19% of all adolescents) report alcohol
use in the past month with approximately 77% of these exhibiting “risky” drinking,
like heavy or binge-like use (five or more drinks/occasion, SAMHSA 2017). The
lifetime prevalence for alcohol dependence drops tenfold as the age of first use
increases from early adolescence (~14 years old) into young adulthood (>20 years
old; Grant and Dawson 1997). Consistent with these findings, individuals reporting
first use of alcohol between the ages of 11 and 14 are five times more likely to
repeatedly use alcohol despite persistent negative consequences (abuse) over a
subsequent 20-year period and eight times more likely to develop alcohol depen-
dence (inability to quit drinking, withdrawal symptoms, increased tolerance to the
acute intoxicating effects) over the next 10 years compared to individuals initiating
alcohol use when they were >19 years old (DeWit et al. 2000). Longitudinal studies
confirm that adolescents who drink to intoxication during this period are at greatest
risk for developing AUD as adults (Warner et al. 2007). These findings all suggest
that adolescents are uniquely sensitive to the long-term consequences of ethanol
exposure. This age-group is characterized by dramatic development of brain
structures involved with fine motor skills, habit formation, executive function,
memory, and emotional regulation (Bundy et al. 2017). As a result, understanding
both the developmental changes in the neural systems regulating drinking behavior
and the neurophysiological consequences of adolescent ethanol exposure is particu-
larly important for defining the neurophysiological mechanisms governing vulnera-
bility to AUD in this population.

Identification of neurobiological mechanisms responsible for adolescent vulnera-
bility to AUD has required the development of preclinical models. These models,
primarily rodents but also including some studies in nonhuman primates, have strong
face validity. In rats, for example, adolescence is generally defined as the period
from postweaning (post-natal day 21–28 or P21–28) to young adulthood (~P60)
(Sengupta 2013). Adolescent rats are less sensitive to the locomotor impairing and
sedative effects of acute ethanol compared to adults (Pian et al. 2008; Schramm-
Sapyta et al. 2010; White et al. 2002). Notably, subjective feelings of intoxication in
humans are diminished in the sons of alcoholics (Schuckit 1984) who have greater
risk for the development of AUD. Adolescent rats also self-administer greater
amounts of ethanol compared to adults in many paradigms (Bell et al. 2011; Vetter
et al. 2007; Walker et al. 2008) and are less sensitive to aversive properties of ethanol
during noncontingent administration (Morales et al. 2014; Schramm-Sapyta et al.
2010, 2014), although this latter finding may be sex-specific (Morales et al. 2014).
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Preclinical studies thus parallel many aspects of human adolescent ethanol abuse and
have produced a number of important insights into the adult behavioral
consequences resulting from adolescent ethanol dependence-like exposures that
produce both heighten negative affective behaviors and acute withdrawal symptoms.
There have been a number of exceptional reviews highlighting these advances
(Crews and Boettiger 2009; Crews et al. 2016; Doremus-Fitzwater and Spear
2016; Maldonado-Devincci et al. 2010; Spear 2016; Spear and Swartzwelder
2014; White and Swartzwelder 2005). Most relevant for this chapter, adolescent
dependence-like exposure in rodents dramatically increases adult ethanol consump-
tion/preference (Alaux-Cantin et al. 2013; Amodeo et al. 2017; Criado and Ehlers
2013; Gass et al. 2014; Pascual et al. 2009), ethanol-seeking behavior (Amodeo et al.
2017), motivation to consume ethanol (Serlin and Torregrossa 2015), and decreases
sensitivity to ethanol impairment/aversion (Graham and Diaz-Granados 2006; Jury
et al. 2017; Mejia-Toiber et al. 2014). Preclinical models therefore provide
opportunities both to understand basic neurophysiological mechanisms conferring
adolescent vulnerability and may help identify potential therapeutic targets. This
chapter will summarize our understanding of these neurophysiological mechanisms
with a specific focus on glutamate and GABA neurotransmission and their alteration
by adolescent ethanol exposures.

2 Adolescence and Glutamate/GABA Neurotransmitter
Systems

After the perinatal period, glutamate and GABA act as the major excitatory and
inhibitory neurotransmitter systems in the central nervous system, respectively. Both
systems regulate neuronal activity through ion-conducting (ionotropic) and G
protein-coupled (metabotropic) neurotransmitter receptors. Glutamate ionotropic
receptors, all cation-conducting channels, consist of at least three pharmacologically
and biophysically identifiable subtypes – α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), kainate, and N-methyl-D-aspartate (NMDA)
receptors. AMPA receptors are homomeric or heteromeric assemblies of four
subunits arising from four different gene produces (GluA1–GluA4). GluA1–
GluA3 are widely expressed throughout the central nervous system at all develop-
mental stages, with GluA4 showing more restricted expression during early devel-
opment and restricted localization to thalamic subnuclei postweaning period.
Kainate receptors, pharmacologically, structurally, and functionally similar to
AMPA receptors, are composed of multi-subunit assemblies of tetramers arising
from five distinct genes (GluK1–GluK5). Although the neurophysiology of kainate
receptors is generally less well-characterized than AMPA receptors, they are highly
permeable to calcium and, in many instances, appear to be localized to presynaptic
glutamate terminals where they act as feedback facilitators of glutamate release
(Huettner 2003; Zhuo 2017). NMDA receptors are also tetrameric assemblies but
are believed to consist of two obligatory GluN1 subunits (eight alternatively spliced
isoforms) and, at most synapses, two subunits encoded by at least one of four
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different GluN2 subunits (GluN2A-D). Like kainate receptors, NMDA receptors are
also highly permeable to extracellular calcium but are more commonly localized at
postsynaptic sites (but see Bouvier et al. 2015; Dore et al. 2017). Postsynaptic
NMDA receptors are typically blocked by intracellular magnesium bound to the
channel pore which is displaced by membrane depolarizations, usually mediated by
AMPA receptors. This type of “coincidence” detection by NMDA receptors, requir-
ing both synaptic glutamate and membrane depolarization, likely underlies their role
in the activity-dependent changes in synaptic efficacy (plasticity) that is believed to
represent the synaptic correlate of learning and memory. GABAA receptors,
members of the Cys-loop family of ligand-gated ion channels, are all anion-selective
channels that mediated much of the “fast” inhibitory neurotransmission in the adult
central nervous system. Like other members of the Cys-loop family, these receptors
are pentameric assemblies that, for GABAA, contain at least alpha and beta subunits.
Synaptic GABAA receptors are believed to require gamma subunits as part of the
pore-forming complex since these subunits contain binding sites for gephyrin which
localizes GABAA receptors to postsynaptic sites. Delta subunits, which can replace
gamma subunits in the assembly, dramatically alter complex pharmacology, func-
tion, and localization. Delta-containing GABAA receptors are frequently found in
extrasynaptic GABAA receptors providing “tonic” inhibition mediated by GABA
spillover from synaptic site. In addition to ionotropic receptors, glutamate and
GABA also bind to heterotrimeric G protein-coupled receptors (mGluR and
GABAB, respectively). These receptors couple to a variety of signaling cascades
and can regulate the production of second messengers like intracellular calcium,
cyclic AMP, and inositol phosphates and can directly regulate the activity of ion
channels like voltage-gated calcium channels and inwardly rectifying potassium
channels. Compared to the ionotropic receptors, these metabotropic signaling events
occur somewhat slowly owing to their localization (generally peripheral to the active
zone) and their reliance on multistep signaling processes.

The late prenatal/early postnatal period is defined by rapid development of brain
structures and neurotransmitter systems. For example, the expression and synaptic
function of GABAA and ionotropic glutamate receptors generally mature during this
period, prior to adolescence. These receptors, as well as their associated postsynaptic
anchoring proteins which are involved with receptor trafficking and localization,
reach adult levels/distributions prior to weaning in rodents (Dong et al. 1999; Korpi
et al. 1993;Martin et al. 1998; Pandey et al. 2015; Virtanen et al. 2018; Yu et al. 2006;
Zhong et al. 1995). Similar observations have been reported for mGluRs (Defagot
et al. 2002) and GABAB receptors (Fritschy et al. 1999; Gaiarsa et al. 1995). The
developmental trajectories of these various neurotransmitter receptor systems in
nonhuman primates appear to be very similar (Gonzalez-Burgos et al. 2008; Shaw
et al. 1991). These findings suggest that the functional aspects related to “fast”
neurotransmitter systems like glutamate and GABA are largely in place prior to
adolescence. However, activity-related “plastic” changes in synaptic function of
these neurotransmitter systems appear to develop throughout the adolescent period
in many brain regions. For example, long-term potentiation (LTP) at glutamate
synapses, most typically characterized as activity-dependent upregulation of synaptic
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efficacy, is more robust in adults in brain regions like the prefrontal cortex
(Konstantoudaki et al. 2018), hippocampal dentate gyrus (Zitman and Richter-
Levin 2013), and interpeduncular nucleus (Koppensteiner et al. 2017). In contrast,
LTP in the barrel cortex (Konstantoudaki et al. 2018) and nucleus accumbens
(Schramm et al. 2002) either develops prior to adolescence (cortex) or is greater in
adolescents compared to adults (n. accumbens). These findings suggest that LTP
related to sensory processing and reward circuitry develop relatively early while
plasticity related to executive control, spatial memory/emotion regulation, and nega-
tive control of reward circuitry (interpeduncular nucleus, Nishikawa et al. 1986)
occurs postadolescence. On the other hand, long-term depression (LTD) at glutamate
synapses is typical in many adolescent brain regions (Bergerot et al. 2013; Zhang
et al. 2015) and may reflect processes related to the robust pruning of synapses during
this developmental period (Selemon 2013). Recent work also suggests that circuits
integrating emotional control and executive function are also established during
adolescence. In adults for example, ventral hippocampal (vHC) and basolateral
amygdala (BLA) inputs to the prefrontal cortex (PFC) converge to dynamically
regulate synaptic plasticity in the latter region. High-frequency stimulation of BLA
inputs in vivo produces LTP of PFC synaptic responses, while coincidental stimula-
tion of vHC inputs either de-potentiates (normalizes) or prevents, depending on the
temporal sequence of BLA and vHC input activation, BLA-mediated PFC plasticity.
vHC de-potentiation/block of BLA-mediated plasticity is notably absent in adoles-
cent rats (Thomases et al. 2014). Similarly, high-frequency stimulation of vHC inputs
to the PFC alone produces LTD of local field potentials in the PFC; picrotoxin, a
GABAA receptor noncompetitive antagonist, converts this depression to potentiation.
Both this picrotoxin-sensitive LTD and the resulting LTP are expressed in adult
animals but not adolescents (Caballero et al. 2014). This suggests a robust develop-
mental regulation of PFC GABAergic control of plasticity in this region. Further, the
development of GABAergic control of glutamatergic plasticity in the PFC appears
directly related to the maturation of local GABA circuits (Kang et al. 2018;
Konstantoudaki et al. 2018; Morishita et al. 2015).

Compared to glutamate synapses, less is known about the adolescent develop-
ment of GABAergic synaptic plasticity. However, the distribution and localization
of synaptic specializations associated with GABA neurotransmission may continue
to develop during adolescence as well. For example, gephyrin, the GABAA receptor
anchoring protein which stabilizes these receptors in postsynaptic compartments,
declines markedly in axonal initial segments of nonhuman primate medial prefrontal
cortical pyramidal neurons during adolescence (Cruz et al. 2009), while gephyrin
clusters on the dendritic shafts of these neurons appears to be stable prior to weaning
in rodents (Virtanen et al. 2018). These observations suggest a subtle shift in
GABAergic control over neuronal excitability during the adolescent period that
may be reflected by GABAergic adaptations to adolescent ethanol exposure
(below). Thus, while the basal function of many glutamate and GABA synapses
may be “adult-like” prior to adolescence, the processes involved with their dynamic,
activity-dependent regulation as well as the circuits themselves may continue
to develop throughout this period. In particular, adolescent development of
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glutamatergic and GABAergic synaptic function appears in regions like the
prefrontal cortex, hippocampus, and basolateral amygdala. This suggests that inte-
gration of emotional information, memory, and executive control continues devel-
oping during adolescence and may suggest why these processes are particularly
vulnerable to disruption by external influences including ethanol exposure.

3 Adolescent Ethanol Exposure

Longitudinal studies in humans show that adolescents who drink to intoxication are
at greatest risk of developing AUD as adults (Warner et al. 2007). Preclinical rodent
models have therefore relied primarily upon noncontingent ethanol exposure given
the limited self-administration in this species. Although there is limited data cur-
rently, adolescent self-administration in nonhuman primates appears to cause
disruptions in neurotransmitter function which parallel those using noncontingent
exposure in rodents suggesting that the exposure itself is a major factor in adolescent
vulnerability. Most rodent preclinical studies utilize repeating cycles of brief, robust
intoxication (ethanol delivered intraperitoneally, intragastrically, or through vapor
inhalation) followed by short-term withdrawal to mimic the binge-like drinking
patterns that are common in human adolescents. These adolescent exposures
dysregulate adult behaviors and suggest an overall increase in an “addiction-
prone” phenotype. For example, adult rats with a history of adolescent ethanol
exposure exhibit greater ethanol-seeking behavior (Amodeo et al. 2017; Gass et al.
2014), consumption (Amodeo et al. 2017; Criado and Ehlers 2013; Pascual et al.
2009), and preference (Pascual et al. 2009). Exceptional reviews highlighting an
array of adult behavioral consequences related to adolescent ethanol exposure are in
the literature (Crews and Boettiger 2009; Doremus-Fitzwater and Spear 2016; Spear
and Swartzwelder 2014; Varlinskaya et al. 2016; White and Swartzwelder 2005). In
general, these reviews suggest that adult outcomes can be characterized as a persis-
tent, adolescent-like behavioral phenotype in adults exposed to adolescent intermit-
tent ethanol. These phenotypes include reduced executive function, increased reward
sensitivity, and reduced sensitivity to ethanol sedation and motor impairment. While
there has been a few reviews integrating these rodent behavioral outcomes in the
context of dopamine neurochemistry/neurotransmission (Doremus-Fitzwater and
Spear 2016; Maldonado-Devincci et al. 2010; Spear 2016) and neuro-immune
function (Crews et al. 2016; Pascual et al. 2014; Ward et al. 2014), the current
review will focus on the central role of GABA and glutamate in the central nervous
system and their vulnerability to adolescent ethanol exposure.

3.1 Adolescent Ethanol Exposure and Glutamate
Neurotransmission

Dendritic Spine Morphology The morphological correlates of glutamatergic neu-
rotransmission are dendritic spines. These postsynaptic specializations oppose
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presynaptic release sites and contain glutamate receptors and signaling pathways
responsible for moment-by-moment synaptic activity as well as activity-dependent
changes in synaptic efficacy. During spine morphogenesis, immature spines appear
as thin filopodial-like projections that mature into mushroom-shaped specializations.
In general, adolescent ethanol exposure appears to influence adult spine density and
morphology (hence maturation) in a brain region-dependent manner. There is a
dramatic increase in both hippocampal principal neuron dendritic branching and
the number of mature spines during adolescence (Aoki et al. 2017); in the dentate
gyrus (Mulholland et al. 2018), adolescent ethanol exposure modestly reduces the
number of “immature” spines. In contrast, in the CA1 (Risher et al. 2015), adolescent
exposure increases the density of immature spines while decreasing the relative
number of mature spines. These ethanol-related alterations in adult spine morphol-
ogy may be an anatomical correlate of memory dysfunction in adults exposed to
adolescent ethanol (Swartzwelder et al. 2015).

Adolescent ethanol exposure produces similar outcomes in rat prelimbic cortex.
There ethanol exposure increases the density of immature spines (Trantham-
Davidson et al. 2017). In contrast, studies with Thy-1 transgenic mice (Jury et al.
2017) found that adolescent exposure had no effect on spine density in prelimbic
cortex but instead increased the width of mature spines. Both of these studies utilized
intermittent ethanol vapor exposure; it is therefore not clear if the differences
between the rat and mouse studies represent distinct, model-dependent outcomes
or other procedural differences like the use of pyrazole in mice to stabilize blood-
ethanol concentrations or higher blood-ethanol concentrations and longer exposures
in the rat study. Regardless, in the same study, Jury et al. also reported adolescent
ethanol exposure produced (1) similar effects in the basolateral amygdala (no effect
on spine density, increase in the width of mature spines) and (2) a completely novel
reduction in spine density and increase in mature spine width in the infralimbic
cortex. While changes in spine density and shape are difficult to interpret in the
context of synaptic function, these data nicely illustrate that adolescent ethanol
exposure alters the synaptic architecture associated with glutamate neurotransmis-
sion in a brain region-dependent manner.

Adolescent Ethanol and Glutamate Receptors Similar to the regionally-
dependent alterations in dendritic spine density and morphology, adolescent ethanol
exposure appears to regulate the expression/function of glutamate receptors in a
region- and age-specific manner. In a study comparing the short-term consequences
of ethanol exposure during adolescence (P23) and adulthood in rats (P60), Pian et al.
(2010) showed that adolescent exposure decreased cortical NR1 subunit protein
levels during the exposure which normalized within 24 h post-ethanol. There was no
effect on NR2A or NR2B subunit protein expression. In adults, cortical NR1, 2A,
and 2B subunit proteins were also decreased immediately after the exposure. While
NR1 levels normalized 2 weeks after the exposure (more slowly than adolescents),
NR2A and NR2B subunit levels were dramatically elevated at this later time point
albeit with distinct time courses. While adolescent exposure likewise decreases
hippocampal NR1 and NR2A subunit protein levels, the expression of both proteins
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is elevated following a 2 week withdrawal. There was no effect on adolescent
hippocampal NR2B subunits; exposure-dependent effects on these subunits in adults
rapidly normalize within 24 h. A more recent proteomic analysis of adult hippocam-
pal proteins following adolescent ethanol exposure focused on synaptic and
extrasynaptic proteins directly associated with the NMDA NR2B subunit
(Swartzwelder et al. 2016). This study again did not find significant effects of the
adolescent exposure on adult levels of NR2B in either the synaptic or non-synaptic/
extrasynaptic subcellular compartments. However, among the dozens of proteins
associated with NR2B that were altered by the adolescent ethanol exposure, the
treatment up-regulated pathways associated with the actin cytoskeleton in the syn-
aptic compartment providing some indication of the molecular mechanisms
controlling changes in spine density/morphology discussed in a previous paragraph.

In the non-synaptic fraction, adult NR1 subunit proteins associated with NR2B
were also upregulated by the adolescent ethanol exposure suggesting increased
function of NMDA receptors at these extra-synaptic sites. Importantly, extra-
synaptic, NR2B-containing NMDA receptors in the hippocampus appear to help
mediate long-term, activity-dependent regulation of glutamate neurotransmission
(Lu et al. 2001; Yang et al. 2017), excitotoxic insult (Lai et al. 2011; Liu et al.
2007), and neuron excitability/network synchrony (Papouin and Oliet 2014). In
contrast to these dynamic effects of ethanol exposure on adolescent NMDA subunit
proteins in the cortex and hippocampus, neither adolescent nor adult ethanol expo-
sure alter expression of NMDA receptor NR2 subunit mRNAs in lateral/basolateral
amygdala (BLA) tissue (Falco et al. 2009; Floyd et al. 2003) or in individual BLA
principal-like neurons (Floyd et al. 2003). However, NR1 subunit mRNA levels in
this region are increased by adolescent ethanol; this is associated with increased
NMDA receptor-mediated whole-cell currents (Floyd et al. 2003). Notably, the
Floyd et al. study also showed that adolescent ethanol exposure increases NMDA
current inhibition by the NR2B-selective antagonist, ifenprodil. These data, along
with changes in the biophysical properties and calcium permeability of NMDA-
mediated currents (Floyd et al. 2003), suggest increased functional contributions by
NR2B subunits in BLA principal neurons following adolescent ethanol despite
minimal impact of the exposure on subunit mRNAs or protein levels. These data
together suggest that adolescent ethanol exposure regulates NMDA receptor expres-
sion/function in a regionally-specific manner and can involve transcription, transla-
tion, receptor function, and potentially localization.

The sensitivity of adolescent AMPA-type glutamate receptors in general, and
particularly in the context of adult outcomes, is less well documented. In a study
examining differences between adolescent and adult mouse AMPA receptors in the
amygdala immediately following intermittent-access ethanol drinking, Agoglia et al.
(2015) found no effects on total protein levels of GluA1 subunit in either the
amygdala or striatum. In the amygdala however, adolescent drinking decreased
phosphorylation of Serine 831 (Ser831) on the GluA1 subunit, in contrast to adult
drinking which increased phosphorylation of this same site. The decreased phos-
phorylation in adolescents was associated with decreased phosphorylation of the
auto-regulatory Threonine 286 site on CamKII suggesting a mechanistic link
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between decreased CamKII activity and GluA1 phosphorylation at Ser831.
In contrast to these findings in mice, a dependence-like ethanol exposure in adoles-
cent rats increased phosphorylation of lateral/basolateral amygdala AMPA subunits
GluA1 at Ser831 as well as GluA2 at Ser880. This exposure also increased phos-
phorylation of the autoregulatory sites, Thr286 and Thr305, on CamKII and the
phosphorylation of the PKC substrate, neurogranin (Christian et al. 2012). Like the
mouse study, this rat study also found that an adolescent ethanol exposure had little
impact on total protein levels of AMPA receptor subunits. Notably, GluA1 phos-
phorylation at S831 and GluA2 at Ser880 are both associated with increased receptor
trafficking to the plasma membrane that is typically observed during activity-
dependent synaptic plasticity; increased trafficking of AMPA receptors to the plasma
membrane was directly demonstrated in the rat study (Christian et al. 2012). There
are numerous procedural differences between the Agoglia and Christian study
including exposure paradigm (hence level of intoxication), model system (mouse
versus rat), and a specific focus on the cortical-like lateral and basolateral
subdivisions in the rat study.

Adolescent Ethanol and Glutamate Synaptic Function In light of the regionally-
dependent effects of adolescent ethanol exposure on glutamate receptor expression,
it is perhaps no surprise that studies focused on glutamatergic neurotransmission
likewise appear to highlight alterations in synaptic function that are again dependent
upon the brain region. In the CA1 hippocampus for example, adolescent ethanol
exposure increases NMDA-mediated synaptic currents (Swartzwelder et al. 2017)
and increases the expression of long-term potentiation measured (LTP) with field
recordings (Risher et al. 2015; Sabeti and Gruol 2008). Similar ethanol exposures
during late adolescence/young adulthood actually decrease LTP expression (Sabeti
and Gruol 2008) suggesting the effects of ethanol on NMDA-mediated synaptic
currents and synaptic plasticity are age-dependent.

In the lateral/basolateral amygdala, chronic ethanol and withdrawal differentially
modulate pre- and post-synaptic properties of glutamatergic synapses in adolescent
rats. The BLA receives qualitatively distinct information from excitatory inputs
arising from both cortical and subcortical/thalamic brain regions, which project to
the BLA via the lateral external capsule or medial stria terminalis, respectively (Sah
et al. 2003). In line with these afferents arising from different brain regions and
entering the BLA through different anatomical pathways, the effects of adolescent
ethanol exposure on these glutamatergic synapses also differ. For example, the
subcortical/thalamic afferents entering the BLA through the medial stria terminalis
arise from regions like the medial prefrontal cortex, anterior cingulate cortex,
hippocampus, thalamus, and somatosensory cortex. In contrast, afferents entering
the BLA through the lateral external capsule originate from lateral cortical areas such
as the temporal, occipital, piriform, entorhinal, and insular cortices. Adolescent
ethanol exposure increases in ‘basal’ glutamate synaptic transmission in the BLA,
evidenced by increased frequency of spontaneous excitatory postsynaptic currents
(sEPSC) as well as an increase in the frequency and amplitude of action potential-
independent miniature EPSCs recorded in the presence of the sodium channel
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blocker, tetrodotoxin (Lack et al. 2007). Notably, this pre- and postsynaptic
facilitation of BLA glutamate neurotransmission occurs in an input-specific fashion.
Several studies have found increased presynaptic glutamate release following ado-
lescent ethanol exposure when stimulating the medial stria terminalis inputs, with no
presynaptic alterations at the lateral external capsule inputs (Christian et al. 2012,
2013; Lack et al. 2009; Morales et al. 2018). Christian et al. (2013) further revealed
that this increased presynaptic function was characterized by increased synaptic
glutamate concentrations, decreased ‘failure-rates’ (‘no response’ following minimal
electrical stimulation), and enhanced contributions by the readily releasable pool of
synaptic vesicles. These presynaptic physiological responses to adolescent ethanol
were also associated with increased levels of vesicle-associated proteins like
VAMP2 (part of the SNARE complex) and the vesicular glutamate proteins,
VGLUT1, and VGLUT2. Additionally, BLA CB1 cannabinoid receptors located
on medial stria terminalis terminals normally inhibit excitatory transmission.
Robinson et al. (2016) found that adolescent ethanol exposure impairs CB1 function
at these inputs and decreases CB1 protein expression.

Adolescent ethanol increases postsynaptic function, but not presynaptic function,
at external capsule afferents onto BLA principal neurons (Christian et al. 2012,
2013; Floyd et al. 2003; Lack et al. 2007, 2009; Morales et al. 2018). Using a
strontium (Sr2+) substitution method to specifically separate pre- and postsynaptic
function (Dodge et al. 1969) at these external capsule inputs, we found a significant
increase in the Sr2+-dependent EPSC (asynchronous EPSCs or aEPSCs) amplitude
but not effect on frequency (Christian et al. 2012; Morales et al. 2018). In addition to
postsynaptic AMPA receptor function, adolescent ethanol exposure also increases
synaptic function of postsynaptic NMDA (Floyd et al. 2003; Lack et al. 2007) and
kainate-type glutamate receptors (Lack et al. 2009). Notably, the input-specific
alterations in BLA glutamatergic synaptic transmission induced by adolescent
ethanol described above are also exposure duration- and sex-dependent. Morales
et al. (2018) recently found that increased presynaptic function at medial stria
terminalis inputs required shorter exposure durations relative to postsynaptic
alterations at lateral external capsule inputs; and this was true for both sexes.
However, synaptic alterations in females required longer ethanol exposures than
males. These data all suggest that adolescent ethanol up-regulates the synaptic
function of all three major subtypes of ionotropic glutamate receptors expressed
by BLA principal neurons and increases presynaptic function stria terminalis inputs
onto BLA principal neurons.

In contrast to the dynamic regulation of glutamate synapses in hippocampus and
lateral/basolateral amygdala, recent work (Cuzon-Carlson et al. 2018) compared
striatal miniature EPSC frequency (presynaptic), amplitude (postsynaptic), and
biophysical properties in ethanol drinking monkeys across age-at-first-access that
included adolescents (4–5 years old, equivalent to 15–18 years old humans), young
adults (5–6 years old, 20–24 years old humans), and mature adults (7–11 years old,
equivalent to 25–40 years old humans). After 14 months of drinking, the study found
no significant age-by-exposure interactions for mEPSC frequency or amplitude in
either the caudate or putamen. Similar studies in rodents showed no effect of
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adolescent exposure on extracellular glutamate concentrations in the caudate
(Boutros et al. 2014). These studies together show that the region-specific effects
of adolescent exposure on glutamate receptor expression function are likewise
reflected at the level of the synapse. Importantly, glutamatergic transmission in
reward- and habit-related regions appear to achieve adult-like resilience to ethanol
exposure during adolescence while synaptic function in regions involved with
executive function and emotional control remain vulnerable.

3.2 Adolescent Ethanol Exposure and GABA Neurotransmission

Adolescent Ethanol and GABA Receptors Like glutamatergic receptors, adoles-
cent ethanol exposure appears to produce region-dependent changes in the expres-
sion and localization of GABAA receptors. In the prelimbic cortex for example,
adolescent ethanol exposure does not appear to modulate total protein levels of the
α1, α4, α5, δ, or γ2 subunits and does not appear to alter the plasma membrane levels
of delta-containing receptors in adults (Centanni et al. 2017). But this contrasts with
substantive changes in GABAA-mediated extrasynaptic currents mediated by delta-
containing GABAA receptors that is produced by a similar exposure (below). In
contrast to the prelimbic cortex, GABAA protein expression in adult hippocampus is
dramatically altered by adolescent ethanol exposure. In a separate study, Centanni
et al. (2014) used total hippocampus and separated lysates into synaptic and
non-synaptic fractions. Adolescent exposure decreased α4 subunit protein in the
detergent-resistant, synaptic fraction and decreased δ subunit levels in the detergent-
soluble, extrasynaptic fraction. Thus, adolescent ethanol appears to shift the subunit
composition of adult hippocampal GABAA receptors. Surprisingly, α4 subunit
mRNA was increased by the adolescent exposure – a potential compensation to
changes in subunit protein levels. Adult ethanol exposure had no effect on either
subunit in hippocampus. Similarly, long-term adolescent ethanol drinking did not
alter levels of the GABAA α1 subunit mRNA in the lateral/basolateral amygdala;
although adult drinking experience increased levels of the subunit mRNA (Falco
et al. 2009). This contrasts with studies of GABAA subunit proteins in this brain
region which found that an adolescent dependence-like exposure decreased both α1
subunit proteins levels and diminished α1-containing receptors found on the plasma
membrane (Diaz et al. 2011). Although adult outcomes were not measured in the
Diaz et al. study, this work also found that adolescent ethanol increased the levels of
α4-containing receptors at the cell surface without altering total levels of α4 subunit
protein. GABAA gamma2 subunit and gephyrin protein levels were also increased
by the adolescent ethanol exposure; these proteins localize GABAA receptors to
postsynaptic specializations (Schweizer et al. 2003). While these findings highlight
the region-specific effects of the exposure, they indicate that adolescent ethanol
appears to also alter the proteins involved with receptor trafficking/localization.
Importantly, trafficking/localization can occur independently from or in conjunction
with alterations in protein or mRNA expression.

Adolescent Vulnerability to Alcohol Use Disorder: Neurophysiological. . . 431



Adolescent Ethanol and GABAergic Synaptic Function Like the effects on
subunit expression, adolescent ethanol exposure exerts region-specific effects on
adult GABAergic neurotransmission. Generally, those regions in which GABAergic
synaptic function are developing during adolescence remain sensitive to ethanol
exposure during this period. In prelimbic cortex for example, adult ‘basal’
GABAergic synaptic function, reflected by tetrodotoxin-resistant or ‘miniature’
inhibitory postsynaptic currents (mIPSCs), remains unaltered by adolescent ethanol
exposure. However, the amplitude of spontaneous IPSCs – which reflect both basal
transmission and the activity of intrinsic cortical GABAergic connections – is
decreased by adolescent ethanol (Centanni et al. 2017) highlighting the vulnerability
of developing adolescent GABAergic circuits in this brain region. Importantly,
adolescent ethanol exposure also decreases electrically-evoked, repetitive firing of
prelimbic cortical fast-spiking interneurons (Trantham-Davidson et al. 2017).
Together these findings suggest that ethanol-dependent modulation of GABAergic
circuitry may reflect direct effects on intrinsic interneurons or their synapses.
Importantly, extrasynaptic GABAA receptors, which mediate the tonic currents
expressed by prelimbic principal neurons, are also vulnerable to adolescent ethanol
exposure. During the transition from adolescence to adulthood, the number of
prelimbic layer 5/6 pyramidal neurons expressing tonic currents increases from
roughly 20% of these cells at P45 to 100% of neurons at P90; adolescent ethanol
exposure ‘freezes’ neurons in the adolescent phenotype such that number of adult
neurons expressing tonic currents is greatly reduced (Centanni et al. 2017). Thus,
both the intrinsic GABAergic circuitry and extrasynaptic GABAergic function in the
prelimbic cortex are shaped by adolescent ethanol exposure.

In the hippocampus, acute ethanol potentiates sIPSC frequency to a greater extent
in adults compared to adolescents, with minimal effects on mIPSCs (Li et al. 2003,
2006). This again suggests development of intrinsic hippocampal GABAergic
circuitry during adolescence. However, in contrast to the cortex, adolescent exposure
has no effect on adult sIPSC amplitude or frequency suggesting that hippocampal
GABAergic circuitry is more resilient than cortex during this period. In contrast, the
amplitude of tonic GABA currents in the dentate decrease from adolescence to
adulthood; adolescent exposure accentuates this decline (Fleming et al. 2013).
Acute ethanol facilitation of GABA tonic currents is also more pronounced in
adolescent-ethanol animals compared (Fleming et al. 2012, 2013). Thus, while
adolescent exposure has modest impact on adult GABAergic circuitry in the hippo-
campus, it produces persistent changes in both the tonic GABAergic currents and the
acute effects of ethanol on these extrasynaptic currents.

In the BLA, at least two anatomically and functionally distinct populations of
GABAergic interneurons, the lateral pericapsular intercalated cells (LPC) and local
interneurons, synapse onto principal neurons. LPCs are GABAergic interneurons
found in concentrated clusters along the external capsule while local GABAergic
interneurons that are scattered throughout the BLA (Spampanato et al. 2011). Similar
to the hippocampus, acute ethanol potentiates GABAA mediated inhibitory postsyn-
aptic currents (IPSCs) recorded from both distal LPCs and local interneuron synapses
in the BLA (Silberman et al. 2008). Chronic adolescent ethanol exposure robustly
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decreases presynaptic function at LPC GABAergic synapses which provide robust
feed-forward inhibition to principal neurons (Diaz et al. 2011). Interestingly, adoles-
cent ethanol does not alter GABAergic release from local interneurons. In addition to
these presynaptic changes, Diaz and colleagues reported an increase in the decay
kinetics of miniature IPSCs, likely arising from local interneurons which synapse
onto principal neuron soma and proximal dendrites, suggesting an ethanol-induced
modulation of postsynaptic function in intrinsic BLA GABAergic circuitry. This
paralleled changes in the GABAA receptor subunit composition (described above).

In contrast to the specific vulnerability of adolescent GABAergic synapses/
circuits in the cortex, hippocampus, and lateral/basolateral amygdala, adolescent
and adult ethanol drinking alter GABAergic neurotransmission in nonhuman pri-
mate caudate/putamen to a similar extent. At these synapses, there is a general trend
for an age-dependent increase in mIPSC frequency in both brain regions; an ethanol
drinking history suppresses mIPSC frequency regardless of age (Cuzon-Carlson
et al. 2018). There was no impact of drinking on mIPSC amplitude in these studies.
However, sIPSCs were not measured so the impact of ethanol drinking on intrinsic
GABAergic circuitry, particularly the excitability of GABA interneurons is not
yet certain.

4 Concluding Remarks

A critical observation for GABA and glutamate within this review is that synaptic
processes developing during adolescence appear to be the most vulnerable to ethanol
exposure. Fundamental aspects of GABAergic and glutamatergic neurotransmission
(i.e., presynaptic release, postsynaptic receptor function) are largely intact in many
brain region by adolescence with some notable exceptions. But, the literature
suggests that substantial components of GABAergic circuitry continue to develop
during adolescence. These components can include the localization of GABAergic
synapses on principal neurons (reflected by shifts in gephyrin immunoreactivity),
GABAergic neuron firing (circuit ‘activity’), and extrasynaptic receptor activity. All
these aspects of GABAergic neurotransmission are sensitive to adolescent ethanol
exposure. For glutamate synapses, activity-dependent modulation of synaptic effi-
cacy (‘plasticity’) likewise develops during adolescence and appears most vulnera-
ble to ethanol exposure. This may be a product of developing signaling cascades or
NMDA receptor function/activity/localization which can be influenced by subunit
composition. Although these conclusions are specific for GABA and glutamate,
similar outcomes are apparent for other neurotransmitters as well. With dopamine
for example, adolescence can be characterized as a ‘reward-focused period’
(Doremus-Fitzwater and Spear 2016). This reward-centric focus is highlighted
anatomically by a dramatic peak in dopaminergic projection development, particu-
larly fibers from the ventral tegmental area and substantia nigra to the striatum,
nucleus accumbens, and throughout the cortex (Doremus-Fitzwater and Spear 2016).
Functionally, there are also peaks in dopamine cell firing rates (Marinelli and
McCutcheon 2014) and receptor levels (Doremus-Fitzwater and Spear 2016) during
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adolescence. Adolescent ethanol exposure modulates the development of these
processes. In the prelimbic cortex for example, ethanol exposure reduces dopamine
fiber density and decreases D1-mediated regulation of pyramidal cell firing (Boutros
et al. 2014; Trantham-Davidson et al. 2017). Similar to dopamine, the cholinergic
system continues to develop during the transition from adolescence to adulthood
(Carcoba et al. 2014; Nordberg et al. 1992). Also, adolescent ethanol exposure
profoundly decreases the number of choline acetyltransferase-positive neurons in
the basal forebrain (Boutros et al. 2014; Coleman et al. 2011; Fernandez and Savage
2017; Swartzwelder et al. 2015; Vetreno et al. 2014; Vetreno and Crews 2018).
These data all suggest that vulnerability to ethanol exposure is directly related to
neural processes which continue to mature during adolescence.

A second, equally important observation from the literature is that adolescent
ethanol exposure alters GABA and glutamatergic neurotransmission in a brain
region-dependent manner. Exposure-dependent alterations in receptor expression
(mRNA or protein), phosphorylation, or localization vary across the regions are
highlighted here. However, region-specific disruption in receptor expression is not
specific to GABA or glutamate. For example, adolescent ethanol exposure signifi-
cantly decreasing dopamine D1 and D2 protein levels in the frontal cortex but only
D2 protein in the hippocampus and striatum (Pascual et al. 2009). Even subdivisions
within the same region can express unique alterations. For example, spine morphol-
ogy – an anatomical marker for glutamatergic synapses – is differentially impacted
by adolescent exposure in hippocampal subregions like dentate gyrus and CA1
(Mulholland et al. 2018; Risher et al. 2015) or in medial prefrontal cortical areas
like prelimbic and infralimbic cortex (Jury et al. 2017). It is perhaps no surprise then
that synaptic function and circuits are likewise altered by adolescent ethanol in a
regionally-specific manner.

A limitation associated with the current preclinical literature is that processes
maturing during adolescence remain poorly defined in many instances. The focus
of this review has thus been primarily on adolescent ethanol modulation of GABA
and glutamate neurotransmission in the context of executive function, memory, and
emotion – processes well recognized as exhibiting profound development during
adolescence. As highlighted in the Introduction, adolescents and adults also differ in
self-administration behavior and are differentially sensitive to ethanol sedation/
intoxication and aversion. Circuits and synaptic processes related to these behaviors
are therefore important targets for future preclinical studies. For example, outside of
the well described dopamine circuits influencing activity of nucleus accumbens
neurons (Doremus-Fitzwater and Spear 2016), glutamate and/or GABA signaling
in the lateral hypothalamus, dorsal striatum, central amygdala all regulate ethanol
self-administration (Hwa et al. 2017). The circuits/processes controlling ethanol
sedation/intoxication are less well-defined, but acute ethanol inhibits nicotinic
receptors in brainstem nuclei involved with motor performance, attention, and sleep
(McDaid et al. 2016). In a recent study with fMRI in humans, ethanol impairment of
simulated driving behavior had its greatest effect on hemodynamics in cingulate/
orbitofrontal circuits involved with attention and cerebellar/motor cortical circuits
involved with gross and fine motor control (Meda et al. 2009). Finally, recent work
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focused on aversion-like behavior suggests that projections from the lateral habenula
(LHb) to the ventral tegmental area (VTA) are promising targets for study as well.
The lateral habenula provides glutamatergic input to GABAergic neurons in the
rostromedial tegmental nucleus (RMTg) which negatively regulate VTA dopamine
neurons projecting to the nucleus accumbens (Lammel et al. 2012). Optogenetic and
lesion studies suggest this pathway is intimately involved with conditioned taste
aversion (Haack et al. 2014; Lammel et al. 2012). Importantly, electrical stimulation
of LHb reduces voluntary ethanol drinking (Li et al. 2016); neuron activity within the
LHb-RMTg pathway is highly correlated with ethanol conditioned taste aversion
(Glover et al. 2016). While additional circuit mapping studies are needed to under-
stand the brain regions controlling ethanol sedation/intoxication and aversion, a focus
on the adolescent development of the systems/circuits will help define synaptic
mechanisms impacted by ethanol exposure during this vulnerable period.

Finally, it is worth noting that a detailed neurophysiological understanding of
how sex regulates adolescent vulnerability to ethanol is largely missing in preclinical
studies. Clinical data suggest the effects of sex are likely to be subtle. For example,
sex does not predict lifetime drinking trajectory (i.e., those that go on to develop
drinking problems as adults) in adolescent drinkers (Warner et al. 2007). However,
lifetime prevalence for alcohol abuse and dependence following adolescent drinking
tends to be lower for females compared to males across the entire adolescent period
(Grant and Dawson 1997). Factors that influence sex-dependent drinking trajectories
are likely to be subtle and potentially species-specific. For example, parental
relationships appear to differentially regulate adolescent drinking in males and
females, with more ‘protective’ or ‘controlling’ relationships reducing alcohol
consumption in adolescent females and increasing it in males (Leung et al. 2014).
Female humans tend to consume more alcohol during early adolescence with these
relationships reversing to more ‘adult-like’ drinking (males>females) by late ado-
lescence/early adulthood (Patrick and Schulenberg 2013). Importantly, these studies
suggest that diagnostic criteria related to clinical interventions may need to be
refined to address subtle differences between sexes across the adolescent period.
Unfortunately, in a study examining adolescent alcohol and drug use in pediatric
care settings, Sterling et al. (2012) found that adolescent males were significantly
more likely than females to receive screening for alcohol use. Similar to these human
studies, there is a paucity of neurophysiological data in females from preclinical
studies. Behavioral studies may give some clue to potential circuits and neurotrans-
mitter systems. For example, there are marginal sex differences with respect to
cognitive function (Pavlovian conditioned approach; Madayag et al. 2017) and
anxiety-like behavior (Amodeo et al. 2018). Sex differences related to ethanol
locomotor impairment are also only evident in adult animals following long-term
ethanol drinking that begins during adolescence (Westbrook et al. 2018). Despite
this, adolescent male and female rats do differ with respect to the impact of stress
(Wille-Bille et al. 2017) and social context (Varlinskaya et al. 2015) on ethanol
drinking; sex interacts with social context to influence conditioned aversion to
ethanol (Morales et al. 2014; Vetter-O’Hagen et al. 2009), but this may be influenced
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by both the conditioning paradigm (Pautassi et al. 2011) and rat strain (Schramm-
Sapyta et al. 2014). Together, this literature suggests that subtle sex differences,
particularly related to affiliative and social relationships, may distinguish the vulner-
ability within unique adolescent populations.
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