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Abstract
Bile acids (BAs) are key molecules in generating bile flow, which is an essential
function of the liver. In the last decades, there have been great advances in the
understanding of BA physiology, and new insights have emerged regarding the
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role of BAs in determining cell damage and death in several liver diseases. This
new knowledge has helped to better delineate the pathophysiology of cholestasis
and the adaptive responses of hepatocytes to cholestatic liver injury as well as
of the mechanisms of injury of biliary epithelia. In this context, therapeutic
approaches for liver diseases using hydrophilic BA (i.e., ursodeoxycholic acid,
tauroursodeoxycholic, and, more recently, norursodeoxycholic acid), have been
revamped. In the present review, we summarize current experimental and clinical
data regarding these BAs and its role in the treatment of certain liver diseases.

Keywords
Bile acids · Bile flow · Cell injury · Cholestasis · Inflammation · Liver diseases ·
Signaling

1 Introduction

Bile acids (BAs) are amphipathic species composed of four steroid rings forming
a hydrocarbon lattice having hydrophobic and hydrophilic regions, containing
hydroxyl groups, within their structure (Hofmann and Hagey 2008; Hofmann
2009; Russell 2009). The balance between hydrophobic and hydrophilic characters
varies markedly among different BAs, which account for differences in their
biological properties including their choleretic potency, solubilization properties
(Carey 1984), and activation of bile acid receptors (Monte et al. 2009; Hofmann
and Hagey 2014). The number of hydroxyl groups (the hydrophilicity of a given bile
acid is greater if the number of hydroxyl groups is higher) and its orientation (i.e.,
α or β orientation at position 3, 6, 7, and 12 on the steroid backbone) are critical in
determining hydrophobicity (Carey 1984). Thus, while hydrophobic BAs (i.e.,
lithocholic acid (LCA), deoxycholic acid (DCA), chenodeoxycholic acid [CDCA],
and cholic acid [CA]) are potent detergents, hydrophilic BAs (i.e., ursodeoxycholic
acid [UDCA], tauroursodeoxycholic acid [TUDCA]) are not (Hofmann and Small
1967). More importantly, they lack membrane-disrupting properties being nontoxic
to the liver cell even in high concentrations (Paumgartner and Beuers 2004; Ashby
et al. 2018). This is relevant for the therapeutic use of hydrophilic BA in the
treatment of liver diseases although a myriad of additional mechanisms may be at
play (Arab et al. 2017a; Beuers et al. 1998; Lazaridis et al. 2001; Beuers 2006)
particularly in the case of new semisynthetic bile acid derivatives such as
24-norursodeoxycholic acid (NorUDCA), which seem to exercise hepatoprotective
actions by novel mechanisms (Halilbasic et al. 2017). In this chapter, we summarize
current data on the mechanisms of actions underlying the beneficial effects of
selected hydrophilic BA (Fig. 1) in liver diseases as well as the information on the
present and future clinical applications of these compounds.
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2 Historical Remarks

The use of hydrophilic BA in the treatment of liver disease can be tracked back
more than 1,000 years ago when ancient Chinese practitioners (Tang dynasty,
618–907 A.D.) discovered the therapeutic effects of bear bile in several conditions
including chronic liver diseases (Hofmann and Hagey 2014; Marin et al. 2015; Li
et al. 2016; Beuers et al. 2015a). Bear bile continues to be used until nowadays in
some Asian countries where bile is obtained from farmed animals (Li et al. 2016),
which poses some ethical issues considering the availability of alternative
compounds (British Veterinary Association 2018).

In 1927, Shoda published his findings on a unique bile acid he found in bile of the
Chinese black bear (Shoda 1927). This author named this bile acid as UDCA in
reference to the Latin name of bear (ursus). Several years after, the structure of
UDCA was better defined and the substance synthetized for its use in research
(Lazaridis et al. 2001). Then in the 1950s, it was proposed that the beneficial effects
of the bear bile were likely related to the high concentrations of the taurine-
conjugated form of UDCA and TUDCA observed in that fluid (Li et al. 2016).
Further research showed that UDCA and TUDCAwere found to be potent choleretic
agents when infused to rats (Hofmann and Hagey 2008; Makino and Tanaka 1998),
and Japanese researches first investigated its use in chronic liver disease (Mijayi
et al. 1976; Yamanaka et al. 1976). Later, in gallstone dissolution trials, the authors
observed that, in contrast with chenodeoxycholic acid (CDCA), UDCA administra-
tion was not associated to liver toxicity (Ashby et al. 2018; Leuschner et al. 1985).
For this reason, UDCA soon replaced CDCA for gallstone dissolution due to its
similar efficacy and lack of hepatotoxicity (Paumgartner et al. 1994). With the
advent of laparoscopic cholecystectomy, the use of BA for gallstone disease

Fig. 1 Molecular structure of UDCA, TUDCA, and NorUDCA. Ursodeoxycholic (UDCA) is a
hydrophilic dihydroxy (i.e., 3α,7β-dihydroxy-5β-cholan-24-oic acid) bile acid that represents 4% of
bile acids in human bile. It likely originates in the colon by bacterial 7β epimerization of the primary
bile acid chenodeoxycholic. The 17 carbon of UDCA may be amidated with glycine, which is
the predominant pathway in humans, or with taurine, which is the predominant pathway in rodents.
The taurine conjugate (TUDCA) has potent hepatoprotective actions. Norursodeoxycholic acid
(NorUDCA) is a side chain-shortened (C23 instead of C25) synthetic bile acid with derivate from
UDCA. NorUDCA is relatively resistant to amidation, which allow this compound to undergo
cholehepatic shunting
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decreased markedly, and interest in their biological properties and chemistry
declined. It was in 1987 when the German hepatologist Ulrich Leuschner and
coworkers (Leuschner and Kurtz 1987) reported beneficial effects of UDCA in
patients with primary biliary cholangitis [PBC, a disease previously known as
primary biliary cirrhosis (Beuers et al. 2015b)]. This, along with important advances
made at the time in the understanding of the mechanisms at play in the generation
and regulation of BA flux in the enterohepatic circulation (Blitzer and Boyer 1982;
Coleman 1987), revamped the interest in the use of BA in the clinic. Subsequent
studies by Poupon et al. (1987, 1991) and Lindor et al. (1994) paved the road to
generate the evidence that support the routine use of UDCA as standard of care in
PBC patients (Lindor et al. 2019; European Association for the Study of the Liver
2017). The use of UDCA in other cholestatic diseases although less evidence-based
became common practice in the field of hepatology given the lack of toxicity of
the drug.

After the journey that led UDCA to become an established drug in hepatology,
studies with its taurine conjugate TUDCA have been conducted with similar results.
However, in some basic and human studies, some differences were found (Setchell
et al. 1996; Beuers et al. 1996), which led to new studies that derived in the potential
use of TUDCA in neurodegenerative diseases (reviewed in Vang et al. 2014). More
recently, considerable attention has been given to a parent compound of UDCA,
norursodeoxycholic acid (NorUDCA), which is a side chain-shortened homologue
of UDCA that is partially resistant to amidation, which theoretically enables its
cholehepatic shunting (Halilbasic et al. 2017; Li and Lu 2018). This compound was
developed after seminal work from Alan F. Hofmann in California (Schteingart and
Hofmann 1988) whom confirmed the potent choleretic properties of NorUDCA
(Hofmann et al. 2005) and predicted its clinical potential in cholestatic diseases.
As described below, NorUDCA is a unique bile acid that has potential for treatment
of several cholestatic and metabolic liver diseases. Studies with this bile acid as well
as with other bile acid analogues have indeed represented an uptick in bile acid
research, which opened new avenues for treatment of liver and biliary diseases.

3 Current Knowledge on the Mechanisms of Action
of Hydrophilic Bile Acids in Liver and Biliary Diseases

An important body of information regarding the hepatoprotective and beneficial
effects of hydrophilic BA on liver injury has been generated in the last three decades
using different models of liver injury (Mariotti et al. 2018; Sharma et al. 2011). Also,
research advances on the pathophysiology of cholestasis (Wagner and Trauner 2016;
Jansen et al. 2017) and in the particular role of BA in determining cell injury
(Perez and Briz 2009; Trauner et al. 2017) and death in both hepatocytes and
cholangiocytes as well as in triggering an inflammatory response in the setting of
cholestasis had led to a focused research on BA-mediated liver injury. This new
knowledge had revamped bile acid-based therapeutic strategies for liver diseases
(Arab et al. 2017a; Hegade et al. 2016). Although most of the available information
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regarding the mechanisms underlying the hepatoprotective effects of hydrophilic BA
has been tested in experimental models of cholestasis using either in vitro systems
or whole animals (Mariotti et al. 2018, 2019), some of these hepatoprotective
properties seem to operate also in other models of injury and eventually apply to
metabolic diseases. In the following paragraphs, a brief summary of the importance
of the hepatotoxicity of retained endogenous BA in cholestasis is provided as well as
information on the particular features that explain the hepatoprotective properties of
hydrophilic BA.

3.1 Core Concepts on Bile Acid Transport, Bile Acid-Induced
Toxicity, and Hepatocellular Adaptive Responses
in Cholestasis

The vectorial transport of BA by the hepatocytes involves several transport
proteins and enzymes including the sinusoidal transporter sodium taurocholate
cotransporting polypeptide (NTCP/SLC10A1), members of the anion transporting
polypeptide (OATPs/SLCO) family, conjugation enzymes, and the ATP-dependent
efflux pump BSEP (bile salt export pump [also known as ABCB11]) (Trauner and
Boyer 2003; Halilbasic et al. 2013). These proteins allow a rapid transition of BA
from blood to bile and maintain a low intracellular BA concentration (estimated in
the micromolar range). This is crucial to maintain hepatocyte integrity as BAs are
signaling and detergent molecules that at higher concentration (�50 μM or mM
concentrations) may cause apoptosis, activate pro-inflammatory genes, and eventu-
ally induce cellular necrosis (Jansen et al. 2017; Li et al. 2017a; Woolbright and
Jaeschke 2016). This inherent cytotoxicity of BA plays a role in liver damage in
cholestatic conditions where bile secretion is impaired and BA accumulate inside
hepatocytes and, in the case of cholangiopathies, leak into the surrounding tissue due
to injury of bile ducts (Jansen et al. 2017). Of note, in the cholestatic setting, changes
in the expression of hepatobiliary transporters occur that may represent a compensa-
tory response aiming to limit the accumulation of potentially toxic biliary
constituents (Arrese and Trauner 2003). These changes include downregulation of
BA uptake, downregulation of BA synthesis, and upregulation of BA excretion
through increased BSEP or transporters able to provide alternative excretory routes
(Wagner et al. 2010; Arrese and Karpen 2010). These adaptive responses are
mediated by the activation of several nuclear receptors such as farnesoid X receptor
(FXR), pregnane X receptor (PXR), Constitutive Androstane Receptor (CAR), and
the small heterodimer partner (SHP) as well as by entero-hormones such as
Fibroblast growth factor 19 (FGF19), which is produced in the ileum and also in
hepatocytes (in humans) (Halilbasic et al. 2013; Arrese and Karpen 2010). FXR is a
major player and is a dedicated BA receptor that influences a myriad of pathways
both in hepatocytes and in other resident cells such as Kupffer, endothelial, and
hepatic stellate cells (Matsubara et al. 2013). In hepatocytes in particular, upon
upregulation of SHP, FXR mediates a downregulation of NTCP and of cholesterol
7α-hydroxylase (CYP7A1), a key enzyme in BA synthesis. FXR also directly
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upregulates BSEP, thus promoting BA excretion (Halilbasic et al. 2013). In humans,
but not in mice, hepatic production of FGF-19 may also play a role in down-
regulating CYP7A1 (Jansen et al. 2012). Finally, alternative excretory transport
proteins located at the basolateral membrane of hepatocytes (i.e. the heteromeric
transporter Organic solute transporter α-β [OST-α-β] and the ABC transporters
MRP3, and MRP4) that are expressed at low levels in physiological conditions
become upregulated during cholestasis (Halilbasic et al. 2013). Thus, if BA secretion
is impaired, adaptive responses may limit BA accumulation inside hepatocytes, thus
preventing hepatocellular damage. If these responses are insufficient, cell damage
and death may occur either by apoptosis or necrosis (Woolbright and Jaeschke
2016). Of note, it has been shown that cholestatic hepatocytes can trigger
hepatocyte-specific inflammatory response that involves increased expression of
cytokines such as C-C Motif Chemokine Ligand 2 (CCL2), Chemokine (C-X-C
motif) ligand 2 (CXCL2), and Interleukin 8 (IL-8) that in turn can contribute to
neutrophil recruitment and augment local inflammation (Li et al. 2017a; Cai et al.
2017). This response is partially dependent on activation of toll-like receptor-9
presumably by BA-induced mitochondrial damage and the release of mitochondrial
DNA (Cai et al. 2017). In addition to the local inflammation promoted by BA in
other scenarios such as in cholangiopathies or bile duct diseases, mechanical
obstruction leads to increased biliary pressure and the occurrence of biliary infarcts
and the leak of BA and other biliary constituents into surrounding tissue that may
activate proliferative reactions and hepatic fibrogenesis leading to disease progres-
sion and ultimately to cirrhosis (Jansen et al. 2017).

3.2 Bile Acids and Cholangiocytes in Cholestasis

Advances in the pathobiology of biliary epithelia have also been significant in the
last two decades (Cheung et al. 2017; Han et al. 2013; Banales et al. 2019).
Cholangiocytes, the epithelial cells lining the intra- and extrahepatic biliary tree,
are heterogeneous polarized cells that contain a significant amount of transport
proteins that allow the secretion of large amounts of bicarbonate (via the Cl�/
HCO3

� exchanger (anion exchanger 2 [AE2])), water (through aquaporin-1
[AQP-1]), and chloride (through the low conductance cystic fibrosis transmembrane
conductance regulator [CFTR]) that enrich canalicular bile and contribute to regulate
biliary pH, which is important for activation of pancreatic enzymes and the absorp-
tion of lipophilic organic compounds. Cholangiocytes also express BA transporters
(the apical sodium-dependent bile acid transporter [ASBT] is present in the apical
membrane, and a truncated form of the same transporter [referred to as t-Asbt] is
located at basolateral membrane of cholangiocytes) that allow for reabsorption of
conjugated BA. It is important to note that cholangiocytes exhibit morphological,
biochemical, and functional heterogeneity throughout the biliary system (i.e., from
small to large bile ducts) with different cellular processes taking place at different
locations of the biliary tree (Banales et al. 2019). Also, passive absorption of
protonated unconjugated BA can occur. The reuptake of BA in cholangiocytes
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followed by re-secretion into the blood of peribiliary plexuses is referred as the
“cholehepatic shunt pathway,” which leads to BA return to hepatocytes for
re-secretion into bile augmenting its choleretic action. Finally, some in vitro and
in vivo evidence suggest that biliary BA concentration and composition may
eventually regulate some cholangiocyte functions by activating differing signaling
pathways and (i.e., calcium protein kinase C [PKC], phosphoinositide 3-kinase
[PI3K], mitogen-activated protein [MAP] kinase, and extracellular signal-regulated
protein kinase [ERK], among others), thus inducing changes in cholangiocyte
secretion, proliferation, and survival. It has been also shown that cholangiocyte
proliferation is critically dependent of the BA receptor TGR5, which is located in
the cholangiocyte cilia.

Cholangiocyte injury is a key phenomenon in certain cholestatic diseases, and
therefore aspects related to cholangiocyte responses to injury are also of importance
to the understanding of cholestasis pathophysiology and treatment (Banales et al.
2019; Sato et al. 2018). When injured, cholangiocytes respond acquiring a neuroen-
docrine phenotype and, in response to a myriad of stimuli, proliferate leading to bile
duct hyperplasia, which is a common histological hallmark of cholestatic diseases
(Cheung et al. 2017). Injury of biliary cells can be immune-mediated, toxically
induced, or related to mechanical factors (i.e., biliary obstruction). In all these
settings, direct cytotoxicity of BA could play a role as increased luminal BA can
damage cholangiocyte membrane, induce autophagy, and promote cellular senes-
cence, which is associated to secretion of pro-inflammatory and pro-fibrotic signals
(Cheung et al. 2017; Xia et al. 2006). Bicarbonate secretion and the existence of an
intact cholangiocyte glycocalyx have been hypothesized to form a “bicarbonate
umbrella” that prevents protonation of biliary BA and cellular damage by bile acid
monomers (Beuers et al. 2015a; Hohenester et al. 2012).

3.3 Mechanisms Underlying the Hepatoprotective Properties
of Hydrophilic Bile Acids

Based on the information summarized above, strategies that have been exploited
(Beuers et al. 2015a; Wagner and Trauner 2016; Trauner et al. 2017) therapeutically
for cholestatic diseases include the following: (a) to limit BA injury through
modulation of BA pool hydrophobicity or reducing bile acid pool size by interfering
with intestinal bile acid absorption, (b) to induce choleresis to deload hepatocytes
from BA and to limit cholangiocyte damage, and (c) to modulate inflammation.
Hydrophilic BA can exercise some of these functions, which explain their usefulness
in liver diseases (Figs. 2 and 3). Their effects on the hepatobiliary system are
summarized below.

3.3.1 UDCA and TUDCA
UDCA (3α,7β-dihydroxy-5β-cholanoic acid) is normally present in human bile,
amounting to 1–3% of biliary BA (Marin et al. 2015). In physiological conditions
most of the UDCA is conjugated with glycine, which is the preferred amidation
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pathway in humans (Hofmann 2009). Oral administration of UDCA is able to enrich
the biliary bile acid pool with this hydrophilic bile acid up to 40% of biliary BAs
(Rost et al. 2004; Dilger et al. 2012), which is thought to decrease BA pool
hydrophobicity and therefore reduce its hepatotoxic effects if hepatocyte BA reten-
tion occurs. This was thought to be central to the effects of UDCA in cholestatic
diseases given the role of hepatic retention of hydrophobic bile acids as a major
cause of liver damage, by inducing membrane damage, necrosis, and apoptosis, in
this setting (Wagner and Trauner 2016; Arrese and Trauner 2003). However, one

Fig. 2 Overview of the main hepatoprotective mechanisms of action of UDCA and TUDCA. In
cholestasis, hydrophobic bile acids induce many cellular changes that can be counteracted by
hydrophilic bile acids such as UDCA and TUDCA. (1) Hydrophobic bile acids are strong detergents
that can cause membrane disruption by lipid solubilization, while hydrophilic bile acids like UDCA
can bind to the apolar domain of cell membranes, stabilizing its molecular structure. (2) Bicarbonate
secretion by hepatocytes and cholangiocytes has protective action against the detergent effects of
hydrophobic bile acids. Treatment with hydrophilic bile acids induces bicarbonate secretion
by several mechanisms including increasing of the anion exchanger 2 [AE2] expression. AE2
exchanges chloride by bicarbonate in both hepatocytes and cholangiocytes. (3) Hydrophilic bile
acids can also inhibit apoptotic signaling pathways at the level of mitochondria or indirectly through
anti-inflammatory effects by binding the glucocorticoid receptor (GR) and counteracting the
pro-inflammatory effects of bile acids, which are mediated by toll-like receptor 9 (TLR9). (4) Cho-
lestasis induces endocytic internalization of canalicular transporters, like the bile salt export pump
(BSEP) and the multidrug resistance-associated protein 2 (MRP2). Treatment with hydrophilic bile
acids increases the translocation of transporters such as BSEP and MRP2 into the canalicular
membrane

244 D. Cabrera et al.



Fi
g
.
3

T
he

bi
lia
ry

H
C
O
3
�
um

br
el
la

hy
po

th
es
is
an
d
th
e
he
pa
to
pr
ot
ec
tiv

e
ac
tio

ns
of

T
U
D
C
A
,
U
D
C
A
,
an
d
N
or
U
D
C
A
.
H
yd

ro
ph

ob
ic

bi
le

ac
id
s
ar
e
to
xi
c
to

ch
ol
an
gi
oc
yt
es
,i
nd

uc
in
g
se
ne
sc
en
ce
,e
nd

op
la
sm

ic
re
tic
ul
um

st
re
ss
,a
ut
op

ha
gy

,a
nd

ce
ll
de
at
h.

T
he
se

ef
fe
ct
s
ar
e
co
un

te
ra
ct
ed

by
bi
ca
rb
on

at
e
se
cr
et
io
n
vi
a
th
e

UDCA, NorUDCA, and TUDCA in Liver Diseases: A Review of Their Mechanisms of. . . 245



Fi
g
.3

(c
on

tin
ue
d)

C
l�
/H
C
O
3
�
an
io
n
ex
ch
an
ge
r
2
[A

E
2]

in
he
pa
to
cy
te
s
an
d
ch
ol
an
gi
oc
yt
es

an
d
lik

el
y
al
so

by
tr
an
sm

em
br
an
e
m
em

be
r
16

A
(T
M
E
M
16

A
)
in

ch
ol
an
gi
oc
yt
es
.U

D
C
A
,T

U
D
C
A
,a
nd

N
or
U
D
C
A
ha
ve

be
en

ob
se
rv
ed

to
ha
ve

pr
ot
ec
tiv

e
ef
fe
ct
s
in

th
e
liv

er
by

pr
ev
en
tin

g
bi
ca
rb
on

at
e
de
pl
et
io
n
on

th
e
ap
ic
al

si
de

of
ch
ol
an
gi
oc
yt
es
,t
hu

s
ex
er
ci
si
ng

cy
to
pr
ot
ec
tiv

e
ef
fe
ct
s.
P
ar
tic
ul
ar
ly
,N

or
U
D
C
A
,d
ue

to
its

re
si
st
an
ce

to
am

id
at
io
n,
ca
n
un

de
rg
o
ch
ol
eh
ep
at
ic
sh
un

tin
g
an
d

po
te
nt
ly

pr
om

ot
e
bi
ca
rb
on

at
e
se
cr
et
io
n
in
to

th
e
bi
le

du
ct
.
A
lth

ou
gh

m
os
t
of

th
e
U
D
C
A

is
se
cr
et
ed

as
a
gl
yc
in
e
co
nj
ug

at
e
in

hu
m
an
s,

ta
ur
in
e
co
nj
ug

at
io
n

pr
ed
om

in
at
es

in
ro
de
nt
s.
S
ec
re
tio

n
of

T
U
D
C
A

is
m
ed
ia
te
d
by

th
e
ca
na
lic
ul
ar

bi
le
sa
lt
ex
po

rt
pu

m
p
(B
S
E
P
)

246 D. Cabrera et al.



report (Beuers et al. 1992) showing that hydrophobic BA pool sizes remained stable
during short treatment with UDCA suggests that this would not be the major
mechanism of action of the drug. Rather, UDCA-induced signaling changes in
hepatocytes that modulate relevant pathways for hepatobiliary secretion, cellular
stress, and apoptosis would underlie the hepatoprotective effects of UDCA (Beuers
et al. 2015a). Of note, UDCA seems to exert its beneficial effects mainly at the level
of hepatocytes and cholangiocytes. Additional effects may be related to some actions
at the intestinal level since amidated forms of UDCA inhibit gut absorption of
endogenous bile acids (Lanzini et al. 2003). The multiple mechanisms of action
described for UDCA (reviewed in depth in refs. Beuers 2006; Beuers et al. 2015a)
are delineated below.

Actions of UDCA/TUDCA in Hepatocytes
Most of the data regarding the effects of UDCA in the liver has been generated using
the nonconjugated form as well as its taurine conjugate TUDCA with few
differences between them. At the level of hepatocytes, UDCA has been shown to
stimulate bile flow as well as the secretion of organic anions (Beuers 2006). Early
studies with continuous intravenous infusion of TUDCA in whole animals (Kitani
and Kanai 1981, 1982) and perfused rat livers (Beuers et al. 1993a) showed that the
UDCA induced higher flow rate and higher total bile salt secretion than taurocholate.
Further studies suggested that UDCA-induced choleresis is attained through post-
transcriptional actions that lead to increased insertion of transporters such as BSEP
and MRP2 into the canalicular membrane (Kurz et al. 2001; Beuers et al. 2001) and
stimulation of hepatic bicarbonate secretion, which stimulates the secretion of an
alkaline bile (Takikawa et al. 1992). Some of these effects may be related to a potent
stimulation of intracellular Ca2+ signaling (Beuers et al. 1993a, b) and other
pathways such as that of protein kinase C (cPKCa) (Beuers et al. 1996; Stravitz
et al. 1996), mitogen-activated protein kinases (MAPK, Erk1/2, p38MAPK), and
alpha-5-beta-1 integrins in hepatocytes (Haussinger and Kordes 2017). Importantly,
the effect of UDCA on hepatic transport protein expression in vivo is rather modest
stressing the relevance of posttranscriptional effects of UDCA as responsible of
some of its beneficial effects in the liver (Fickert et al. 2001). Of note, it has been also
shown that UDCA also prevents the endocytic internalization of canalicular
transporters, a common feature in cholestasis (Roma et al. 2011). Finally, it must
be kept in mind that all the abovementioned effects have been shown only in
experimental models and is uncertain to which extent they operate in humans
(Beuers et al. 2015a).

Other important mechanism by which UDCA is hepatoprotective is related to its
antiapoptotic activity. Cellular toxicity of BA is in part related to apoptosis induc-
tion, and UDCA and TUDCA have been shown to inhibit classic pathways of
apoptosis (Amaral et al. 2009; Azzaroli et al. 2002; Benz et al. 1998; Rodrigues
and Steer 2001). Using primary rat hepatocytes and HUH-7 hepatoma cell lines,
Rodrigues et al. showed that, in contrast to DCA, UDCA is innocuous in terms of
apoptosis induction (Rodrigues et al. 1998a). When the two bile acids were com-
bined in the diet, UDCA completely inhibited cell death by apoptosis associated with
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the hydrophobic bile acid alone. UDCA can abolish typical morphological changes
of apoptotic nuclei like nuclear fragmentation of condensed chromatin. Also, UDCA
has been shown to inhibit apoptosis induction driven by ethanol, TGF-β1, FAS
ligands, and okadaic acid (a robust apoptotic stimulus) suggesting a ubiquitous
antiapoptotic effect of UDCA (Amaral et al. 2009). Additional reports have shown
that UDCA markedly reduces mitochondrial release of cytochrome c into the
cytoplasm, in liver cells treated with hydrophobic BA by inhibition of both
channel-forming activity and depolarization of the mitochondrial membrane
(Rodrigues et al. 1998a, 1999). These findings support the concept that UDCA can
modulate the apoptotic threshold by its protective role over mitochondrial membrane
perturbation (Rodrigues et al. 1998a, b). In addition, activation of survival pathways
such as p38, ERK, MAPK, and PI3K pathways has been also demonstrated in vitro
(Schoemaker et al. 2004). Finally, it has been described that UDCA and TUDCA
also attenuate endoplasmic reticulum stress by acting as cellular chaperones (Ozcan
et al. 2006), which may also account for the antiapoptotic effects of these BA. Of
note, the antiapoptotic properties of UDCA and its taurine conjugate TUDCA have
been demonstrated also in other cell types particularly in neurons (Abdelkader et al.
2016). These effects are currently being explored with therapeutic purposes in some
neurodegenerative diseases such as Parkinson’s diseases and lateral amyotrophic
sclerosis (Vang et al. 2014; Abdelkader et al. 2016; Castro-Caldas et al. 2012; Elia
et al. 2016).

In addition to its effects on hepatobiliary transport capacity and to its
antiapoptotic properties, existing data also support some action on oxidative injury
as well as membrane stabilization and anti-inflammatory effects. Mitsuyoshi et al.
assessed the effects of UDCA on oxidative injury and antioxidative systems in
cultured rat hepatocytes. They found that UDCA significantly prevented cellular
damage after hydrogen peroxide or cadmium challenge (Mitsuyoshi et al. 1999).
UDCA also increased the amounts of glutathione (GSH) and thiol-containing
proteins as well as the mRNA levels of γ-glutamylcysteine synthetase suggesting
hepatoprotective effects against oxidative injury. With regard to membrane stabili-
zation, experimental in vitro data from Guldutuna et al. proposed that UDCA can
bind to the apolar domain of cell membranes stabilizing its structure and avoiding the
lipid solubilization induced by hydrophobic BA such as CDCA (Guldutuna et al.
1993). More recent evidence suggest that UDCA prevents damaging effects of
hydrophobic BA only in the presence of membrane cholesterol (Zhou et al. 2009).
Finally, UDCA has been described as a ligand of glucocorticoid receptor, which
could be related to an anti-inflammatory effect (Tanaka and Makino 1992; Miura
et al. 2001), and has been postulated to have some immunomodulatory effects
(Yoshikawa et al. 1992). The relevance of the UDCA actions described above
remains unclear in the human setting.

Actions of UDCA/TUDCA in Cholangiocytes
As mentioned earlier, cholangiocyte injury is a key phenomenon in certain cholestatic
diseases contributing to local inflammation and fibrosis development (Sato et al. 2019;
Fabris et al. 2017). Among the phenomena involved in cholangiocyte damage in
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cholangiopathies are direct effects of hydrophobic bile acids on cell membrane,
activation of autophagy, and induction of senescence as well as induction of endo-
plasmic reticulum stress and immune-mediated injury (Banales et al. 2019; Sasaki and
Nakanuma 2017). Clinical and experimental data indicates that UDCA may act
modulating these phenomena. Current concepts are summarized below.

Several authors have pointed to the importance of bicarbonate secretion for the
protection of cholangiocytes against the damaging effect of protonated BA present in
bile. Conceptually, bicarbonate secretion increases biliary pH and determines a shift
of BA toward ionized forms, thus decreasing their ability to diffuse and reducing
their cytotoxic effects (Banales et al. 2019). This concept has been stated as the
“biliary bicarbonate umbrella hypothesis” (Hohenester et al. 2012; van Niekerk et al.
2018), which is thought to be defective in cholangiopathies such as PBC (Rodrigues
et al. 2018). Biliary bicarbonate secretion is carried out by AE2 (SLC4A2), which is
expressed in the apical membrane of cholangiocytes and depends on active chloride
secretion by these cells. Of note, both messenger RNA and protein levels of AE2 as
well as biliary bicarbonate secretion are reduced in PBC, a prototypic cholestatic
disease (Prieto et al. 1993, 1999). UDCA treatment determines increased fluid
secretion from cholangiocytes as well as increases biliary bicarbonate secretion via
activation of [AE2] and also transmembrane member 16A (TMEM16A) (Fiorotto
et al. 2007; Li et al. 2018). Also, UDCA restores cholestasis-associated reduced AE2
mRNA and protein expression, which is thought to be an important mechanism of
action of UDCA in cholangiopathies. Importantly, recent evidence suggests that
dysregulated autophagy and cholangiocyte senescence in PBC may also be related to
a defective biliary bicarbonate umbrella since AE2 knockdown evokes these phe-
nomena in biliary cells (Sasaki et al. 2018). Additional effects of UDCA in
cholangiocytes include restoration of secretin-stimulated choleresis via multiple
mediators (i.e., AE2, PKCα, PI3K, MEK, PKA, and intracellular Ca2+) (Uriz
et al. 2011; Jones et al. 2015). More recently, two new players have been added to
the list of potential mediators of the beneficial effects of UDCA in cholangiocytes.
On one hand, a recent study showed that the bile acid sensitive ion channel (BASIC),
which is highly expressed in cholangiocytes, is strongly activated by UDCA
(Wiemuth et al. 2013). On the other hand, Li et al. recently show that both UDCA
and TUDCA stimulate Cl2 secretion through activation of TMEM16A, which is
thought to be, instead of CFTR, the dominant Cl2 channel regulating anion efflux in
biliary epithelia (Li et al. 2018). While further studies are needed to better determine
the role and cellular activities of these channels, the abovementioned studies suggest
that the therapeutic effects provided by UDCA might be related to modulation of
their channel activities.

Effects of UDCA on Gut Microbiome
Information on the role of microbiome in chronic liver disease has surged in recent
years (Wahlstrom 2019), but the existence of many confounders in available studies
makes clear conclusions difficult to reach. Indeed, there is a close and bidirectional
interplay between BA metabolism and the gut microbiota, and cholestasis may alter
intestinal bacterial populations. Recent studies have explored the effects of UDCA
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on gut microbiome composition in healthy subjects and also in individuals with liver
dysfunction (Kim et al. 2018; Pearson et al. 2019). Interestingly, UDCA influenced
bacterial populations inducing marked decrease in abundance of Bifidobacterium,
Lactobacillus, and Lactobacillaceae (Kim et al. 2018). It remains to be determined if
these effects have any relevance for the therapeutic action of UDCA. One interesting
recent study showed that the absence of the intestinal microbiota results in exacer-
bation of liver injury in a murine model of primary sclerosing cholangitis (PSC), the
mdr2�/�mice (Tabibian et al. 2016). This genetically engineered mouse is deficient
of the canalicular transporter of phospholipid and has very low levels of biliary
phosphatidylcholine, which results in biliary injury. The biliary alterations of this
experimental model are similar to that observed in PSC (Mariotti et al. 2019). In the
study by Tabibian et al. (2016), germ-free mdr2�/� mice exhibited significantly
worse liver chemistry and histological lesions than conventionally housed mice
underscoring the importance of commensal microbiota in protecting against biliary
damage.

Few studies have analyzed the gut microbiome in cholestatic diseases (Quigley
2016; Li et al. 2017b). Of note, a significant reduction of within-individual microbial
diversity has been found in PBC (Tang et al. 2018a), which is partially relieved
by UDCA administration. Similarly, reduced diversity and significant shifts in the
microbiome composition have been found in stool samples from PSC patients
(Kummen et al. 2017), but it is unclear if they are primary or secondary to the bile
secretory failure present in cholestatic disorders.

3.3.2 NorUDCA
As mentioned earlier, 24-norursodeoxycholic (NorUDCA) is a non-amidated, side
chain-shortened C23 derivative of UDCA that in virtue of its relative resistance to
amidation undergoes biliohepatic shunting being a potent choleretic compound due
to the amplification of its effect on bicarbonate secretion by cholangiocytes
(Halilbasic et al. 2017; Trauner et al. 2015; Yoon et al. 1986). NorUDCA has
been shown to have profound beneficial effects in experimental models of biliary
injury particularly in the mdr2�/� mice. In this mouse model, NorUDCA exercise
marked beneficial effects by reducing injury and biliary fibrosis (Halilbasic et al.
2009; Fickert et al. 2006). It is thought that the lack of biliary phospholipid facilitates
cholangiocyte injury by hydrophobic BA and that this phenomenon is counteracted
by a bicarbonate-rich bile induced by NorUDCA administration (Halilbasic et al.
2017). Of note, biliary bicarbonate enrichment induced by NorUDCA is much
stronger than its parent compound UDCA (Trauner et al. 2017). In addition to the
induction of bicarbonate-rich bile, NorUDCA seems to have some relevant immu-
nological actions since it has been shown that it is able to affect antigen presentation
and inhibit T-lymphocyte proliferation in a mouse model of schistosomiasis
(Sombetzki et al. 2015). Also, antifibrotic effects have been described in the
thioacetamide-induced liver fibrosis rat model (Buko et al. 2014) although the
underlying mechanisms are unclear.
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4 Clinical Applications of Hydrophilic Bile Acids in Liver
and Biliary Diseases: Current Status and Perspectives

Hydrophilic BA has been studied in different liver diseases. While ample evidence is
available for UDCA, the amount of studies carried out with TUDCA and NorUDCA
are less abundant. As shown in Table 1, there are settings in which these drugs can be
considered clinically useful and other that await further confirmation. A summary of
current data is provided below.

4.1 Efficacy Established

Several clinical uses of UDCA or its taurine conjugate have been proven in prospec-
tive clinical trials. This prerequisite is met for PBC, cholesterol gallstone disease,
and intrahepatic cholestasis of pregnancy.

UDCA/TUDCA for PBC After the seminal reports of the effects of UDCA on liver
test in patients with PBC (Leuschner and Kurtz 1987), most of the reports published
confirmed the positive effects on liver markers of cholestasis particularly on serum
alkaline phosphatase levels, which is currently considered a surrogate marker of
outcomes in patients with PBC (Lammers et al. 2014). However, the utility of
UDCA in PBC remained a matter of debate due to the lack of evidence of efficacy
on hard end points (i.e., survival or liver transplantation (LT)-free survival). To
prove benefit on these outcomes remained difficult due to the long natural history of
the disease and the lack of power of studies that include small number of patients as
well as patients with different disease stages. The latter is relevant as patients with

Table 1 Current therapeutic uses of hydrophilic bile acids in liver diseases

Efficacy established Efficacy likely Efficacy uncertain

UDCA/TUDCA for
primary biliary
cholangitis
UDCA for cholesterol
gallstone dissolution
UDCA for cholestasis of
pregnancy

UDCA for prevention of
gallstones after bariatric surgery
UDCA for low phospholipid-
associated cholelithiasis
UDCA for progressive familial
intrahepatic cholestasis type 3
UDCA to prevent liver disease
in cystic fibrosis
UDCA to prevent hepatic injury
after stem cell
transplantation
NorUDCA for primary
sclerosing cholangitis

UDCA for drug-induced
cholestatic liver injury
UDCA to prevent total parenteral
nutrition-induced cholestasis
UDCA for primary sclerosing
cholangitis
UDCA and NorUDCA for
NAFLD/NASH

UDCA ursodeoxycholic acid, TUDCA tauroursodeoxycholic acid, NorUDCA norursodeoxycholic
acid, NAFLD/NASH nonalcoholic fatty liver disease/nonalcoholic steatohepatitis
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earlier histologic stage may respond better to UDCA than patients with more
advanced disease stage (Ali et al. 2017).

Although analysis of pooled cohorts of treated patients comparing outcomes with
the predicted survival by mathematical models suggested that UDCA prolonged
LT-free survival (Lindor et al. 1994; Poupon et al. 1997), several meta-analysis,
including a recent report of the Cochrane hepatobiliary group, concluded that there is
no demonstrated benefit of UDCA on LT-free survival and/or mortality (Saffioti
et al. 2017; Goulis et al. 1999). In spite of that, UDCA at a dose of 13–15 mg/kg/day
is the recommended first-line treatment of PBC in current guidelines (Lindor et al.
2019; European Association for the Study of the Liver 2017) based on indirect
evidence that the drug slows disease progression and reduces the need of LT (Lindor
et al. 2019). Response is monitored using serum alkaline phosphatase levels, and
those patients that reduce this parameter significantly (greater than 25% of the basal
level) are considered responders with a complete response defined as normalization
of serum alkaline phosphatase levels (Pares et al. 2000). Several other criteria for
response have been published and validated (Ali et al. 2017). A more recent study
from the Global PBC Study Group database including data from 3,902 patients
confirmed that UDCA confers a survival benefit for PBC patients even for patients
with incomplete response (Harms et al. 2019). These findings provide further
support to the use of UDCA as standard medical therapy for PBC.

Most of the clinical studies carried out with UDCA have used the unconjugated
form of the drug, which undergoes extensive conjugation primarily with glycine,
before being excreted into bile (Crosignani et al. 1996). The use of the taurine-
conjugated form of UDCA has been less common although, theoretically, it could
have some potential advantages related to a greater hydrophilicity and reduced
biotransformation to more hydrophobic metabolites (Setchell et al. 1996; Invernizzi
et al. 1999). A recent study from China shows that TUDCA is equally safe and
efficacious as UDCA with regard to its effects on serum levels of alkaline phospha-
tase in patients with PBC (Ma et al. 2016).

UDCA and TUDCA for Cholesterol Gallstone Disease Before the introduction of
laparoscopic cholecystectomy, several nonsurgical treatments of gallstone disease
were attempted. In the 1970s, it was demonstrated that BA could promote the
dissolution of gallstones, and oral dissolution therapy using both CDCA and
UDCA was studied in prospective clinical trials (Bell et al. 1972; Portincasa et al.
2012; Danzinger et al. 1972). UDCA became the drug of choice for this purpose
since several studies demonstrated higher efficacy than CDCA in decreasing biliary
cholesterol saturation as well as fewer side effects such as diarrhea or elevations of
serum aminotransferases (Stiehl et al. 1978; Mok et al. 1974). At present time less
than 10% of total patients are considered for gallstone dissolution therapy with
UDCA (Portincasa et al. 2012) that can be suggested for symptomatic gallstone
patients who are not eligible for surgery and have small (<5 mm in size), radiolucent
stones in a functioning gallbladder with a patent cystic duct (Paumgartner et al.
1994). TUDCA is thought to be equally effective than UDCA for gallstone dissolu-
tion (Portincasa et al. 2012).
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UDCA for Cholestasis of Pregnancy (ICP) Being a pregnancy-specific disorders,
ICP occurs mainly in the third trimester of pregnancy and is characterized by pruritus
and elevated bile acid levels with few cases developing jaundice (Arrese and Reyes
2006; Wood et al. 2018). The disease usually improves spontaneously after delivery
(Wood et al. 2018). ICP is regarded as a benign disease with no meaningful
consequences to the mother but associated to an increased perinatal risk with
increased rates of fetal morbidity and mortality. The pathogenesis of the disease is
unknown but likely involves a genetic hypersensitivity to estrogen or estrogen
metabolites. Mutations or polymorphisms of some hepatobiliary transport proteins
may contribute to disease pathogenesis or severity (Arrese et al. 2008). In addition to
an adequate obstetric management to prevent fetal distress, UDCA is recommended
to treat ICP. This is based on several prospective studies (Bacq et al. 2012; Palma
et al. 1997) that showed beneficial effects on liver function test and resolution or
improvement of pruritus in a significant proportion of patients (Bacq et al. 2012,
2017). Although the benefit of UDCA for reducing stillbirth in ICP remains
unproven, its use as first-line therapy in ICP is recommended in current guidelines
(Bicocca et al. 2018).

4.2 Efficacy Likely

Available studies suggest that the use of hydrophilic BA is likely effective in several
other than the abovementioned diseases (Table 1). This is based on large clinical
series and early clinical phase trials or inference from the observed effects of UDCA
in other diseases. Evidence supporting these clinical uses are summarized below.

UDCA for Prevention of Gallstones After Rapid Weight Loss or Bariatric
Surgery Based on the proven efficacy of UDCA in gallstone dissolution, its use
in the prevention of gallstone formation in several clinical settings where bile
become transiently lithogenic has been advocated. Among these conditions the
effect of UDCA in prevention of gallstone disease after rapid weight loss and after
bariatric surgery has been studied in formal clinical trials. Rapid weight loss
(>1.5 kg/week) induces a supersaturated bile and determines gallstone formation
in up to one third of bariatric surgery patients (Guzman et al. 2019). Updated meta-
analysis suggests that UDCA administration significantly reduces gallstone forma-
tion in the setting of rapid weight loss induced either by very-low-calorie diets
(Stokes et al. 2014) or bariatric surgery (Magouliotis et al. 2017) being a well-
tolerated and safe medication. Thus, although the quality of evidence is moderate,
administration of 500–600 mg of UDCA may be recommended during periods of
rapid weight loss until body weight has stabilized. In the case of bariatric surgery, a
period of 6 months after the surgical procedure is suggested (Magouliotis et al. 2017;
European Association for the Study of the Liver 2016).

UDCA for Low Phospholipid-Associated Cholelithiasis (LPAC) LPAC is a rare
condition characterized by low biliary phospholipid concentration, which
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determines the occurrence of symptomatic and recurring cholelithiasis. This occurs
usually before the age of 40 years with frequent concomitancy of intrahepatic bile
duct and gallbladder cholesterol stones. The underlying causes are mutations in the
ABCB4 gene that encodes the hepatocanalicular phospholipid transporter. LPAC
patients may benefit from prophylactic UDCA therapy (15 mg/kg body weight per
day) that seems to prevent the occurrence and recurrence of stones (European
Association for the Study of the Liver 2016; Poupon 2012).

UDCA for Progressive Familial Intrahepatic Cholestasis Type 3 (PFIC3)
PFIC3 is a genetic cholestatic disease seen in early life, which is also related to a
defective expression or function of the hepatocanalicular phospholipid transporter
due to mutations of the ABCB4 gene. As in LPAC, PFIC3 patients develop severe
liver and cholangiocyte injury due to BA-mediated damage. Up to one third of
patients may exhibit biochemical response to UDCA (Baker et al. 2019), but its use
has not been proven in large clinical trials.

UDCA to Prevent Liver Disease in Cystic Fibrosis Patients with cystic fibrosis
have a defective function of the cholangiocytes’ low conductance chloride channel,
CFTR. This leads to a reduced biliary bicarbonate and a “thick” bile, which in turn
determine the formation of biliary plugs and the occurrence of biliary injury due to a
defective biliary bicarbonate “umbrella.” These phenomena trigger biliary obstruc-
tion and inflammation potentially resulting in biliary cirrhosis and portal hyperten-
sion (Sakiani et al. 2019; Assis and Debray 2017). However, only few patients
develop symptomatic hepatobiliary disease although many CF patients have abnor-
mal liver tests. If liver disease is present, the use of UDCA is recommended although
its efficacy remains unproven due to the lack of high-quality studies. A recent
Cochrane review performed concluded that currently available data to support the
use of UDCA is limited (Cheng et al. 2017). Some studies suggest that if used early
(i.e., before cirrhosis is established), UDCA could prevent or even alleviate liver
damage in cystic fibrosis patients as estimated by a decrease in liver stiffness as
measured by transient elastography (van der Feen et al. 2016). Given the lack of
alternative therapies and safety of UDCA, most experts recommend its use in cystic
fibrosis although more studies are needed to confirm its efficacy in preventing liver
disease in patients with this disease (Sakiani et al. 2019).

UDCA to Prevent Hepatic Injury after Stem Cell Transplantation (HSCT)
Hematopoietic stem cell transplantation is routinely used for management of many
hematological disorders. A frequent complication of this therapy is acute graft-
versus-host disease (GVHD), an immune-mediated disorder resulting in recipient
tissue damage by immune cells from the donor. One prospective randomized study
evaluated the use of UDCA administration for prevention of hepatic complications
after HSCT. This study found that UDCA significantly reduced the proportion of
patients developing hyperbilirubinemia and that UDCA-treated patients exhibited a
reduced incidence of severe acute GVHD (Ruutu et al. 2014). However, no other
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studies have been published regarding the use of UDCA in hepatic GVHD, and its
efficacy in this setting remains to be proved.

NorUDCA for Primary Sclerosing Cholangitis Due to its novel mechanisms of
action and the wealth of experimental evidence in preclinical models, the use of
NorUDCA as a useful therapeutic agent in several liver disease holds promise
(Halilbasic et al. 2017; Trauner et al. 2015). To date only the phase II clinical trial
assessing the effects of NorUDCA in PSC patients has been published (Fickert et al.
2017). In this study, 161 PSC patients were randomized for a 12-week treatment
followed by a 4-week follow-up. NorUDCA reduced serum levels of alkaline
phosphatase in a dose-dependent manner in up to 26% with few serious adverse
events. Moreover, NorUDCA significantly reduced serum levels of amino-
transferases and gamma-glutamyl transferase. Although promising the real efficacy
of NorUDCA in PSC remains to be proved in larger trials and with a more accurate
patient stratification (Chazouilleres 2017). Currently, the use of NorUDCA in PSC
patients is being evaluated in a phase III clinical study (ClinicalTrials.gov number
NCT01755507).

4.3 Efficacy Uncertain

Due to its lack of favorable safety profile, UDCA and other hydrophilic BA have
been used in a myriad of other liver diseases (Table 1) without proof of efficacy.
Thus, although UDCA may be used, the usefulness of UDCA in the setting of drug-
induced cholestatic liver injury (Sundaram and Bjornsson 2017) or parenteral
nutrition-induced cholestasis (San Luis and Btaiche 2007), its use is debatable due
to the lack of evidence. In the case of UDCA use in PSC patients, controlled trials
have shown no efficacy (Lindor et al. 2015) although the drug might be useful in
some subsets of patients at dose of 17–22 mg/kg/day (Tabibian and Lindor 2014).
Higher doses (25–30 mg/kg/day) may be harmful (Sedki and Levy 2018).

UDCA and NorUDCA have been also proposed as potential treatment of nonal-
coholic fatty liver disease (NAFLD) currently the more common liver disease
worldwide (Younossi et al. 2018; Arab et al. 2017b). NAFLD and its progressive
form nonalcoholic steatohepatitis (NASH) can led to advanced liver fibrosis in up to
a quarter of patients (Arab et al. 2017b). Although robust evidence of beneficial
effects of these hydrophilic BA in preclinical models of NAFLD/NASH has been
published (Steinacher et al. 2017), UDCA was found to be ineffective in a large
clinical trial and therefore is not recommended as treatment of NAFLD in current
guidelines (Chalasani et al. 2018). In the case of NorUDCA, a yet unpublished recent
phase II study showed beneficial effects in patients with NAFLD and elevated liver
enzymes (Traussnigg et al. 2017). A larger trial is being conducted, and its results
will eventually support the use of NorUDCA in NAFLD/NASH.

Finally, some studies in preclinical models have suggested that hydrophilic BA
might influence cyst formation in the liver (Munoz-Garrido et al. 2015) as well as
promote degradation of α1-antitrypsin mutant Z protein (Tang et al. 2018b) opening
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the possibility of using UDCA in polycystic liver disease and alpha-1 antitrypsin
deficiency, two rare liver diseases. Unfortunately, a phase II clinical trial showed no
effects of UDCA in reducing liver volume in patients with this disease (D’Agnolo
et al. 2016). Clinical data on NorUDCA in alpha-1 antitrypsin deficiency is still
unavailable.

5 Summary and Outlook

Significant advances have been made in the understanding of the beneficial effects of
hydrophilic BA in the liver. Both basic science and clinical studies have either
disclosed the mechanisms of action or proved the efficacy of compounds that were
found to be medically useful hundreds of years ago. The science of BA will continue
developing, and new evidence will likely provide foundations for new, evidence-
based, and effective treatments for certain common and uncommon liver diseases.
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