

Voltage-Sensitive Calcium Channels in the Brain: Relevance to Alcohol Intoxication and Withdrawal

Prosper N'Gouemo

Contents

Abstract

Voltage-sensitive Ca^{2+} (Ca_V) channels are the primary route of depolarizationinduced Ca^{2+} entry in neurons and other excitable cells, leading to an increase in intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$). The resulting increase in $[Ca^{2+}]_i$ activates a wide range of Ca^{2+} -dependent processes in neurons, including neurotransmitter release, gene transcription, activation of Ca^{2+} -dependent enzymes, and activation of certain K^+ channels and chloride channels. In addition to their key roles under physiological conditions, Ca_V channels are also an important target of alcohol, and alcohol-induced changes in $Ca²⁺$ signaling can disturb neuronal homeostasis, Ca^{2+} -mediated gene transcription, and the function of neuronal circuits, leading to various neurological and/or neuropsychiatric symptoms and disorders, including alcohol withdrawal induced–seizures and alcoholism.

 \oslash Springer International Publishing AG 2018

P. N'Gouemo (\boxtimes)

Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA e-mail: pn@georgetown.edu

K. A. Grant, D. M. Lovinger (eds.), The Neuropharmacology of Alcohol, Handbook of Experimental Pharmacology 248, https://doi.org/10.1007/164_2018_93

Keywords

Alcohol exposure · Alcohol intoxication · Alcohol withdrawal seizures · Calcium signaling

1 Introduction

In neurons, voltage-sensitive Ca^{2+} (Ca_V) channels serve as the primary route of Ca^{2+} entry in response to membrane depolarization, driving a localized increase in intracellular Ca²⁺ concentration ($[Ca^{2+}]$). The driving force for Ca²⁺ entry arises from the steep electrochemical gradient maintained between extracellular and intracellular Ca^{2+} concentrations, which are typically on the order of 1 mM and 100 nM, respectively; thus Ca^{2+} entry can change membrane potential and can therefore affect neuronal excitability. In neurons, low $[Ca^{2+}]$ is maintained by a variety of mechanisms and processes, including Ca^{2+} efflux via a Na⁺/Ca²⁺ exchange protein and a Ca^{2+} -ATPase located at the plasma membrane, as well as the sequestration of intracellular Ca^{2+} into in Ca^{2+} stores (e.g., via the sarco-endoplasmic reticular ATPase pump) or by Ca^{2+} -buffering proteins (Berridge [2012\)](#page-12-1).

The Ca_V-mediated localized increase in $[Ca^{2+}]$ _i in neurons activates a variety of downstream processes, including Ca^{2+} -induced Ca^{2+} release from intracellular Ca^{2+} gated Ca²⁺ stores, activation of Ca²⁺-activated K⁺ channels, Ca²⁺-activated chloride channels and Ca^{2+} -dependent enzymes, and other Ca^{2+} -dependent processes such as gene transcription and neurotransmitter release. In addition, Ca^{2+} entry following relatively mild membrane depolarization (e.g., depolarization induced by activation of N-methyl-D-aspartate receptors) can give rise to low-threshold Ca^{2+} spikes, which can further depolarize the plasma membrane, causing voltage-gated Na⁺ channels to open and initiating the repetitive firing of action potentials (Cain and Snutch 2010). Thus, Ca_V channels play a wide range of important roles under both physiological and pathophysiological conditions, including a variety of diseases associated with neuronal excitability. In the central nervous system (CNS), Ca_V channels are also an important molecular target for alcohol, and changes in neuronal $Ca²⁺$ signaling induced by alcohol exposure and subsequent withdrawal can lead to alcoholism and alcohol withdrawal–induced seizures, (AWSs).

2 Structure, Diversity, and Localization of Voltage-Sensitive Ca²⁺ Channels in the CNS

2.1 Structure and Diversity of Ca_V Channels

Ca_V channels are large protein complexes comprised of a pore-forming α 1 subunit and up to three auxiliary β , α 2/δ, and γ subunits (Simms and Zamponi [2014\)](#page-16-0). In addition to providing the pore through which Ca^{2+} flows, the α 1 subunit of Ca_V channels also confers the channel's electrophysiological and pharmacological properties; in contrast, the auxiliary subunits modulate the channel's biophysical properties and regulate the channel's trafficking to the plasma membrane. In human, nine distinct genes encode the α_1 subunits (designated $\alpha_{1\text{A}}$ through α_{11}), all of which are expressed in the CNS (Simms and Zamponi [2014\)](#page-16-0). Based on their responsiveness to changes in membrane potential, these nine Ca_V channels are broadly classified as either low voltage–activated (LVA, comprising the Ca_v3 family) channels or high voltage–activated (HVA, which include the Ca_v1 and Ca_V2 families) channels. Activation of LVA channels and HVA channels produced transient and sustained currents, respectively.

 HVA Ca_V channels have both distinct and overlapping voltage dependence and kinetics, making it difficult to differentiate HVA Ca_V currents based solely on their biophysical properties. Fortunately, however, HVA Ca_V channels have unique pharmacological profiles, which have been used to confirm the heterogeneity of the channels expressed in the CNS. Moreover, based largely on their sensitivity to various Ca_V channel blockers, HVA Ca_V channels currents have been further classified into the following five types: L-type Ca_V1.2 (α_{1C}), L-type Ca_V1.3 (α_{1D}), N-type Ca_V2.2 (α_{1B}), P/Q-type Cav2.1 (α_{1A}), and R-type Ca_V2.3 (α_{1E}) channels, encoded by the CACNA1C, CANA1D, CANA1B, CANA1A, and $CACNAIE$ genes, respectively (Ertel et al. [2000](#page-13-0); Randall and Tsien [1995\)](#page-15-0). In the CNS, P/Q-type Cav2.1 channels can give rise to both P-type and Q-type currents; this distinction is likely due to a combination of factors, including the $\text{Cav-}\beta$ subunit and/or alternative splicing of the CACNA1A gene that encodes the channels (Richards et al. [2007\)](#page-16-1).

Molecular analyses revealed that the LVA family of Ca_V channels consists of three distinct α_1 pore-forming subunits, namely Ca_V3.1 (α_{1G}), Ca_V3.2 (α_{1H}), and Ca_V3.3 (α_{11}), encoded by the *CACNA1G*, *CANA1H*, and *CACNA1I* genes, respectively (Cribbs et al. [1998;](#page-12-3) Lee et al. [1999;](#page-14-0) Perez-Reyes et al. [1998](#page-15-1)). Interestingly, unlike HVA Ca_V channels, the α 1 subunit of LVA Ca_V channels does not require auxiliary subunits to form a fully functional channel, although LVA Ca_{V} channels can be regulated by auxiliary subunits (Klöckner et al. [1999\)](#page-14-1). Finally, the three genes that encode the $Ca_v3.x$ subunits can undergo alternative splicing, giving rise to a wide diversity of functional LVA Ca_{V} channels (Swayne and Bourinet [2008](#page-16-2)). The $\text{Cav-}\alpha_1$ subunit is comprised of four transmembrane domains, which are connected by cytoplasmic linkers (Simms and Zamponi [2014](#page-16-0); Turner and Zamponi [2014](#page-16-3)). The N and C termini are located in the cytoplasmic side and they contained important sites for protein–protein interactions such as with G-protein and protein kinases (Simms and Zamponi [2014](#page-16-0); Turner and Zamponi [2014\)](#page-16-3). Interestingly, phosphorylation by PKA or PKC alters the voltage dependence and kinetics of Ca_V currents (Gray and Johnston [1987;](#page-13-1) Nagao and Adachi-Akahane [2001;](#page-15-2) Sculptoreanu et al. [1993;](#page-16-4) Stea et al. [1995](#page-16-5)).

2.2 Localization and Function HVA Ca_V 1 Channels

Although L-type $Ca_V1.x$ channels are expressed widely throughout brain, each channel subtype has a unique cellular and subcellular distribution. For example, L-type Ca_V1.3 channels are distributed relatively evenly, whereas L-type Ca_V1.2 channels are localized in clusters (Hell et al. [1993](#page-13-2); Tippens et al. [2008\)](#page-16-6). Moreover, L-type $Ca_V1.2$ and $Ca_V1.3$ channels are located predominantly on the cell soma (where they regulated depolarization and Ca^{2+} -dependent pathways that control gene expression), proximal dendrites, and in some interneurons in the olfactory bulb, cerebral cortex (pyramidal neurons), hippocampus (pyramidal neurons in the CA1–CA3 areas), dentate gyrus (granule neurons), amygdala, inferior colliculus, cerebellum (granule layer, molecular layer, Purkinje cells), and spinal cord (Hell et al. [1993](#page-13-2)). Unlike L-type Ca_V1.3 channels, Ca_V1.2 channels are expressed in astrocytes in the CA3 area of the hippocampus (Tippens et al. [2008](#page-16-6); Westenbroek et al. [1990\)](#page-17-0). The distribution of $Ca_v1.2$ and $Ca_v1.3$ channels throughout the CNS has been confirmed by RT-PCR analysis, which shows that the levels of CACNA1C and CACNA1D mRNA matches the protein levels of Ca_{V-} α 1C and Ca_{V-} α 1D subunits, respectively (Sinnegger-Brauns et al. [2009;](#page-16-7) Schlick et al. [2010\)](#page-16-8). In the striatum, CACNA1C and CACNA1D mRNA are co-expressed in medium-sized spiny neurons (Olson et al. [2005\)](#page-15-3). Interestingly, L-type Ca_V1.3a (but not Ca_V1.3b) isoform co-localizes with Shank protein and the synaptic protein PSD-95 in medium spiny neurons at excitatory synapses (Olson et al. [2005](#page-15-3)). In the CNS, approximately 80% and 20% of L-type Ca_V1 channels are Ca_V1.2 and Ca_V1.3 channels, respectively (Hell et al. [1993](#page-13-2); Sinnegger-Brauns et al. [2009\)](#page-16-7). With respect to function, evidence suggests that L-type $Ca_V1.3$ channels activate with less depolarization and inactivate more slowly than $Ca_V1.2$ channels (Koschak et al. [2001;](#page-14-2) Xu and Lipscombe [2001\)](#page-17-1). Given their unique set of biophysical properties, L-type $Ca_v1.3$ channels likely play an important role in controlling Ca^{2+} -dependent firing; moreover, L-type Ca_V1.3 channels help sustain Ca²⁺ influx at membrane potentials at which $Ca_V1.2$ channels are closed.

Ca_V2.1, Ca_V2.2, and Ca_V2.3 channels (i.e., P/Q-type, N-type, and R-type, respectively) are also expressed throughout the CNS. P/Q-type $Ca_v2.1$ channels are primarily concentrated in presynaptic terminals and dendritic shafts, N-type $Ca_v2.2$ are found mainly in dendrites and some cell bodies of neurons, and R-type $Ca_v2.3$ channels are found mainly in the cell soma in most sites with variable expression in dendrites (Westenbroek et al. [1992,](#page-17-2) [1995;](#page-17-3) Yokoyama et al. [1995\)](#page-17-4). These Ca_{V} channels are found primarily in the olfactory bulb, cerebral cortex (pyramidal neurons), striatum (medium-sized spiny neurons), amygdala, hippocampus (pyramidal neurons in CA1–CA3 areas), dentate gyrus (granule neurons), thalamus, globus pallidus, hypothalamus, inferior colliculus, and cerebellum (Purkinje cells) (Hillman et al. [1991;](#page-13-3) Westenbroek et al. [1992](#page-17-2), [1995;](#page-17-3) Volsen et al. [1995](#page-16-9); Yokoyama et al. [1995;](#page-17-4) Day et al. [1996](#page-12-4); Xu et al. [2010\)](#page-17-5). In the cortex and hippocampus, there is barely detection of R-type $Ca_v2.3$ channels in proximal dendrites, while other structures such as olfactory bulb, amygdala, and cerebellum have intense expression of these channels in the dendrites, the

prominent sites of Ca^{2+} entry, causing transient increase in cytosolic Ca^{2+} . Molecular and biochemical analyses have confirmed that mRNA levels match the corresponding protein for Ca_V2.1(α_{1A}), Ca_V2.2(α_{1B}), and Ca_V2.3 (α_{1E}) (Mori et al. [1991;](#page-14-3) Soong et al. [1993;](#page-16-10) Day et al. [1996;](#page-12-4) Ludwig et al. [1997;](#page-14-4) Schlick et al. [2010\)](#page-16-8).

At synaptic terminal, the rapid release of neurotransmitters requires tight coupling between presynaptic Ca_v2 , channels to the release machinery. In addition to regulating vesicle fusion, members of the Ca_v2 , channels also control neuronal excitability. For example, P/Q-type $Ca_v2.1$ and N-type $Ca_v2.2$ channels interact both physically and functionally with large-conductance, Ca^{2+} activated K^+ channels, providing the Ca^{2+} influx needed to activate these channels (Faber and Sah [2003](#page-13-4); Berkefeld et al. [2010](#page-12-5)); thus, P/Q-type $Ca_V2.1$ and N-type Ca_V2.2 channels control neuronal excitability by regulating K^+ conductances.

2.3 Localization and Function LVA Ca_v3 Channels

Like HVA Ca_V channels, LVA Ca_V3 channels are also distributed throughout the CNS; however, their expression is restricted to the cell body and dendrites of neurons primarily in the olfactory bulb (granule layer), cerebral cortex (pyramidal neurons, GABAergic interneurons), striatum, amygdala, hippocampus (CA1–CA3 pyramidal neurons), dentate gyrus (granule cells), thalamus (large neurons, GABAergic interneurons), substantia nigra, inferior colliculus, superior colliculus, inferior olive, cerebellum (granule layer, molecular layer, Purkinje cells), and spinal cord (Craig et al. [1999;](#page-12-6) Talley et al. [1999](#page-16-11); Yunker et al. [2003](#page-17-6); McKay et al. [2006;](#page-14-5) Kovács et al. [2010;](#page-14-6) Liu et al. [2011;](#page-14-7) Kanyshkova et al. [2014\)](#page-14-8).

As discussed above, LVA Ca_V3 channels are activated upon weak depolarization and carry depolarizing currents; therefore, similar to L-type $Ca_V1.3$ channels, LVA $C_{\rm av}$ 3.x channels also play an important role in controlling neuronal excitability. LVA $Ca_V3.x$ channels also inactivate at a fast rate. Thus, a combination of low threshold of activation with fast inactivation kinetics results in transient Ca^{2+} influx, giving rise to the so-called "low-threshold Ca^{2+} potentials," which initiate the burstfiring process (Cain and Snutch [2010](#page-12-2); Contreras [2006](#page-12-7); Jahnsen and Llinas [1984;](#page-14-9) Lee et al. [2003;](#page-14-10) Yazdi et al. [2007](#page-17-7); Xu and Clancy [2008](#page-17-8)). The burst-firing mode in the CNS contributes to the generation of physiological events such as sleep spindles, and pathological conditions such as epileptic seizures (Cain and Snutch [2010,](#page-12-2) [2012\)](#page-12-8). In addition, LVA $Ca_V3.x$ channels generate a so-called "window current" near the neuron's resting membrane potential, thereby regulating Ca^{2+} homeostasis (Dreyfus et al. 2010). In the CNS, LVA Ca_V3.x channels are also associated both with voltage-gated K^+ channels and with Ca^{2+} -activated K^+ channels (Anderson et al. [2010;](#page-12-9) Rehak et al. [2013\)](#page-15-4), giving LVA Ca_V3.x channels the ability to activated K^+ channels and regulate neuronal firing.

3 Effects of Acute Alcohol Exposure on the Expression and Function of Ca_V Channels

Oakes and Pozos $(1982a, b)$ $(1982a, b)$ $(1982a, b)$ $(1982a, b)$ reported that alcohol exposure decreased Ca_V currents (and voltage-gated K^+ currents but not voltage-gated Na^+ currents) in dorsal root ganglia neurons. This effect was not associated with change in the resting membrane potential and spike amplitude. However, the duration of the action potential (AP) was decreased, and AP threshold was increased (Oakes and Pozos [1982a](#page-15-5), [b\)](#page-15-6). A large body of experimental evidence indicates that acute alcohol exposure suppresses K^+ depolarization–induced and AP–evoked Ca²⁺ transients in several CNS neurons including inferior colliculus, cerebellar, and hippocampal neurons (Gruol et al. [1997;](#page-13-6) Mah et al. [2011;](#page-14-11) Morton and Valenzuela [2016](#page-14-12); our unpublished data). Consistent with these findings, we found that acute alcohol exposure inhibits the current carried by HVA $\rm Ca_{V}$ channels in inferior colliculus neurons (our unpublished data). Furthermore, acute alcohol exposure suppresses currents through L-type $Ca_V1.x$ channels at neurohypophysial terminals, in supraoptic neurons, and hippocampal neurons (Wang et al. [1991](#page-17-9), [1994;](#page-17-10) Widmer et al. [1998](#page-17-11); Zucca and Valenzuela [2010\)](#page-17-12). On the other hand, P-type $Ca_v2.1$ channels in Purkinje cells are unaffected by acute alcohol exposure (Hall et al. [1994](#page-13-7)). Thus, in the CNS, L-type $Ca_V1.x$ channels appear to be particularly sensitive to the acute effects of alcohol exposure.

Interestingly, LVA $Ca_V3.x$ channels are also an important target for alcohol. For example, acutely exposing rodent thalamic neurons to a low or high alcohol concentration increases or decreases, respectively, LVA $Ca_V3.x$ currents (Mu et al. [2003;](#page-15-7) Joksovic et al. [2005\)](#page-14-13). Furthermore, the inhibitory effect of alcohol on LVA $Ca_v3.x$ currents appears to be mediated by protein kinase C (Shan et al. [2013\)](#page-16-12). In contrast, acute exposure to either low or high alcohol concentration inhibits LVA $Ca_v3.x$ currents in the inferior olive in primates (Welsh et al. [2011\)](#page-17-13). Thus, the increase in LVA $Ca_v3.x$ currents in response to low alcohol concentration in rodents – but not in primates – suggests species-specific differences in the underlying mechanisms.

The inhibition of HVA Ca_V channels and LVA Ca_V channels (Fig. [1\)](#page-6-1), and downstream $Ca²⁺$ -related signaling following acute alcohol exposure suggests that this mechanism may induce a compensatory upregulation of HVA Ca_V channels and LVA Ca_V channels during chronic alcohol intoxication; this upregulation would be masked by the inhibitory effect alcohol, but would then be revealed during alcohol withdrawal.

4 Effects of Chronic Alcohol Exposure on the Expression and Function of Ca_V Channels

Several lines of evidence indicate that chronic alcohol exposure alters Ca^{2+} signaling in the CNS. For example, chronic alcohol exposure increases AP–evoked Ca^{2+} transients in hippocampal neurons (Mulholland et al. [2015](#page-15-8)), possibly by upregulating of Ca_V channels. Consistent with this notion, P-type Ca_V2.1 current is increased in the cerebellum during chronic alcohol exposure (Gruol and Parsons [1994\)](#page-13-8). On the other hand, chronic alcohol intoxication by inhalation did not alter the protein levels of P/Q-type Ca_V2.1 (α_{1A}) protein levels in cortical neurons (Katsura et al. [2005\)](#page-14-14). Similarly, the protein levels of the P/Q-type α_{1A} subunit were unchanged in the central nucleus of the amygdala following chronic intermittent alcohol exposure (Varodayan et al. [2017a](#page-16-13)). Increased protein levels of L-type $C_{\text{av}}1.3 \ (\alpha_{1D})$ channels were measured in cortical neurons in mice following chronic alcohol exposure by inhalation (Katsura et al. [2005\)](#page-14-14). However, in the model of chronic intermittent alcohol exposure, the protein levels of the L-type $Ca_V1.2$ (α_{1C}) subunit were decreased in the central nucleus of the amygdala (Varodayan et al. [2017b](#page-16-14)). The dihydropyridine binding sites, which represent L-type $Ca_v1.x$ channels, were increased in ethanol-dependent brains (Dolin et al. [1987\)](#page-13-9). Accordingly, chronic alcohol exposure increased total Ca_v currents including L-type $Ca_v1.x$ in hippocampal neurons in ethanol-tolerant long-sleep mice compared to short-sleep mice; this effect was not associated with changes in the biophysical properties of the channels, suggesting an increase in the number of functional L-type $C_{\text{av}}1.x$ channels (Huang and McArdle [1993\)](#page-13-10). L-type $Ca_V1.x$ channels are also implicated in alcohol-mediated neurodegeneration, as inhibition of these channels attenuated cytotoxicity related to chronic alcohol exposure of neocortical cell cultures (Ruhe and Littleton [1994](#page-16-15)).

Finally, the protein levels of N-type Ca_V2.2 (α_{1B}) channels were unchanged in cortical neurons following chronic alcohol administration (Katsura et al. [2005\)](#page-14-14), whereas McMahon et al. ([2000\)](#page-14-15) reported an increase in the number of N-type $Ca_v2.2$ channels in the frontal cortex and hippocampus in AWS-prone mice following chronic alcohol administration. Thus, the increase in N-type Cav2.2 channel expression may be specific to certain brain structures, and this increase may be related to the genetic predisposition of AWS-prone mice to these seizures. Importantly, mice that lack functional N-type $\text{Ca}_{\text{V}}2.2$ channels have reduced alcohol consumption (Newton et al. [2004](#page-15-9)). Similarly, mice treated with blockers and/or agonists of L-type Ca_V1 .x channels have reduced alcohol consumption (Rezvani and Janowsky [1990](#page-16-16); Rezvani et al. [1991](#page-16-17); De Beun et al. [1996a,](#page-13-11) [b\)](#page-13-12). These findings suggest that the anti-alcohol effect may not be related to antagonistic activity at L-type $Ca_V1.x$ channels; alternatively, the anti-alcohol effect may be restricted to specific brain sites. The amygdala appears to be one of the brain sites underlying this behavioral effect, as blocking of L-type $Ca_V1.x$ channels in the central nucleus of the amygdala reduces alcohol intake in rodents (Varodayan et al. [2017b](#page-16-14)). Taken together, these findings suggest that both L-type $\text{Ca}_{\text{V}}1$.x channels and N-type C_{av} 2.2 channels might serve as viable therapeutic targets for treating of alcoholism. The mechanisms underlying changes in L-type $Ca_V1.x$ channels and N-type $Ca_V2.2$ channels are not fully understood (Fig. [2](#page-8-1)). Nevertheless, chronic alcohol exposure increases the expression of protein kinase C (PKC) isoforms, including PKC delta $(PKC\delta)$ and PKC epsilon $(PKC\epsilon)$; moreover, chronic alcohol exposure upregulated L-type $Ca_V1.x$ channels and N-type $Ca_V2.2$ channels via PKC δ - and PKC ϵ dependent mechanism, respectively (Gerstin et al. [1998](#page-13-13); McMahon et al. [2000](#page-14-15)).

Interestingly, in primates, chronic alcohol exposure decreases and increases LVA $Ca_v3.x$ in the thalamus and inferior olive, respectively (Carden et al. [2006](#page-12-10); Welsh et al. [2011\)](#page-17-13). In contrast, no changes in the mRNA levels or current density of LVA $C_{\rm av}$ 3.x channels were seen in thalamic neurons in a mouse model of chronic alcohol exposure (Graef et al. [2011](#page-13-14)); however, the steady-state inactivation of LVA $Ca_V3.x$ channels was altered in these neurons during alcohol intoxication suggesting a change in Ca^{2+} currents carried by these channels (Graef et al. [2011](#page-13-14)).

5 Effects of Alcohol Withdrawal on the Expression and Function Ca_v Channels

Alcohol withdrawal triggers increase in the expression of early gene c-fos throughout the CNS at the time at which the seizure susceptibility peaked (Bouchenafa and Littleton [1998\)](#page-12-11). The increased expression of c-fos was prevented by inhibition of L-type Ca_V1.x channels, suggesting an important role of Ca^{2+} influx in the mechanisms underlying AWS susceptibility (Bouchenafa and Littleton [1998\)](#page-12-11). In addition, withdrawal from chronic alcohol exposure induced neuronal hyperexcitability in the hippocampus; this epileptiform activity was mediated, in part, by L-type Ca_V1.x channels (Riplet et al. [1996](#page-16-18); Whittington and Little [1991](#page-17-14), [1993;](#page-17-15) Whittington et al. [1992](#page-17-16), [1995](#page-17-17)). Seizures are usually the most severe symptoms

associated with alcohol withdrawal syndrome. Typically, these AWSs are generalized tonic-clonic seizures, which are initiated in the brainstem. In our model of acoustically evoked AWSs, neurons in the IC play a critical role in initiating AWSs, whereas the cortex, hippocampus, and amygdala play a role in propagating these seizures (Faingold et al. [1998;](#page-13-15) Takao et al. [2006](#page-16-19); Faingold [2008;](#page-13-16) Newton and N'Gouemo [2017\)](#page-15-10). In this model, K^+ depolarization–induced Ca^{2+} transients were increased in inferior colliculus neurons when the susceptibility to AWS peaks (our unpublished data). The influx of Ca^{2+} into neurons plays an important role in the neuronal hyperexcitability that underlies seizures, as $[Ca^{2+}]$ _i rises – and extracellular $[Ca^{2+}]$ decreases – during epileptiform activity (Heinemann et al. [1977;](#page-13-17) Albowitz et al. [1997;](#page-12-12) Delorenzo et al. [2005\)](#page-13-18). Thus, inhibition of Ca^{2+} influx into neurons is a promising therapeutic approach for various types of seizures, including AWSs. Interestingly, pharmacologically blocking L-type $\text{Ca}_{\text{V}}1$.x channels suppressed acoustically evoked AWSs (Little et al. [1986](#page-14-16)). These findings suggest that altered L-type $Ca_V1.x$ channels – at least in the IC – play a key role in initiating these seizures. Consistent with this notion, currents through HVA Ca_V channels are increased before the onset of AWS susceptibility and when the prevalence of AWSs peaks, but they returned to control levels after AWS susceptibility has returned to baseline (N'Gouemo [2015;](#page-15-11) N'Gouemo and Morad [2003\)](#page-15-12). Thus, the increase in HVA Ca_V currents measured in IC neurons *prior* to the onset of AWS susceptibility cannot be a consequence of seizure activity. Interestingly, alcohol withdrawal increased HVA $\rm Ca_{V}$ currents in dentate granule neurons in AWSprone mice but not in AWS-resistant mice (Perez-Velazquez et al. [1994](#page-15-13)), suggesting that genetic differences in the genes encoding HVA Ca_V channels may contribute to differences in AWS susceptibility and the expression of HVA Ca_V channels.

Alcohol withdrawal-induced upregulation of L-type Ca_v1 .x channels in the brain was also reported in a mouse model (Brennan et al. [1990](#page-12-13); Guppy et al. [1995](#page-13-19); Watson and Little [1999\)](#page-17-18). In our rat model of acoustically evoked AWSs, the increased $Ca²⁺$ current density in IC neurons mediated by L-type $Cay1.x$ channels and P-type $Ca_V2.1$ channels occurs during peak AWS susceptibility (N'Gouemo [2015;](#page-15-11) N'Gouemo and Morad [2003](#page-15-12)). These findings suggest a possible causal relationship between the upregulation of L-type Ca_V1.x channels and P-type Ca_V2.1 channels in IC neurons and the occurrence of AWSs. L-type Ca_v1 .x channels and P-type $Ca_v2.1$ channels play important roles in synaptic plasticity and glutamate release, respectively (Thiagarajan et al. [2005;](#page-16-20) Ermolyuk et al. [2013](#page-13-20)). Thus, an increase in currents through L-type Ca_V1.x channels and/or P-type Ca_V2.1 channels in IC neurons is likely to increase both firing and transmitter release, leading to increased AWS susceptibility. Consistent with this notion, blocking L-type $Ca_v1.x$ channels in the IC suppressed AWS susceptibility, whereas inhibiting P-type $\text{Ca}_{\text{V}}2.1$ channels only reduced AWS severity (N'Gouemo [2015](#page-15-11)). Moreover, the protein levels of L-type Ca_V1.3 (α_{1D}) channels – but not L-type Ca_V1.2 (α_{1C}) channels or P/Q-type Ca_V2.1 (α_{1A}) channels – are upregulated in IC neurons when AWS susceptibility peaks (Fig. [3](#page-11-1)), but not prior to the onset of AWS susceptibility (N'Gouemo et al. [2015;](#page-15-14) Newton et al. [2018](#page-15-15)). However, it is important to note that the lack of change in protein levels of P/Q-type Ca_V2.1 (α_{1A}) channels reflects all P/Q-type channel phenotypes and may therefore masks any increase in the selective expression of P-type $\text{Ca}_{\text{V}}2.1$ channels occurring in some selective neuronal subtypes.

Interestingly, although mRNA expression of CACNA1D and CACNA1A (which encode the L-type α_{1D} and P/Q-type α_{1D} subunits, respectively) is increased in IC neurons prior to the onset of AWS susceptibility, their corresponding total protein levels are unchanged in these neurons (N'Gouemo et al. [2015;](#page-15-14) Newton et al. [2018\)](#page-15-15). Thus, changes in cell surface expression and/or phosphorylation of these HVA Ca_{V} channels may account for the increased current density in IC neurons prior to the onset of AWS susceptibility. In support of this notion, the activity and expression of protein kinase A are increased in IC neurons prior to the onset of AWS susceptibility (Akinfiresoye et al. [2016\)](#page-12-14). Under normal conditions, phosphorylation by protein kinase A enhances L-type Ca_V1.x and P-type Ca_V2.1 currents (Fournier et al. [1993;](#page-13-21) Mogul et al. [1993;](#page-14-17) Davare and Hell [2003](#page-12-15)), while activation of PKC inhibits the activity of N-type Ca_V2.2 channels, but increases other types of Ca_V currents (Diversé-Pierluissi and Dunlap [1993;](#page-13-22) Rane and Dunlap [1986](#page-15-16); Rane et al. [1989](#page-15-17)). Interestingly, alcohol acts on L-type Ca_V1 .x channels by inhibiting calmodulin-dependent activity of the channel (Canda et al. [1995\)](#page-12-16). Thus, increase in L-type $Ca_V1.x$ currents *prior* to the onset of AWS susceptibility may be due to phosphorylation of the channels. Similarly, downregulation of N-type $Ca_v2.2$ channels seen in IC neurons at the time at which AWS susceptibility peaks may be due to enhanced PKC activity.

On the other hand, the protein levels of N-type $Ca_v2.2$ (α 1B) subunit are decreased in IC neurons when AWS susceptibility peaks (N'Gouemo et al. [2006](#page-15-18)) (Fig. [3](#page-11-1)). Interestingly, activation of PKC inhibits the activity of N-type $Ca_v2.2$ channels, but increases other types of C_{av} currents (Diversé-Pierluissi and Dunlap [1993;](#page-13-22) Rane and Dunlap [1986;](#page-15-16) Rane et al. [1989\)](#page-15-17), suggesting increased PKC activity in the IC following alcohol withdrawal at the time at which the susceptibility to AWS peaked. The downregulation of N-type $Ca_V2.2$ channels may contribute to AWS susceptibility by reducing Ca^{2+} -dependent inhibitory mechanisms, as Ca^{2+} influx contributes to the activation of Ca^{2+} -activated K^+ current, which initiates repolarization and underlies the afterhyperpolarization, an intrinsic neuronal inhibitory mechanism (Faber and Sah [2003](#page-13-4); Loane et al. [2007;](#page-14-18) Berkefeld et al. [2010;](#page-12-5) N'Gouemo and Morad [2014\)](#page-15-19). Interestingly, some $Ca²⁺$ channel types have been shown to provide the necessary Ca^{2+} influx required to activate small-conductance, and/or large-conductance, Ca^{2+} -activated K⁺ channels in the brain (Faber and Sah [2003;](#page-13-4) Berkefeld et al. [2010\)](#page-12-5). Thus, there appear to be significant differences in coupling between Ca^{2+} channels and Ca^{2+} -activated K⁺ channels, suggesting a functional role for the Ca^{2+} channels in driving the activity of Ca^{2+} microdomains.

In primates, alcohol withdrawal decreases LVA Ca_v3 . x currents in inferior olive neurons (Welsh et al. [2011](#page-17-13)). In a mouse model of alcohol withdrawal, thalamic neurons have increased mRNA levels of the genes encoding the LVA $Ca_v3.2$ and Ca_V3.3 channel subtypes, but not Ca_V3.1 channel subtype (Graef et al. [2011\)](#page-13-14). Despite these changes in mRNA levels and in the steady-state inactivation of LVA $C_{\rm av}$ 3.1x channels, alcohol withdrawal does not cause a change in LVA $C_{\rm av}$ 3.1x currents in thalamic neurons (Graef et al. [2011](#page-13-14)). However, ethosuximide, a potent blocker of LVA $\text{Ca}_{\text{V}}3.x$ channels commonly used to treat absence seizures, suppresses susceptibility to AWSs in a mouse model (Riegle et al. [2015](#page-16-21)), suggesting these channels may have therapeutic applications beyond the treatment of absence seizures.

6 Conclusion

In the CNS, Ca_V channels play an important role in regulating neuronal excitability, and changes in their activity and/or expression contribute to a wide variety of pathological conditions, including seizures. In keeping with their central role in CNS excitability, Ca_{V} channels are also an important target for alcohol, and both acute and chronic alcohol exposure, as well as alcohol withdrawal, can alter the function of Ca_V channels, giving rise to an array of symptoms and disorders, including alcohol abuse, alcoholism, and AWSs. Paradoxically, there is a positive relationship between increased Ca_V channel function/expression and increased susceptibility to AWSs, yet downregulating Ca_V channels can also cause seizures, as

some Ca_V channels are functionally coupled to K^+ channels and/or chloride channels. From this review, it becomes clear that HVA $Ca_V1.x$ (i.e., L-type) channels and HVA C_{av} 2.2 (i.e., N-type) channels are promising targets for treating alcohol abuse and alcoholism; in contrast, L-type $\text{Ca}_{v}1.3$ – and to some extent LVA $\text{Ca}_{v}3.x$ (i.e., T-type) – channels are promising targets for treating AWSs. Moreover, the alcoholrelated changes in the function and/or expression of various Ca_V channels vary among brain structures, suggesting the need for targeted therapeutic approaches, reflecting the notion that localized changes in specific Ca_V channels induce distinct sets of symptoms associated with alcoholism and the alcohol withdrawal syndrome.

References

- Akinfiresoye LR, Miranda C, Lovinger DM, N'Gouemo P (2016) Alcohol withdrawal increases protein kinase A activity in the rat inferior colliculus. Alcohol Clin Exp 40:2359–2367
- Albowitz B, König P, Kuhnt U (1997) Spatiotemporal distribution of intracellular calcium transients during epileptiform activity in guinea pig hippocampal slices. J Neurophysiol 77: 491–501
- Anderson D, Rehak R, Hameed S, Mehaffey WH, Zamponi GW, Turner RW (2010) Regulation of the KV4.2 complex by CaV3.1 calcium channels. Channels (Austin) 4:163–167
- Berkefeld H, Fakler B, Schulte U (2010) Ca^{2+} -activated K⁺ channels: from protein complexes to function. Physiol Rev 90:1437–1459
- Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309
- Bouchenafa O, Littleton JM (1998) Expression of c-Fos protein immunoreactivity in rat brain during ethanol withdrawal is prevented by nifedipine. Alcohol 15:71–77
- Brennan CH, Crabbe J, Littleton JM (1990) Genetic regulation of dihydropyridine-sensitive calcium channels in brain may determine suscpetibility to physical dependence on alcohol. Neuropharmacology 29:429–432
- Cain SM, Snutch TP (2010) Contributions of T-type calcium channel isoforms to neuronal firing. Channels 4:44–51
- Cain SM, Snutch TP (2012) Voltage-gated calcium channels in epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies, 4th edn. Oxford University Press, Bethesda, pp 66–84
- Canda A, Yu BH, Sze PY (1995) Biochemical characterization of ethanol actions on dihydropyridine-sensitive calcium channels in brain synaptosomes. Biochem Pharmacol 50: 1711–1718
- Carden WB, Alexander GM, Friedman DP, Daunais JB, Grant KA, Mu J, Godwin DW (2006) Chronic ethanol drinking reduces native T-type calcium current in the thalamus of nonhuman primates. Brain Res 1089:92–100
- Contreras D (2006) The role of T-channels in the generation of thalamocortical rhythms. CNS Neurol Disord Drug Targets 5:571–585
- Craig PJ, Beattie RE, Folly EA, Banerjee MD, Reeves MB, Priestley JV, Carney SL, Sher E, Perez-Reyes E, Volsen SG (1999) Distribution of the voltage-dependent calcium channel alpha1G subunit mRNA and protein throughout the mature rat brain. Eur J Neurosci 11:2949–2964
- Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca^{2+} channel gene family. Circ Res 83:103-109
- Davare MA, Hell JW (2003) Increased phosphorylation of neuronal L-type Ca^{2+} channel Ca_v1.2 during aging. Proc Natl Acad Sci U S A 100:16018–16023
- Day NC, Shaw PJ, McCormack AL, Craig PJ, Smith W, Beattie R, Williams TL, Ellis SB, Ince PG, Harpold MM, Lodge D, Volsen SG (1996) Distribution of alpha 1A, alpha 1B and alpha 1E voltage-dependent calcium channel subunits in the human hippocampus and parahippocampal gyrus. Neuroscience 71:1013–1024
- De Beun R, Schneider R, Klein A, Lohmann A, De Vry J (1996a) Effects of nimodipine and other calcium channel antagonists in alcohol-preferring AA rats. Alcohol 13:263–171
- De Beun R, Schneider R, Klein A, Lohmann A, Schreiber R, De Vry J (1996b) The calcium channel agonist BAY k 8644 reduces ethanol intake and preference in alcohol-preferring AA rats. Psychopharmacology 127:302–310
- Delorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy. Pharmacol Ther 105:229–266
- Diversé-Pierluissi M, Dunlap K (1993) Distinct, convergent second messenger pathways modulate neuronal calcium currents. Neuron 10:753–760
- Dolin S, Little H, Hudspith M, Pagonis C, Littleton J (1987) Increased dihydropyridine-sensitive calcium channels in rat brain may underlie ethanol physical dependence. Neuropharmacology 26:275–279
- Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 30:99–109
- Ermolyuk YS, Alder FG, Surges R, Pavlov IY, Timofeeva Y, Kullmann DM, Volynski KE (2013) Differential triggering of spontaneous glutamate release by P/Q -, N-, and R-type $Ca²⁺$ channels. Nat Neurosci 16:1754–1763
- Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe Y, Birnbauner L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535
- Faber ES, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194
- Faingold CL (2008) The Majchrowicz binge alcohol protocol: an intubation technique to study alcohol dependence in rats. Curr Protoc Neurosci. Chapter 9: Unit 9.28
- Faingold CL, N'Gouemo P, Riaz A (1998) Ethanol and neurotransmitter interaction-from molecular to integrative effects. Prog Neurobiol 55:509–535
- Fournier F, Bourinet E, Nargeot J, Charnet P (1993) Cyclic AMP-dependent regulation of P-type calcium channels expressed in Xenopus oocytes. Pflugers Arch 423:173–180
- Gerstin EH, McMahon T, Dadgar J, Messing RO (1998) Protein kinase Cδ mediates ethanolinduced upregulation of L-type calcium channels. J Biol Chem 273:16409–16414
- Graef JD, Huitt TW, Nordskog BK, Hammarback JH, Godwin DW (2011) Disrupted thalamic T-type $Ca²$ channel expression and function during ethanol exposure and withdrawal. J Neurophysiol 105:528–540
- Gray R, Johnston D (1987) Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327:620–622
- Gruol DL, Parsons KL (1994) Chronic exposure to alcohol during development alters the calcium currents of cultured cerebellar Purkinje neurons. Brain Res 624:283–290
- Gruol DL, Parsons KL, DiJulio N (1997) Acute ethanol alters calcium signals elicited by glutamate receptor agonists and K⁺ depolarization in cultured cerebellar Purkinje neurons. Brain Res 773: 82–89
- Guppy LJ, Crabbe JC, Littleton JM (1995) Time course and genetic variation in the regulation of calcium channel antagonist binding sites in rodent tissues during the induction of ethanol physical dependence and withdrawal. Alcohol Alcohol 30:607–615
- Hall AC, Lieb WR, Franks NP (1994) Insensitivity of P-type calcium channels to inhalation and intravenous general anesthetics. Anesthesiology 81:117–123
- Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243
- Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, Snutch TP, Catterall WA (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 123:949–962
- Hillman D, Chen S, Aung TT, Cherksey B, Sugimori M, Llinas RR (1991) Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sci U S A 88:7076–7080
- Huang G-J, McArdle JJ (1993) Chronic ingestion of ethanol increases the number of Ca^{2+} channels of hippocampal neurons of long-sleep but not short-sleep mice. Brain Res 615:328–330
- Jahnsen H, Llinas R (1984) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122:73–82
- Joksovic PM, Brimelow BC, Murbartián J, Perez-Reyes E, Todorovic SM (2005) Contrasting anesthetic sensitivities of T-type Ca^{2+} channels of reticular thalamic neurons and recombinant Ca(v)3.3 channels. Br J Pharmacol 144:59–70
- Kanyshkova T, Ehling P, Cerina M, Meuth P, Zobeiri M, Meuth SG, Pape HC, Budde T (2014) Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats. Mol Cell Neurosci 61:110–122
- Katsura M, Torigoe F, Hayashida S, Honda T, Tsujimura A, Ohkuma S (2005) Ethanol physical dependence is accompanied by up-regulated expression of L-type high voltage-gated calcium channel alpha1 subunits in mouse brain. Brain Res 1039:211–215
- Klöckner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E, Schneider T (1999) Comparison of the Ca^{2+} currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca^{2+} channels. Eur J Neurosci 11:4171–4178
- Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) Alpha 1D (Cav1.3) subunits can form L-type Ca^{2+} channels activating at negative voltages. J Biol Chem 276:22100–22106
- Kovács K, Sík A, Ricketts C, Timofeev I (2010) Subcellular distribution of low-voltage activated T-type Ca^{2+} channel subunits (Ca(v)3.1 and Ca(v)3.3) in reticular thalamic neurons of the cat. J Neurosci 88:448–460
- Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921
- Lee Y, Han J-H, Lim C-S, Chang D-J, Lee Y-S, Soh H, Park CS, Kaang BK (2003) Impairment of a parabolic bursting rhythm by the ectopic expression of a small conductance Ca^{2+} -activated K⁺ channel in Aplysia neuron R15. Neurosci Lett 349:53–57
- Little HJ, Dolin SJ, Halsey MJ (1986) Calcium channel antagonists decrease the ethanol withdrawal syndrome. Life Sci 39:2059–2065
- Liu XB, Murray KD, Jones EG (2011) Low-threshold calcium channel subunit $Ca₃3.3$ is specifically localized in GABAergic neurons of rodent thalamus and cerebral cortex. J Comp Neurol 519:1181–1195
- Loane DJ, Lima PA, Marrion NV (2007) Co-assembly of N-type Ca^{2+} and BK channels underlies functional coupling in rat brain. J Cell Sci 120:985–995
- Ludwig A, Flockerzi V, Hofmann F (1997) Regional expression and cellular localization of the alpha1 and beta subunit of high voltage-activated calcium channels in rat brain. J Neurosci 17: 1339–1349
- Mah SJ, Fleck MW, Lindsley TA (2011) Ethanol alters calcium signaling in axonal growth cones. Neuroscience 189:384–396
- McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594
- McMahon T, Andersen R, Metten P, Crabbe JC, Messing RO (2000) Protein kinase C epsilon mediates up-regulation of N-type calcium channels by ethanol. Mol Pharmacol 57:53–58
- Mogul DJ, Adams ME, Fox AP (1993) Differential activation of adenosine receptors decreases N-type currents an potentiates P-type Ca^{2+} currents in hippocampal CA3 neurons. Neuron 10: 327–334
- Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402
- Morton RA, Valenzuela CF (2016) Further characterization of the effect of ethanol on voltage-gated $Ca²⁺$ channel function in developing CA3 hippocampal pyramidal neurons. Brain Res 1633: 19–26
- Mu J, Carden WB, Kurukulasuriya NC, Alexander GM, Godwin DW (2003) Ethanol influences on native T-type calcium current in thalamic sleep circuitry. J Pharmacol Exp Ther 307:197–204
- Mulholland PJ, Spencer KB, Hu W, Kroener S, Chandler LJ (2015) Neuroplasticity of A-type potassium channel complexes induced by chronic alcohol exposure enhances dendritic calcium transients in hippocampus. Psychopharmacology 232:1995–2006
- N'Gouemo P (2015) Altered voltage-gated calcium channels in rat inferior colliculus neurons contribute to alcohol withdrawal seizures. Eur Neuropsychopharmacol 25:1342–1352
- N'Gouemo P, Morad M (2003) Ethanol withdrawal seizure susceptibility is associated with upregulation of L- and P-type Ca^{2+} channels currents in rat inferior colliculus neurons. Neuropharmacology 45:429–437
- N'Gouemo P, Morad M (2014) Alcohol withdrawal is associated with a downregulation of largeconductance Ca^{2+} -activated K⁺ channels in rat inferior colliculus neurons. Psychopharmacology 231:2009–2018
- N'Gouemo P, Yasuda RP, Morad M (2006) Ethanol withdrawal is accompanied by downregulation of calcium channel alpha 1B subunit in rat inferior colliculus neurons. Brain Res 1108:216–220
- N'Gouemo P, Akinfiresoye LR, Allard JS, Lovinger DM (2015) Alcohol withdrawal-induced seizure susceptibility is associated with an upregulation of CaV1.3 channels in the rat inferior colliculus. Int J Neuropsychopharmacol 18:pyu123. <https://doi.org/10.1093/ijnp/pyu123>
- Nagao NI, Adachi-Akahane S (2001) Ser¹⁹⁰¹ of alpha(1c) subunit is required for PKA mediated enhancement of L-type Ca^{2+} channels currents but not for the negative shift of activation. FEBS Lett 489:87–91
- Newton J, N'Gouemo P (2017) Withdrawal seizures. In: Pitkänen A, Buckmaster P, Galanopoulou AS, Moshé SL (eds) Models of seizures and epilepsy, 2nd edn. Academic, San Diego, pp 911–931
- Newton PM, Orr CJ, Wallace MJ, Kim C, Shin HS, Messing RO (2004) Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J Neurosci 24: 9862–9869
- Newton J, Suman S, Akinfiresoye LR, Datta K, Lovinger DM, N'Gouemo P (2018) Alcohol withdrawal upregulates mRNA encoding for $C_{\alpha\gamma}2.1-\alpha1$ subunit in the rat inferior colliculus. Alcohol 66:21–16
- Oakes SG, Pozos RS (1982a) Electrophysiologic effects of acute ethanol exposure. I. Alterations in the action potentials of dorsal root ganglia neurons in dissociated culture. Brain Res 281: 243–249
- Oakes SG, Pozos RS (1982b) Electrophysiologic effects of acute ethanol exposure. II. Alterations in the calcium component of action potentials from sensory neurons in dissociated culture. Brain Res 281:251–255
- Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I, Surmeier DJ (2005) G-protein-coupled receptor modulation of striatal Ca_V1.3 L-type Ca²⁺ channels is dependent on a Shank-binding domain. J Neurosci 25:1050–1062
- Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900
- Perez-Velazquez JL, Valiante TA, Carlen PL (1994) Changes in calcium currents during ethanol withdrawal in a genetic mouse model. Brain Res 649:305–309
- Randall A, Tsien RW (1995) Pharmacological dissection of multiple type of $Ca²⁺$ channels in rat cerebellar granule neurons. J Neurosci 15:2995–3012
- Rane SG, Dunlap K (1986) Kinase C activator 1,2-oleoylacetylglycerol attenuates voltagedependent calcium current in sensory neurons. Proc Natl Acad Sci U S A 83:184–188
- Rane SG, Walsh MP, McDonald JR, Dunlap K (1989) Specific inhibitors of protein kinase C block transmitter-induced modulation of sensory neuron calcium current. Neuron 3:239–245
- Rehak R, Bartoletti TM, Engbers JD, Berecki G, Turner RW, Zamponi GW (2013) Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 8:e61844
- Rezvani AH, Janowsky DS (1990) Decreased alcohol consumption by verapamil in alcohol preferring rats. Prog Neuro-Psychopharmacol Biol Psychiatry 14:623–631
- Rezvani AH, Grady DR, Janowsky DS (1991) Effect of calcium-channel blockers on alcohol consumption in alcohol-drinking monkeys. Alcohol Alcohol 26:161–167
- Richards KS, Swensen AM, Lipscombe D, Bommert K (2007) Novel CaV2.1 clone replicates many properties of Purkinje cell CaV2.1 current. Eur J Neurosci 26:2950–2961
- Riegle MA, Masicampo ML, Shan HQ, Xu V, Godwin DW (2015) Ethosuximide reduces mortality and seizure severity in response to pentylenetetrazole treatment during ethanol withdrawal. Alcohol Alcohol 50:501–508
- Riplet TL, Whittington MA, Butterworth AR, Little HJ (1996) Ethanol withdrawal hyperexcitability in vivo and in isolated mouse hippocampal slices. Alcohol Alcohol 31:347–357
- Ruhe CA, Littleton JM (1994) The possible role of voltage-operated calcium channels in the enhancement of excitatory amino acid toxicity following chronic ethanol exposure in vitro. Alcohol Alcohol Suppl 2:217–221
- Schlick B, Flucher BE, Obermair GJ (2010) Voltage-activated calcium channel expression profiles in mouse brain and cultured hippocampal neurons. Neuroscience 167:786–798
- Sculptoreanu A, Scheuer T, Catterall WA (1993) Voltage-dependent potentiation of L-type Ca^{2+} channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364:240–243
- Shan HQ, Hammarback JA, Godwin DW (2013) Ethanol inhibition of a T-type $Ca² + channel$ through activity of protein kinase C. Alcohol Clin Exp Res 37:1333–1342
- Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45
- Sinnegger-Brauns MJ, Huber IG, Koschak A, Wild C, Obermair GJ, Einzinger U, Hoda JC, Sartori SB, Striessnig J (2009) Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol 75:407–414
- Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260: 1133–1136
- Stea A, Soong TW, Snutch TP (1995) Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15:929–940
- Swayne LA, Bourinet E (2008) Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. Pflugers Arch 456:459–466
- Takao T, Murakami H, Fukuda M, Kawaguchi T, Kakita A, Takahashi H, Kudoh M, Tanaka R, Shibuki K (2006) Transcranial imaging of audiogenic epileptic foci in the cortex of DBA/2J mice. Neuroreport 17:267–271
- Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911
- Thiagarajan TC, Lindskog M, Tsien RW (2005) Adaptation to synaptic inactivity in the hippocampal neurons. Neuron 47:725–737
- Tippens AL, Pare JF, Langwieser N, Moosmang S, Milner TA, Smith Y, Lee A (2008) Ultrastructural evidence for pre- and postsynaptic localization of $Ca_v1.2$ L-type $Ca²⁺$ channels in the rat hippocampus. J Comp Neurol 506:569–583
- Turner RW, Zamponi GW (2014) T-type channels buddy up. Pflugers Arch 466:661–675
- Varodayan FP, Logrip ML, Roberto M (2017a) P/Q-type voltage-gated calcium channels mediate the ethanol and CRF sensitivity of central amygdala GABAergic synapses. Neuropharmacology 125:197–206
- Varodayan FP, de Guglielmo G, Logrip ML, George O, Roberto M (2017b) Alcohol dependence disrupts amygdalar L-type voltage-gated calcium channel mechanisms. J Neurosci 37:4593–4603
- Volsen SG, Day NC, McCormack AL, Smith W, Craig PJ, Beattie R, Ince PG, Shaw PJ, Ellis SB, Gillespie A, Harpold MM, Lodge D (1995) The expression of neuronal voltage-dependent calcium channels in human cerebellum. Mol Brain Res 34:271–282
- Wang X, Dayanithi G, Lemos JR, Nordmann JJ, Treistman SN (1991) $Ca²⁺$ currents and peptide release from neurohypophysial terminals are inhibited by ethanol. J Pharmacol Exp Ther 259: 705–711
- Wang X, Wang G, Lemos JR, Treistman SN (1994) Ethanol directly modulates gating of a dihydropyridine-sensitive Ca^{2+} channels in neurohypophysial terminals. J Neurosci 14:5453–5460
- Watson WP, Little HJ (1999) Correlation between increases in dihydropyridine binding in vivo and behavioural signs of ethanol withdrawal in mice. Alcohol Alcohol 34:35–42
- Welsh JP, Han VZ, Rossi DJ, Mohr C, Odagiri M, Daunais JB, Grant KA (2011) Bidirectional plasticity in the primate inferior olive induced by chronic ethanol intoxication and sustained abstinence. Proc Natl Acad Sci U S A 108:10314–10319
- Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type $Ca²⁺$ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–284
- Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and distribution of N-type calcium channel α_1 subunit. Neuron 9:1099–1115
- Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TVB, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the $\alpha_{1\text{A}}$ subunits of brain calcium channels. J Neurosci 15:6403–6418
- Whittington MA, Little HJ (1991) Nitrendipine, given during drinking, decreases the electrophysiological changes in the isolated hippocampal slice, seen during ethanol withdrawal. Br J Pharmacol 103:1677–1684
- Whittington MA, Little HJ (1993) Changes in voltage-operated calcium channels modify ethanol withdrawal hyperexcitability in mouse hippocampal slices. Exp Physiol 78:347–370
- Whittington MA, Butterworth AR, Dolin SJ, Patch TL, Little HJ (1992) The effects of chronic treatment with dihydropyridine, Bay K 8644, on hyperexcitability due to ethnaol withdrawal, in vivo and in vitro. Br J Pharmacol 105:285–²⁹²
- Whittington MA, Lambert JD, Little HJ (1995) Increased NMDA receptor and calcium channel activity underlying ethanol withdrawal hyperexcitability. Alcohol Alcohol 30:105–114
- Widmer H, Lemos JR, Treistman SN (1998) Ethanol reduces the duration of single evoked spikes by a selective inhibition of voltage-gated calcium currents in acutely dissociated supraoptic neurons of the rat. J Neuroendocrinol 10:399–406
- Xu J, Clancy CE (2008) Ionic mechanisms of endogenous bursting in CA3 hippocampal pyramidal neurons: a model study. PLoS One 3:e2056
- Xu W, Lipscombe D (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951
- Xu JH, Long L, Wang J, Tang YC, Hu HT, Soong TW, Tang FR (2010) Nuclear localization of $Ca(v)$ 2.2 and its distribution in the mouse central nervous system, and changes in the hippocampus during and after pilocarpine-induced status epilepticus. Neuropathol Appl Neurobiol 36:71–85
- Yazdi HH, Janahmadi M, Behzadi G (2007) The role of small-conductance Ca^{2+} -activated K⁺ channels in the modulation of 4-aminopyridine-induced burst firing in rat cerebellar Purkinje cells. Brain Res 1156:59–66
- Yokoyama CT, Westenbroek RE, Hell JW, Soong TW, Snutch TP, Catterall WA (1995) Biochemical properties and subcellular distribution of the neuronal class E calcium channel α1 subunit. J Neurosci 15:6419–6432
- Yunker AM, Sharp AH, Sundarraj S, Ranganathan V, Copeland TD, McEnery MW (2003) Immunological characterization of T-type voltage-dependent calcium channel $Ca_V3.1\alpha_{1G}$ and $C_{\text{av}}3.3\alpha_{11}$ isoforms reveal differences in their localization, expression, and neural development. Neuroscience 117:321–335
- Zucca S, Valenzuela CF (2010) Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca^{2+} channel inhibition in developing CA3 hippocampal pyramidal neurons. J Neurosci 30:6778–6781