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Abstract
Voltage-sensitive Ca2+ (CaV) channels are the primary route of depolarization-
induced Ca2+ entry in neurons and other excitable cells, leading to an increase
in intracellular Ca2+ concentration ([Ca2+]i). The resulting increase in [Ca2+]i
activates a wide range of Ca2+-dependent processes in neurons, including neuro-
transmitter release, gene transcription, activation of Ca2+-dependent enzymes,
and activation of certain K+ channels and chloride channels. In addition to their
key roles under physiological conditions, CaV channels are also an important
target of alcohol, and alcohol-induced changes in Ca2+ signaling can disturb
neuronal homeostasis, Ca2+-mediated gene transcription, and the function
of neuronal circuits, leading to various neurological and/or neuropsychiatric
symptoms and disorders, including alcohol withdrawal induced–seizures and
alcoholism.
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1 Introduction

In neurons, voltage-sensitive Ca2+ (CaV) channels serve as the primary route of Ca2+

entry in response to membrane depolarization, driving a localized increase in intra-
cellular Ca2+ concentration ([Ca2+]i). The driving force for Ca2+ entry arises from
the steep electrochemical gradient maintained between extracellular and intracellular
Ca2+ concentrations, which are typically on the order of 1 mM and 100 nM,
respectively; thus Ca2+ entry can change membrane potential and can therefore
affect neuronal excitability. In neurons, low [Ca2+]i is maintained by a variety of
mechanisms and processes, including Ca2+ efflux via a Na+/Ca2+ exchange protein
and a Ca2+-ATPase located at the plasma membrane, as well as the sequestration
of intracellular Ca2+ into in Ca2+ stores (e.g., via the sarco-endoplasmic reticular
ATPase pump) or by Ca2+-buffering proteins (Berridge 2012).

The CaV-mediated localized increase in [Ca2+]i in neurons activates a variety of
downstream processes, including Ca2+-induced Ca2+ release from intracellular Ca2+-
gated Ca2+ stores, activation of Ca2+-activated K+ channels, Ca2+-activated chlo-
ride channels and Ca2+-dependent enzymes, and other Ca2+-dependent processes
such as gene transcription and neurotransmitter release. In addition, Ca2+ entry
following relatively mild membrane depolarization (e.g., depolarization induced
by activation of N-methyl-D-aspartate receptors) can give rise to low-threshold Ca2+

spikes, which can further depolarize the plasma membrane, causing voltage-gated Na+

channels to open and initiating the repetitive firing of action potentials (Cain and
Snutch 2010). Thus, CaV channels play a wide range of important roles under both
physiological and pathophysiological conditions, including a variety of diseases
associated with neuronal excitability. In the central nervous system (CNS), CaV
channels are also an important molecular target for alcohol, and changes in neuronal
Ca2+ signaling induced by alcohol exposure and subsequent withdrawal can lead to
alcoholism and alcohol withdrawal–induced seizures, (AWSs).

2 Structure, Diversity, and Localization of Voltage-Sensitive
Ca2+ Channels in the CNS

2.1 Structure and Diversity of CaV Channels

CaV channels are large protein complexes comprised of a pore-forming α1 subunit
and up to three auxiliary β, α2/δ, and γ subunits (Simms and Zamponi 2014). In
addition to providing the pore through which Ca2+ flows, the α1 subunit of CaV
channels also confers the channel’s electrophysiological and pharmacological
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properties; in contrast, the auxiliary subunits modulate the channel’s biophysical
properties and regulate the channel’s trafficking to the plasma membrane. In
human, nine distinct genes encode the α1 subunits (designated α1A through α1I),
all of which are expressed in the CNS (Simms and Zamponi 2014). Based on their
responsiveness to changes in membrane potential, these nine CaV channels are
broadly classified as either low voltage–activated (LVA, comprising the CaV3
family) channels or high voltage–activated (HVA, which include the CaV1 and
CaV2 families) channels. Activation of LVA channels and HVA channels produced
transient and sustained currents, respectively.

HVA CaV channels have both distinct and overlapping voltage dependence and
kinetics, making it difficult to differentiate HVA CaV currents based solely on their
biophysical properties. Fortunately, however, HVA CaV channels have unique
pharmacological profiles, which have been used to confirm the heterogeneity of
the channels expressed in the CNS. Moreover, based largely on their sensitivity to
various CaV channel blockers, HVA CaV channels currents have been further
classified into the following five types: L-type CaV1.2 (α1C), L-type CaV1.3
(α1D), N-type CaV2.2 (α1B), P/Q-type Cav2.1 (α1A), and R-type CaV2.3 (α1E)
channels, encoded by the CACNA1C, CANA1D, CANA1B, CANA1A, and
CACNA1E genes, respectively (Ertel et al. 2000; Randall and Tsien 1995). In the
CNS, P/Q-type Cav2.1 channels can give rise to both P-type and Q-type currents;
this distinction is likely due to a combination of factors, including the CaV-β subunit
and/or alternative splicing of the CACNA1A gene that encodes the channels
(Richards et al. 2007).

Molecular analyses revealed that the LVA family of CaV channels consists of
three distinct α1 pore-forming subunits, namely CaV3.1 (α1G), CaV3.2 (α1H), and
CaV3.3 (α1I), encoded by the CACNA1G, CANA1H, and CACNA1I genes, respec-
tively (Cribbs et al. 1998; Lee et al. 1999; Perez-Reyes et al. 1998). Interestingly,
unlike HVA CaV channels, the α1 subunit of LVA CaV channels does not require
auxiliary subunits to form a fully functional channel, although LVA CaV channels
can be regulated by auxiliary subunits (Klöckner et al. 1999). Finally, the three genes
that encode the CaV3.x subunits can undergo alternative splicing, giving rise to a
wide diversity of functional LVA CaV channels (Swayne and Bourinet 2008). The
CaV-α1 subunit is comprised of four transmembrane domains, which are connected
by cytoplasmic linkers (Simms and Zamponi 2014; Turner and Zamponi 2014). The
N and C termini are located in the cytoplasmic side and they contained important
sites for protein–protein interactions such as with G-protein and protein kinases
(Simms and Zamponi 2014; Turner and Zamponi 2014). Interestingly, phosphoryl-
ation by PKA or PKC alters the voltage dependence and kinetics of CaV currents
(Gray and Johnston 1987; Nagao and Adachi-Akahane 2001; Sculptoreanu et al.
1993; Stea et al. 1995).
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2.2 Localization and Function HVA CaV1 Channels

Although L-type CaV1.x channels are expressed widely throughout brain, each
channel subtype has a unique cellular and subcellular distribution. For example,
L-type CaV1.3 channels are distributed relatively evenly, whereas L-type CaV1.2
channels are localized in clusters (Hell et al. 1993; Tippens et al. 2008). Moreover,
L-type CaV1.2 and CaV1.3 channels are located predominantly on the cell soma
(where they regulated depolarization and Ca2+-dependent pathways that control
gene expression), proximal dendrites, and in some interneurons in the olfactory
bulb, cerebral cortex (pyramidal neurons), hippocampus (pyramidal neurons in the
CA1–CA3 areas), dentate gyrus (granule neurons), amygdala, inferior colliculus,
cerebellum (granule layer, molecular layer, Purkinje cells), and spinal cord (Hell
et al. 1993). Unlike L-type CaV1.3 channels, CaV1.2 channels are expressed in
astrocytes in the CA3 area of the hippocampus (Tippens et al. 2008; Westenbroek
et al. 1990). The distribution of CaV1.2 and CaV1.3 channels throughout the CNS
has been confirmed by RT-PCR analysis, which shows that the levels of CACNA1C
and CACNA1D mRNA matches the protein levels of CaV-α1C and CaV-α1D
subunits, respectively (Sinnegger-Brauns et al. 2009; Schlick et al. 2010). In the
striatum, CACNA1C and CACNA1D mRNA are co-expressed in medium-sized
spiny neurons (Olson et al. 2005). Interestingly, L-type CaV1.3a (but not CaV1.3b)
isoform co-localizes with Shank protein and the synaptic protein PSD-95 in medium
spiny neurons at excitatory synapses (Olson et al. 2005). In the CNS, approximately
80% and 20% of L-type CaV1 channels are CaV1.2 and CaV1.3 channels, respec-
tively (Hell et al. 1993; Sinnegger-Brauns et al. 2009). With respect to function,
evidence suggests that L-type CaV1.3 channels activate with less depolarization and
inactivate more slowly than CaV1.2 channels (Koschak et al. 2001; Xu and
Lipscombe 2001). Given their unique set of biophysical properties, L-type CaV1.3
channels likely play an important role in controlling Ca2+-dependent firing; moreover,
L-type CaV1.3 channels help sustain Ca2+ influx at membrane potentials at which
CaV1.2 channels are closed.

CaV2.1, CaV2.2, and CaV2.3 channels (i.e., P/Q-type, N-type, and R-type,
respectively) are also expressed throughout the CNS. P/Q-type CaV2.1 channels
are primarily concentrated in presynaptic terminals and dendritic shafts, N-type
CaV2.2 are found mainly in dendrites and some cell bodies of neurons, and
R-type CaV2.3 channels are found mainly in the cell soma in most sites with
variable expression in dendrites (Westenbroek et al. 1992, 1995; Yokoyama et al.
1995). These CaV channels are found primarily in the olfactory bulb, cerebral
cortex (pyramidal neurons), striatum (medium-sized spiny neurons), amygdala,
hippocampus (pyramidal neurons in CA1–CA3 areas), dentate gyrus (granule
neurons), thalamus, globus pallidus, hypothalamus, inferior colliculus, and cere-
bellum (Purkinje cells) (Hillman et al. 1991; Westenbroek et al. 1992, 1995;
Volsen et al. 1995; Yokoyama et al. 1995; Day et al. 1996; Xu et al. 2010). In
the cortex and hippocampus, there is barely detection of R-type CaV2.3 channels
in proximal dendrites, while other structures such as olfactory bulb, amygdala,
and cerebellum have intense expression of these channels in the dendrites, the
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prominent sites of Ca2+ entry, causing transient increase in cytosolic Ca2+.
Molecular and biochemical analyses have confirmed that mRNA levels match
the corresponding protein for CaV2.1(α1A), CaV2.2(α1B), and CaV2.3 (α1E) (Mori
et al. 1991; Soong et al. 1993; Day et al. 1996; Ludwig et al. 1997; Schlick et al.
2010).

At synaptic terminal, the rapid release of neurotransmitters requires tight
coupling between presynaptic CaV2.x channels to the release machinery. In
addition to regulating vesicle fusion, members of the CaV2.x channels also
control neuronal excitability. For example, P/Q-type CaV2.1 and N-type CaV2.2
channels interact both physically and functionally with large-conductance, Ca2+-
activated K+ channels, providing the Ca2+ influx needed to activate these
channels (Faber and Sah 2003; Berkefeld et al. 2010); thus, P/Q-type CaV2.1
and N-type CaV2.2 channels control neuronal excitability by regulating K+

conductances.

2.3 Localization and Function LVA CaV3 Channels

Like HVA CaV channels, LVA CaV3 channels are also distributed throughout
the CNS; however, their expression is restricted to the cell body and dendrites of
neurons primarily in the olfactory bulb (granule layer), cerebral cortex (pyramidal
neurons, GABAergic interneurons), striatum, amygdala, hippocampus (CA1–CA3
pyramidal neurons), dentate gyrus (granule cells), thalamus (large neurons,
GABAergic interneurons), substantia nigra, inferior colliculus, superior colliculus,
inferior olive, cerebellum (granule layer, molecular layer, Purkinje cells), and spinal
cord (Craig et al. 1999; Talley et al. 1999; Yunker et al. 2003; McKay et al. 2006;
Kovács et al. 2010; Liu et al. 2011; Kanyshkova et al. 2014).

As discussed above, LVA CaV3 channels are activated upon weak depolarization
and carry depolarizing currents; therefore, similar to L-type CaV1.3 channels, LVA
CaV3.x channels also play an important role in controlling neuronal excitability.
LVA CaV3.x channels also inactivate at a fast rate. Thus, a combination of low
threshold of activation with fast inactivation kinetics results in transient Ca2+ influx,
giving rise to the so-called “low-threshold Ca2+ potentials,” which initiate the burst-
firing process (Cain and Snutch 2010; Contreras 2006; Jahnsen and Llinas 1984; Lee
et al. 2003; Yazdi et al. 2007; Xu and Clancy 2008). The burst-firing mode in the
CNS contributes to the generation of physiological events such as sleep spindles, and
pathological conditions such as epileptic seizures (Cain and Snutch 2010, 2012). In
addition, LVA CaV3.x channels generate a so-called “window current” near the
neuron’s resting membrane potential, thereby regulating Ca2+ homeostasis (Dreyfus
et al. 2010). In the CNS, LVA CaV3.x channels are also associated both with
voltage-gated K+ channels and with Ca2+-activated K+ channels (Anderson et al.
2010; Rehak et al. 2013), giving LVA CaV3.x channels the ability to activated K+

channels and regulate neuronal firing.
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3 Effects of Acute Alcohol Exposure on the Expression
and Function of CaV Channels

Oakes and Pozos (1982a, b) reported that alcohol exposure decreased CaV
currents (and voltage-gated K+ currents but not voltage-gated Na+ currents) in
dorsal root ganglia neurons. This effect was not associated with change in the
resting membrane potential and spike amplitude. However, the duration of the
action potential (AP) was decreased, and AP threshold was increased (Oakes and
Pozos 1982a, b). A large body of experimental evidence indicates that acute
alcohol exposure suppresses K+ depolarization–induced and AP–evoked Ca2+

transients in several CNS neurons including inferior colliculus, cerebellar, and
hippocampal neurons (Gruol et al. 1997; Mah et al. 2011; Morton and
Valenzuela 2016; our unpublished data). Consistent with these findings, we
found that acute alcohol exposure inhibits the current carried by HVA CaV
channels in inferior colliculus neurons (our unpublished data). Furthermore,
acute alcohol exposure suppresses currents through L-type CaV1.x channels at
neurohypophysial terminals, in supraoptic neurons, and hippocampal neurons
(Wang et al. 1991, 1994; Widmer et al. 1998; Zucca and Valenzuela 2010).
On the other hand, P-type CaV2.1 channels in Purkinje cells are unaffected by
acute alcohol exposure (Hall et al. 1994). Thus, in the CNS, L-type CaV1.x
channels appear to be particularly sensitive to the acute effects of alcohol
exposure.

Interestingly, LVA CaV3.x channels are also an important target for alcohol. For
example, acutely exposing rodent thalamic neurons to a low or high alcohol
concentration increases or decreases, respectively, LVA CaV3.x currents
(Mu et al. 2003; Joksovic et al. 2005). Furthermore, the inhibitory effect of alcohol
on LVA CaV3.x currents appears to be mediated by protein kinase C (Shan et al.
2013). In contrast, acute exposure to either low or high alcohol concentration
inhibits LVA CaV3.x currents in the inferior olive in primates (Welsh et al. 2011).
Thus, the increase in LVA CaV3.x currents in response to low alcohol concentration
in rodents – but not in primates – suggests species-specific differences in the
underlying mechanisms.

The inhibition of HVA CaV channels and LVA CaV channels (Fig. 1), and
downstream Ca2+-related signaling following acute alcohol exposure suggests that
this mechanism may induce a compensatory upregulation of HVA CaV channels and
LVA CaV channels during chronic alcohol intoxication; this upregulation would be
masked by the inhibitory effect alcohol, but would then be revealed during alcohol
withdrawal.
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4 Effects of Chronic Alcohol Exposure on the Expression
and Function of CaV Channels

Several lines of evidence indicate that chronic alcohol exposure alters Ca2+ signaling
in the CNS. For example, chronic alcohol exposure increases AP–evoked Ca2+

transients in hippocampal neurons (Mulholland et al. 2015), possibly by
upregulating of CaV channels. Consistent with this notion, P-type CaV2.1 current
is increased in the cerebellum during chronic alcohol exposure (Gruol and Parsons
1994). On the other hand, chronic alcohol intoxication by inhalation did not alter the
protein levels of P/Q-type CaV2.1 (α1A) protein levels in cortical neurons (Katsura
et al. 2005). Similarly, the protein levels of the P/Q-type α1A subunit were

Fig. 1 Acute alcohol
intoxication downregulated
CaV channels in the brain. In
normal conditions, the
expression of LVA and HVA
CaV channels is tightly
regulated whereas following
acute alcohol intoxication, a
dysregulation occurs leading
to a downregulation of LVA
and HVA CaV channels
(L-type CaV1.x)
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unchanged in the central nucleus of the amygdala following chronic intermittent
alcohol exposure (Varodayan et al. 2017a). Increased protein levels of L-type
CaV1.3 (α1D) channels were measured in cortical neurons in mice following chronic
alcohol exposure by inhalation (Katsura et al. 2005). However, in the model of chronic
intermittent alcohol exposure, the protein levels of the L-type CaV1.2 (α1C) subunit
were decreased in the central nucleus of the amygdala (Varodayan et al. 2017b). The
dihydropyridine binding sites, which represent L-type CaV1.x channels, were
increased in ethanol-dependent brains (Dolin et al. 1987). Accordingly, chronic
alcohol exposure increased total CaV currents including L-type CaV1.x in hippocam-
pal neurons in ethanol-tolerant long-sleep mice compared to short-sleep mice; this
effect was not associated with changes in the biophysical properties of the channels,
suggesting an increase in the number of functional L-type CaV1.x channels (Huang
and McArdle 1993). L-type CaV1.x channels are also implicated in alcohol-mediated
neurodegeneration, as inhibition of these channels attenuated cytotoxicity related to
chronic alcohol exposure of neocortical cell cultures (Ruhe and Littleton 1994).

Finally, the protein levels of N-type CaV2.2 (α1B) channels were unchanged in
cortical neurons following chronic alcohol administration (Katsura et al. 2005),
whereas McMahon et al. (2000) reported an increase in the number of N-type
CaV2.2 channels in the frontal cortex and hippocampus in AWS-prone mice follow-
ing chronic alcohol administration. Thus, the increase in N-type CaV2.2 channel
expression may be specific to certain brain structures, and this increase may be
related to the genetic predisposition of AWS-prone mice to these seizures. Impor-
tantly, mice that lack functional N-type CaV2.2 channels have reduced alcohol
consumption (Newton et al. 2004). Similarly, mice treated with blockers and/or
agonists of L-type CaV1.x channels have reduced alcohol consumption (Rezvani and
Janowsky 1990; Rezvani et al. 1991; De Beun et al. 1996a, b). These findings
suggest that the anti-alcohol effect may not be related to antagonistic activity at
L-type CaV1.x channels; alternatively, the anti-alcohol effect may be restricted to
specific brain sites. The amygdala appears to be one of the brain sites underlying this
behavioral effect, as blocking of L-type CaV1.x channels in the central nucleus of
the amygdala reduces alcohol intake in rodents (Varodayan et al. 2017b). Taken
together, these findings suggest that both L-type CaV1.x channels and N-type
CaV2.2 channels might serve as viable therapeutic targets for treating of alcoholism.
The mechanisms underlying changes in L-type CaV1.x channels and N-type CaV2.2
channels are not fully understood (Fig. 2). Nevertheless, chronic alcohol exposure
increases the expression of protein kinase C (PKC) isoforms, including PKC delta
(PKCδ) and PKC epsilon (PKCε); moreover, chronic alcohol exposure upregulated
L-type CaV1.x channels and N-type CaV2.2 channels via PKCδ- and PKCε-
dependent mechanism, respectively (Gerstin et al. 1998; McMahon et al. 2000).

Interestingly, in primates, chronic alcohol exposure decreases and increases LVA
CaV3.x in the thalamus and inferior olive, respectively (Carden et al. 2006; Welsh
et al. 2011). In contrast, no changes in the mRNA levels or current density of LVA
CaV3.x channels were seen in thalamic neurons in a mouse model of chronic alcohol
exposure (Graef et al. 2011); however, the steady-state inactivation of LVA CaV3.x
channels was altered in these neurons during alcohol intoxication suggesting a
change in Ca2+ currents carried by these channels (Graef et al. 2011).

270 P. N’Gouemo



5 Effects of Alcohol Withdrawal on the Expression
and Function CaV Channels

Alcohol withdrawal triggers increase in the expression of early gene c-fos through-
out the CNS at the time at which the seizure susceptibility peaked (Bouchenafa
and Littleton 1998). The increased expression of c-fos was prevented by inhibition
of L-type CaV1.x channels, suggesting an important role of Ca2+ influx in the
mechanisms underlying AWS susceptibility (Bouchenafa and Littleton 1998). In
addition, withdrawal from chronic alcohol exposure induced neuronal hyper-
excitability in the hippocampus; this epileptiform activity was mediated, in part,
by L-type CaV1.x channels (Riplet et al. 1996; Whittington and Little 1991, 1993;
Whittington et al. 1992, 1995). Seizures are usually the most severe symptoms

Fig. 2 Chronic alcohol
intoxication upregulates CaV
channels in the brain. During
chronic alcohol exposure, a
compensatory mechanism to
the inhibitory effect of alcohol
exposue occurs leading to an
upregulation of CaV channels
including L-type CaV1.3 (but
downregulation of CaV1.2);
moreover, the function and/or
expression of these channels
is masked by the inhibitory
effect of alcohol. LVA CaV
channels are either upreglated
or downregulated in various
brain sites
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associated with alcohol withdrawal syndrome. Typically, these AWSs are genera-
lized tonic-clonic seizures, which are initiated in the brainstem. In our model of
acoustically evoked AWSs, neurons in the IC play a critical role in initiating AWSs,
whereas the cortex, hippocampus, and amygdala play a role in propagating these
seizures (Faingold et al. 1998; Takao et al. 2006; Faingold 2008; Newton and
N’Gouemo 2017). In this model, K+ depolarization–induced Ca2+ transients were
increased in inferior colliculus neurons when the susceptibility to AWS peaks (our
unpublished data). The influx of Ca2+ into neurons plays an important role in the
neuronal hyperexcitability that underlies seizures, as [Ca2+]i rises – and extracellular
[Ca2+] decreases – during epileptiform activity (Heinemann et al. 1977; Albowitz
et al. 1997; Delorenzo et al. 2005). Thus, inhibition of Ca2+ influx into neurons is a
promising therapeutic approach for various types of seizures, including AWSs.
Interestingly, pharmacologically blocking L-type CaV1.x channels suppressed
acoustically evoked AWSs (Little et al. 1986). These findings suggest that altered
L-type CaV1.x channels – at least in the IC – play a key role in initiating these
seizures. Consistent with this notion, currents through HVA CaV channels are
increased before the onset of AWS susceptibility and when the prevalence of
AWSs peaks, but they returned to control levels after AWS susceptibility has
returned to baseline (N’Gouemo 2015; N’Gouemo and Morad 2003). Thus, the
increase in HVA CaV currents measured in IC neurons prior to the onset of AWS
susceptibility cannot be a consequence of seizure activity. Interestingly, alcohol
withdrawal increased HVA CaV currents in dentate granule neurons in AWS-
prone mice but not in AWS-resistant mice (Perez-Velazquez et al. 1994), suggesting
that genetic differences in the genes encoding HVA CaV channels may contribute to
differences in AWS susceptibility and the expression of HVA CaV channels.

Alcohol withdrawal-induced upregulation of L-type CaV1.x channels in the brain
was also reported in a mouse model (Brennan et al. 1990; Guppy et al. 1995; Watson
and Little 1999). In our rat model of acoustically evoked AWSs, the increased Ca2+

current density in IC neurons mediated by L-type CaV1.x channels and P-type
CaV2.1 channels occurs during peak AWS susceptibility (N’Gouemo 2015;
N’Gouemo and Morad 2003). These findings suggest a possible causal relationship
between the upregulation of L-type CaV1.x channels and P-type CaV2.1 channels in
IC neurons and the occurrence of AWSs. L-type CaV1.x channels and P-type CaV2.1
channels play important roles in synaptic plasticity and glutamate release, respec-
tively (Thiagarajan et al. 2005; Ermolyuk et al. 2013). Thus, an increase in currents
through L-type CaV1.x channels and/or P-type CaV2.1 channels in IC neurons is
likely to increase both firing and transmitter release, leading to increased AWS
susceptibility. Consistent with this notion, blocking L-type CaV1.x channels in the
IC suppressed AWS susceptibility, whereas inhibiting P-type CaV2.1 channels only
reduced AWS severity (N’Gouemo 2015). Moreover, the protein levels of L-type
CaV1.3 (α1D) channels – but not L-type CaV1.2 (α1C) channels or P/Q-type CaV2.1
(α1A) channels – are upregulated in IC neurons when AWS susceptibility peaks
(Fig. 3), but not prior to the onset of AWS susceptibility (N’Gouemo et al. 2015;
Newton et al. 2018). However, it is important to note that the lack of change in
protein levels of P/Q-type CaV2.1 (α1A) channels reflects all P/Q-type channel
phenotypes and may therefore masks any increase in the selective expression of
P-type CaV2.1 channels occurring in some selective neuronal subtypes.
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Interestingly, although mRNA expression of CACNA1D and CACNA1A (which
encode the L-type α1D and P/Q-type α1D subunits, respectively) is increased in IC
neurons prior to the onset of AWS susceptibility, their corresponding total protein
levels are unchanged in these neurons (N’Gouemo et al. 2015; Newton et al. 2018).
Thus, changes in cell surface expression and/or phosphorylation of these HVA CaV
channels may account for the increased current density in IC neurons prior to the
onset of AWS susceptibility. In support of this notion, the activity and expression of
protein kinase A are increased in IC neurons prior to the onset of AWS susceptibility
(Akinfiresoye et al. 2016). Under normal conditions, phosphorylation by protein
kinase A enhances L-type CaV1.x and P-type CaV2.1 currents (Fournier et al. 1993;
Mogul et al. 1993; Davare and Hell 2003), while activation of PKC inhibits the
activity of N-type CaV2.2 channels, but increases other types of CaV currents (Diversé-
Pierluissi and Dunlap 1993; Rane and Dunlap 1986; Rane et al. 1989). Interestingly,
alcohol acts on L-type CaV1.x channels by inhibiting calmodulin-dependent activity
of the channel (Canda et al. 1995). Thus, increase in L-type CaV1.x currents prior
to the onset of AWS susceptibility may be due to phosphorylation of the channels.
Similarly, downregulation of N-type CaV2.2 channels seen in IC neurons at the time
at which AWS susceptibility peaks may be due to enhanced PKC activity.

On the other hand, the protein levels of N-type CaV2.2 (α1B) subunit are
decreased in IC neurons when AWS susceptibility peaks (N’Gouemo et al. 2006)
(Fig. 3). Interestingly, activation of PKC inhibits the activity of N-type CaV2.2
channels, but increases other types of CaV currents (Diversé-Pierluissi and Dunlap
1993; Rane and Dunlap 1986; Rane et al. 1989), suggesting increased PKC activity
in the IC following alcohol withdrawal at the time at which the susceptibility to
AWS peaked. The downregulation of N-type CaV2.2 channels may contribute to
AWS susceptibility by reducing Ca2+-dependent inhibitory mechanisms, as Ca2+

influx contributes to the activation of Ca2+-activated K+ current, which initiates
repolarization and underlies the afterhyperpolarization, an intrinsic neuronal inhibi-
tory mechanism (Faber and Sah 2003; Loane et al. 2007; Berkefeld et al. 2010;
N’Gouemo and Morad 2014). Interestingly, some Ca2+ channel types have been
shown to provide the necessary Ca2+ influx required to activate small-conductance,
and/or large-conductance, Ca2+-activated K+ channels in the brain (Faber and Sah
2003; Berkefeld et al. 2010). Thus, there appear to be significant differences in
coupling between Ca2+ channels and Ca2+-activated K+ channels, suggesting a
functional role for the Ca2+ channels in driving the activity of Ca2+ microdomains.

In primates, alcohol withdrawal decreases LVA CaV3.x currents in inferior olive
neurons (Welsh et al. 2011). In a mouse model of alcohol withdrawal, thalamic
neurons have increased mRNA levels of the genes encoding the LVA CaV3.2 and
CaV3.3 channel subtypes, but not CaV3.1 channel subtype (Graef et al. 2011).
Despite these changes in mRNA levels and in the steady-state inactivation of LVA
CaV3.1x channels, alcohol withdrawal does not cause a change in LVA CaV3.1x
currents in thalamic neurons (Graef et al. 2011). However, ethosuximide, a potent
blocker of LVA CaV3.x channels commonly used to treat absence seizures,
suppresses susceptibility to AWSs in a mouse model (Riegle et al. 2015), suggesting
these channels may have therapeutic applications beyond the treatment of absence
seizures.
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6 Conclusion

In the CNS, CaV channels play an important role in regulating neuronal excitability,
and changes in their activity and/or expression contribute to a wide variety of
pathological conditions, including seizures. In keeping with their central role in
CNS excitability, CaV channels are also an important target for alcohol, and both
acute and chronic alcohol exposure, as well as alcohol withdrawal, can alter the
function of CaV channels, giving rise to an array of symptoms and disorders,
including alcohol abuse, alcoholism, and AWSs. Paradoxically, there is a positive
relationship between increased CaV channel function/expression and increased sus-
ceptibility to AWSs, yet downregulating CaV channels can also cause seizures, as

Fig. 3 Alchol withdrawal
upregulates CaV channels.
Alcohol withdrawal following
chronic alcohol exposure
unmasks the upregulation of
CaV channels mainly L-type
CaV1.3 channels and
downregulation of L-type
CaV1.2 and N-type CaV2.2
channels. LVA CaV channels
are either upreglated or
downregulated in various
brain sites
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some CaV channels are functionally coupled to K+ channels and/or chloride channels.
From this review, it becomes clear that HVACaV1.x (i.e., L-type) channels and HVA
CaV2.2 (i.e., N-type) channels are promising targets for treating alcohol abuse and
alcoholism; in contrast, L-type CaV1.3 – and to some extent LVA CaV3.x (i.e.,
T-type) – channels are promising targets for treating AWSs. Moreover, the alcohol-
related changes in the function and/or expression of various CaV channels vary
among brain structures, suggesting the need for targeted therapeutic approaches,
reflecting the notion that localized changes in specific CaV channels induce distinct
sets of symptoms associated with alcoholism and the alcohol withdrawal syndrome.
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