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Abstract
Classical opioids (μ: mu, MOP; δ: delta, DOP and κ: kappa, KOP) variably affect
immune function; they are immune depressants and there is good clinical evidence
in the periphery. In addition, there is evidence for a central role in the control of a
number of neuropathologies, e.g., neuropathic pain. Nociceptin/Orphanin FQ
(N/OFQ) is the endogenous ligand for the N/OFQ peptide receptor, NOP; periph-
eral and central activation can modulate immune function. In the periphery, NOP
activation generally depresses immune function, but unlike classical opioids this is
in part driven by NOP located on circulating immune cells. Peripheral activation
has important implications in pathologies like asthma and sepsis. NOP is
expressed on central neurones and glia where activation can modulate glial
function. Microglia, as resident central ‘macrophages’, increase/infiltrate in pain
and following trauma; these changes can be reduced by N/OFQ. Moreover, the
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interaction with other glial cell types such as the ubiquitous astrocytes and their
known cross talk with microglia open a wealth of possibilities for central
immunomodulation. At the whole animal level, clinical ligands with wide central
and peripheral distribution have the potential to modulate immune function, and
defining the precise nature of that interaction is important in mitigating or even
harnessing the adverse effect profile of these important drugs.
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1 Introduction

Classical opioids (μ: mu, MOP; δ: delta DOP and κ: kappa, KOP) are immunomod-
ulatory; this has been known for decades. Indeed, Hussey and Katz reported in 1950
that opioid addicts were more prone to infection and this was unlikely due to the
injection itself (Hussey and Katz 1950). The site of this immunomodulation can be
peripheral or central with the precise targets (especially peripheral) being disputed
and highly controversial. Prescribing physicians are advised to consider and discuss
immune modulation in chronic use decisions. Since its first de-orphanisation N/OFQ
and NOP [non-classical opioid receptor (Lambert 2008)] have also been ascribed a
role in immunomodulation, and in this chapter we review their roles at peripheral
and central sites.

2 Peripheral Immune Actions

2.1 Classical Opioids

Opioid receptor expression on immune cells is still highly controversial. It is widely
accepted that opioids have immunomodulatory properties, for example inhibition of
T-cell activity or inhibition of B-cell antibody production (Manfredi et al. 1993;
Morgan 1996). However, there is significant debate as to whether this action occurs
through direct or indirect mechanisms. Evidence is strongly divided regarding the
detection of classical opioid receptor (MOP, DOP and KOP) expression on immune
cell types (Caldiroli et al. 1999; Bidlack 2000; Cadet et al. 2001; Al-Hashimi et al.
2013, 2016; Kadhim et al. 2018b). Some have posited that the action of morphine in
immune responses is via the toll-like receptors (TLR), which have been shown to
possess a morphine binding domain (Madden et al. 2001; Hutchinson et al. 2012).
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2.2 N/OFQ-NOP

Conversely, there is significant evidence for expression of NOP receptors on
immune cell subtypes. Several studies have identified the presence of ppN/OFQ
and NOP mRNA (the precursor to N/OFQ) in polymorphonuclear cells, B cells, T
cells and monocytes and mast cells (Peluso et al. 1998; Arjomand et al. 2002;
Williams et al. 2008a; Singh et al. 2013; Al-Hashimi et al. 2016). Interestingly,
screening of phytohemagglutinin (PHA)-activated human lymphocytes identified
AT7-5EU cDNA, which encodes NOP, with divergent coding of a non-translated 50

region in comparison to neuronal tissue. This message is encoded into B and T cell
NOP mRNA, and suggests tissue-specific expression of the NOP receptor. Further-
more, these experiments indicated a tenfold increase in NOP mRNA expression after
induction with PHA, implying NOP has an important role in immune function (Wick
et al. 1995). Further studies have demonstrated similar levels of NOP mRNA in both
immune cells and neuronal tissue (Peluso et al. 1998). Expression of functional NOP
receptor has been identified in numerous continuous cell lines generated from
immune cells. Using [125I]-N/OFQ, Horn and colleagues identified surface expres-
sion of NOP on Raji cells, a human B cell lymphoma line (Hom et al. 1999). NOP
was further identified in CEM and MOLT-4 T cell leukemic lines and the monocyte
lymphoma cell line U-937 using [3H]-N/OFQ to identify binding sites (Peluso et al.
1998). The addition of phorbol-12-myristate-13-acetate (PMA) to Mono Mac
6 cells, a monocyte leukemic cell line, led to increases in ppN/OFQ mRNA via the
inhibition of mitogen-activated protein kinase signal transduction pathways (Zhang
et al. 2016). Identification of NOP expression on primary immune cells has been
challenging due to poorly selective antibodies for the NOP receptor and acquiring
the necessary yield of protein to undertake a radioligand binding assay. Recently, a
fluorescent marker for NOP, N/OFQATTO594, has been used to identify NOP receptor
expression on human polymorphonuclear cells taken from healthy volunteers (Bird
et al. 2018). Interestingly, not all polymorphonuclear cells expressed the NOP
receptor protein; this is a cautionary note when assuming mRNA will always
translate into protein.

Immune cells have also been shown to express N/OFQ. Human CD19+ B cells
were amongst the first to be identified as expressing a novel N/OFQ mRNA
transcript resulting in a truncated N/OFQ precursor lacking the signal peptide.
Following mitogen-activation, N/OFQ mRNA transcripts, similar to that found in
neuronal tissue, was upregulated in all lymphocytes (Arjomand et al. 2002). The
mRNA transcript for ppN/OFQ has also been found in polymorphonuclear cells,
which include neutrophils, eosinophils and granulocytes (Williams et al. 2008a).
Furthermore, neutrophils stimulated with N-formyl-methionine-leucine-phenylala-
nine (FMLP) have been shown to release N/OFQ (Fiset et al. 2003).

The presence of both N/OFQ and NOP in immune cells would strongly indicate a
role in immunological function for this ligand-receptor pairing. An area where this
pairing may have significant effect is in the trafficking of immune cells, with N/OFQ

N/OFQ-NOP System in Peripheral and Central Immunomodulation 299



having significant effects on cell migration, both positive and negative. A significant
example of the positive effects of N/OFQ was measured using monocytes taken from
healthy volunteers. The monocytes were exposed to either FMLP or N/OFQ and
chemotaxis measured (Trombella et al. 2005). FMLP caused robust migration of
monocytes which was matched by N/OFQ, which displayed a high potency (pEC50

11.15) in producing migration. Confirmation of action through the NOP receptor
was obtained through pharmacological characterisation using several NOP selective
agonists, the inability of naloxone to block the function of N/OFQ at monocytes and
through antagonism of migration via the NOP antagonist UFP-101 (Trombella et al.
2005). Neutrophil chemotaxis is also positively affected by the addition of N/OFQ.
N/OFQ induced chemotaxis with maximal effect at 100 pM in ex vivo migration
studies, and these findings were matched in mouse in vivo models whereby N/OFQ
increased neutrophil migration into ad-hoc air pouches (Serhan et al. 2001). Con-
versely, both lung mast cells and eosinophils have been shown to be negatively
affected by N/OFQ in regards to migration (Singh et al. 2016). Both human mast cell
line-1 (HMC-1) and primary human lung mast cell migration produced by stem cell
factor (SCF) were significantly inhibited by the addition of N/OFQ. Clearly there is a
cell and tissue specific migratory response to NOP activation. In addition, and as
reviewed by Thomas et al. (2014), N/OFQ induces vasodilation and increases the
vascular permeability, actions that play a central role in immune response modula-
tion (Fig. 1).

Fig. 1 Mechanisms by which N/OFQ can affect the immune system. Different central (upper
panel) and peripheral (lower panel) ‘targets’ can inhibit (black arrows), activate (light grey arrow) or
both inhibit/activate immune function (grey dotted arrow)
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2.3 N/OFQ-NOP in Disease

The presence of NOP and/or N/OFQ in the immune system, as well as its ability to
affect immune cell movement and function, identify a potential mediator of disease-
related activity in immunity. NOP and N/OFQ activity has been demonstrated to
show potential roles in several immune based diseases. Both NOP and N/OFQ have
been implicated in the pathogenesis of colitis, an inflammatory bowel disease (Kato
et al. 2005). NOP knockout mice demonstrated significant reduction in symptoms
following treatment with dextran sulphate sodium (DSS), which is capable of
producing acute colitis. In further studies, administration of SB612,111 (a high
affinity NOP antagonist) to DSS-induced colitis also reduced symptoms of colitis
as well as a reduction of the cytokines interferon-γ (IFN-γ), interleukin-1β (IL-1β)
and tumour necrosis factor-α (TNF-α). These cytokines are all known mediators of
colitis (Alt et al. 2012). Increased levels of N/OFQ have also been detected in the
synovial fluid of patients suffering with rheumatoid arthritis (Fiset et al. 2003). The
increased level of N/OFQ was believed to be related to the high concentration of
polymorphonuclear cells usually found in synovial fluid of patients suffering with
this disease.

As previously noted, both lung eosinophils and mast cells express the NOP
receptor. This is particularly relevant to asthma. Asthma is the result of obstruction
of airflow (airway constriction, immune infiltration and remodelling) leading to
difficulty in breathing (Haldar et al. 2008; Lotvall et al. 2011; Gough et al. 2015).
Initial studies indicated that activation of NOP, via N/OFQ, led to inhibition of
airway contraction and the release of the inflammatory peptide, substance P (Shah
et al. 1998). This initial evidence for NOP receptor function in airway constriction
was verified by work in ex vivo human bronchial tissue (Basso et al. 2005). Electric
field stimulation produced contractions in the tissue, which was inhibited by N/OFQ
in a concentration-dependent manner. Furthermore, the actions of N/OFQ could be
blocked by the NOP antagonist, UFP-101, indicating action through the NOP
receptor. In a more recent work, tissues from both healthy volunteers and asthmatic
patients were screened for the presence of NOP and N/OFQ via PCR. In these
studies, N/OFQ was identified in lung eosinophils and, in asthmatic patients, levels
were found to be increased in sputum (Singh et al. 2016). In parallel experiments,
N/OFQ was found to inhibit migration of immune cells through NOP receptor
activation, as well as increasing wound healing in isolated human airway smooth
muscle (HASM) cells. Using the same cells, it was found that N/OFQ led to
relaxation of HASM cells in spasmogen-stimulated gel contraction experiments, a
finding mirrored in Ovalbumin-sensitised mice. These findings suggest that NOP
agonists could be potential therapeutic agents for asthma, with a spasmolytic and
immune depressor profile.

Sepsis is the result of the immune system producing an overwhelming and
potentially life-threatening response to an infection. Treatment options are limited
to antibiotics, fluids and supportive care. Translation from the laboratory to the clinic
has been poor and there is a real need for novel therapeutics. The mechanisms by
which sepsis occurs are poorly understood, but NOP and N/OFQ have been
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implicated in this disease. Initial evidence for the role of N/OFQ-NOP in sepsis was
found using rat models subjected to caecal ligation and puncture to induce sepsis. In
these models, addition of N/OFQ to caecal ligation and puncture led to increased
mortality, whereas addition of UFP-101 increased survival rates through inhibition
of cell migration and modulation of pro-inflammatory cytokines and chemokines
(Carvalho et al. 2008).

Both ppN/OFQ and NOP mRNA levels were decreased in peripheral blood taken
from healthy volunteers exposed to varying concentrations of LPS. Furthermore,
cytokines, such as TNF-α, IL-1β, IL-10 and IFN-γ, also demonstrated the ability to
decrease ppN/OFQ and NOP mRNA levels in healthy volunteer blood (Zhang et al.
2013). While it was initially posited that this was a negative feedback loop
downregulating N/OFQ and NOP expression, further data have demonstrated an
increase in protein levels. In a small cohort of patients diagnosed with sepsis, plasma
N/OFQ concentrations were measured; levels were higher in patients who died
(3 pg mL�1) compared to survivors (1 pg mL�1) (Williams et al. 2008b). An inverse
relationship was discovered with regards to ppN/OFQmRNA in septic patients, with
ppN/OFQ levels showing significant reduction when compared to healthy
volunteers. Furthermore, this study demonstrated a correlation between increased
levels of the septic inflammatory marker, procalcitonin and decreased levels of
ppN/OFQ (Stamer et al. 2011). A larger prospective study was undertaken assessing
82 septic patients who were sex and age matched to healthy volunteers. Plasma
N/OFQ was measured on the first 2 days after admission to the intensive care unit,
with a follow-up sample taken in the recovery period. Radioimmunoassay and PCR
data demonstrated an increase in plasma N/OFQ concentrations in Days 1 and
2 compared to recovery. Conversely, mRNA levels of ppN/OFQ and NOP decreased
compared to healthy volunteers (Thompson et al. 2013).

3 Central Immune Actions

3.1 CNS Can Propagate an Immune Response Through Several
Mechanisms

Despite a long history, the idea that the CNS is an immune-privileged organ is
disappearing; the brain can mount immune responses and fight invading organisms
(Galea et al. 2007). The meningeal lymphatic vasculature can transport cells and
molecules resulting in cross-talk between the peripheral and central immune systems
(Raper et al. 2016). According to clinically relevant studies, CNS innate immunity
can be activated against pathogenic invasion (Carare et al. 2014). Beside microglia,
resident central macrophages, meningeal macrophages and dendritic cells (namely in
dura, arachnoid and pia mater, choroid plexus and perivascular spaces) can produce
significant protective actions (Herz et al. 2017).

Several cellular components are involved in regulation of central immune
response. Microglia are the central immune responders; they have specialised
functions with higher reactivity and mobility than other cell populations in the
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CNS and respond to antigens and neuronal damage. When activated they can release
proinflammatory mediators and undergo morphological changes (from round and
small cell body with long processes to amoeboid with shorter processes) (Inoue and
Tsuda 2018). In addition, they migrate to the site of injury, proliferate, perform
phagocytic activity and change their protein expression profile (mainly express
complement receptors and major histocompatibility complex proteins). Fully
activated microglia resemble other macrophages (Hanisch and Kettenmann 2007;
Davoust et al. 2008; Colton and Wilcock 2010).

Astrocytes are the most abundant cell population in the CNS and the term
‘astrocytes’ or ‘astroglia’ is attributed to their star-like shape with diverse processes
and morphology depending on anatomical location (Raff et al. 1983; Bailey and
Shipley 1993). Their processes cover synapses, contact nodes of Ranvier and form
gap junctions between the processes of neighbouring astrocytes. Astrocytes are
multifunctional elements participating in local blood flow regulation (Attwell et al.
2010), supplying neuronal nutrients and controlling brain haemostasis (Mulligan and
MacVicar 2004; Magistretti 2006; Araque and Navarrete 2010). They form the
majority of the blood–brain barrier and control its endothelial elements (Giaume
et al. 2007). They can be precursors and are involved in neurogenesis and
gliogenesis (Kettenmann and Verkhratsky 2008) along with detection process and
guiding the growth of axons and development of certain neuroblasts when neuronal
repair is required (Powell and Geller 1999; Araque and Navarrete 2010). Due to their
high number of connection sites, astrocytes have high integration capacity and
important roles in the regulation of neuronal activity (Smith 2010). They have a
role to play in a number of central pathologies (Bundgaard and Abbott 2008). While
neurons are able to propagate action potentials, astrocytes are not, and their
excitability occurs through increasing the intracellular concentration of calcium
([Ca2+]i) and release of glutamate, purines, Gamma-aminobutyric acid and
D-serine. These transmitters might be responsible for astrocyte–astrocyte communi-
cation and/or astrocyte–neuron cross-talk (Nedergaard et al. 2003; Seifert et al.
2006). In addition, these gliotransmitters control the dynamics of the synaptic cleft
(Cornell-Bell et al. 1990; Volterra and Meldolesi 2005).

Cellular changes associated with microglial or astroglial activation (gliosis;
microgliosis and astrogliosis, respectively) have been reported in models of inflam-
mation and chronic pain (Beggs and Salter 2006; Ji and Suter 2007; Inoue and Tsuda
2018; Kohno et al. 2018). Regardless of the order, the sequence and the intensity of
glial activation (due to infection, chronic or neuropathic pain and/or opioid toler-
ance), astrocytes and microglia have been found to be involved in the pathogenesis
of the immunomodulation (e.g., in neuropathic pain) in terms of initiation and
progress (Raghavendra et al. 2003; Tanga et al. 2004; Ledeboer et al. 2005; Hald
et al. 2009). Following activation, glial cells produce and release pain mediators such
as nitric oxide and prostaglandins (Watkins and Maier 2000) and proinflammatory
cytokines such as IL-1 and TNF-α (Watkins et al. 2001; Marchand et al. 2005; Charo
and Ransohoff 2006; Scholz and Woolf 2007).

Oligodendrocytes are well-known myelin producing cells, providing neurone
‘insulation’ and a propagated action potential. In addition, these cells are sensitive
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to the release of neurotransmitters and neural activity (Bakiri et al. 2009). They play
an important role in the pathogenesis of different neurological diseases such as
multiple sclerosis. They can release and/or respond to proinflammatory cytokines
in response to brain injury (Jurewicz et al. 2005; Ramesh et al. 2012). On the other
hand, and despite their specialised function, neurons have been found to release or
respond to cytokines in different immunomodulatory conditions (Oh et al. 2001;
Zhang et al. 2005).

In summary, complex interplay between neurons, immune cells, and glial cells
are responsible for normal regulation and also initiation and maintenance of a
number of neuropathologies of which neuropathic pain is an example.

3.2 The Effect of N/OFQ on the Central ‘Immune System’

NOP is expressed centrally by neurons in the brain and spinal cord (Pettersson et al.
2002). In addition, a range of glial cells (astrocytes, oligodendrocytes and microglia)
have been found to express NOP receptor (Eschenroeder et al. 2012; Kadhim et al.
2018a). N/OFQ is also produced and released by N/OFQ releasing neurons as well
as by a wide range of glial cells (Buzas et al. 1998; Buzas 2002; Eschenroeder et al.
2012; Bedini et al. 2017). N/OFQ-NOP therefore has the potential to modulate glial
function.

N/OFQ has been found to play an important role in central immunomodulation but
the underlying mechanisms remain to be fully understood. Several possible
mechanisms have been proposed (Fig. 1). Proinflammatory cytokines, the main
immune modulating molecules, are likely modulated by N/OFQ. Intrathecal admin-
istration of N/OFQ induced antagonist-reversed down-regulation of cytokine mRNA
transcripts. It has been found that pain processing is accompanied by astrocyte
activation, which is characterised by an elevated level of proinflammatory cytokines
(Lai et al. 2018). Hence, the antinociceptive effect of N/OFQ might be related to its
ability to inhibit cytokine expression and/or release in the CNS (Fu et al. 2007; Finley
et al. 2008). In addition, infiltration of peripheral immune cells is an important event
in the pathophysiology of immunomodulation and pain (Boddeke 2001). Zhao et al.
(2002) reported that increased numbers of microglia induced by trauma were reduced
by central administration of N/OFQ. N/OFQ-induced immunomodulation may be as
a result of inhibition of the proliferation and migration of infiltrating and resident
immune cells (note: in the periphery N/OFQ can both promote and inhibit migration).
Furthermore, in the hypothalamic-pituitary-adrenal (HPA) axis, adrenocorticotrophic
hormone (ACTH) is well known as a site of immunomodulation and there is contro-
versial evidence with classical opioids (Al-Hashimi et al. 2013). N/OFQ has been
found to activate HPA axis and increase the levels of ACTH (Devine et al. 2001).

Moreover, several neurotransmitters involved in the regulation of immune func-
tion are affected by N/OFQ-NOP system; these include dopamine, histamine,
noradrenaline and glutamate. Dopamine is an immunomodulatory neurotransmitter
and inhibition of its release can reduce immune activity (Tsao et al. 1997; Basu
and Dasgupta 2000; Nakano et al. 2009). There is an extensive literature base
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demonstrating that dopamine release is inhibited by N/OFQ (Murphy et al. 1996;
Murphy and Maidment 1999; Marti et al. 2004, 2005). Histamine release is an
important event involved in the propagation of immune response; morphine-induced
central histamine release is also affected by N/OFQ (Eriksson et al. 2000). Along
with important roles in the pain pathway, noradrenaline is also an immunomodula-
tor, and its release is inhibited by N/OFQ (Kappel et al. 1998). Given that glutamate
and calcium signalling can be important players in immune activation (Watkins et al.
2001; Mattson and Chan 2003), N/OFQ-induced inhibition of glutamate (Nicol et al.
1996; Meis and Pape 2001; Kallupi et al. 2014; Meyer et al. 2017) and LPS-induced
calcium signalling (Bedini et al. 2017) possibly affect the pattern of immune activa-
tion. The majority of these data are from work in neurones but as we note the brain is
so much more than neurones. It can be concluded that the activation of NOP by
N/OFQ can participate in central immunomodulation via multiple pathways; if there
is disease specificity then this might open some new therapeutic options.

3.3 The Effect of Immunomodulation on the N/OFQ and NOP
Receptor

The majority of the text above has covered immunomodulatory effect of NOP, but
immune modulation can affect NOP and N/OFQ (the reverse) in the same ways as
seen in the periphery in pathologies such as sepsis. As noted in Table 1, the
expression profile, integrity and the activity of NOP and N/OFQ can be affected

Table 1 The effect of different immunomodulatory conditions on the expression and activity of
central NOP receptor and/or N/OFQ

Cell/tissue
type-species

Proinflammatory
mediator/process

Effect on
NOP Effect on N/OFQ Study

Primary rat
astrocytes

LPS, IL-1β and
TNF-α

– " (mRNA) Buzas (2002)

Human U87
astrocytes

LPS # (mRNA
and protein)

" (mRNA and
protein)

Bedini et al.
(2017)

Rat PTSD – " (protein) Zhang et al.
(2012)

Rat Traumatic brain
injury

$ " Witta et al.
(2003)

Rat cortical
neurons

Leukaemia
inhibitory factor

– " (mRNA) Minami et al.
(2001)

Mice DRG
neurons

LPS – " (protein) Acosta and
Davies (2008)

Rat (in vivo)
Rat primary
microglia

Chronic
constriction injury

" NOP
activity

" Popiolek-
Barczyk et al.
(2014)

Rat
amygdala
complex

Ethanol – Epigenetic
modulation of
ppN/OFQ

D’Addario et al.
(2013)
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by a wide range of immunomodulatory conditions. These include bacterial products
such as LPS, proinflammatory cytokines, ethanol traumatic brain injury, spinal cord
injury in cultured neurons cultured glial cells or in whole animals.

4 Conclusions

Since its early description as a peptide receptor system involved in the modulation of
pain processing, a plethora of biological functions, pathological indications and,
importantly, therapeutic opportunities have been described. We know that classical
opioids can modulate immune function and that immune pathologies can modulate
opioid receptor, peptide and drug responsiveness. Here we have discussed both
peripheral and central immune modulation by N/OFQ-NOP where there are
similarities and differences in the brain and periphery. With the generally improved
side effect profile for NOP activation with N/OFQ, and novel ligands such as
cebranopadol close to the clinic, understanding the clinical consequences of the
immune modulatory effects described above will be an area of research focus.
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