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Abstract

Nowadays, the delta opioid receptor (DOPr) represents a promising target for the

treatment of chronic pain and emotional disorders. Despite the fact that they

produce limited antinociceptive effects in healthy animals and in most acute pain

models, DOPr agonists have shown efficacy in various chronic pain models. In

this chapter, we review the progresses that have been made over the last decades

in understanding the role played by DOPr in the control of pain. More specifi-

cally, the distribution of DOPr within the central nervous system and along pain

pathways is presented. We also summarize the literature supporting a role for

DOPr in acute, tonic, and chronic pain models, as well as the mechanisms

regulating its activity under specific conditions. Finally, novel compounds that

have make their way to clinical trials are discussed.
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1 The Opioid System

While opium has been used for centuries, the endogenous opioid system was only

discovered in the mid-1970s. Two pentapeptides named methionine- and leucine-

enkephalin were first identified and characterized by Hughes and colleagues in

1975 (Hughes et al. 1975). Rapidly thereafter, endorphin (Li and Chung 1976;

Loh et al. 1976) and dynorphin (Goldstein et al. 1979) were also discovered. More

recently, an opioid-like peptide named nociceptin/orphanin was also identified

(Meunier et al. 1995; Reinscheid et al. 1995). The endogenous opioid/opioid-like

ligands are derived from four distinct precursors, namely proenkephalin, pro-

opiomelanocortin (POMC), prodynorphin, and pronociceptin/orphanin. The synthesis

of the opioid peptides therefore depends on the activity of endo- or carboxypeptidases

(for more details on the discovery of the opioid peptides, see Akil et al. 1998; Darland

et al. 1998; Snyder and Pasternak 2003).

Opioid peptides bind to three major receptor subtypes, namely mu (MOPr), delta

(DOPr), and kappa (KOPr) opioid receptors. These receptors are, respectively,

encoded by the oprm1, oprd1, and oprk1 genes. The opioid-like peptide

nociceptin/orphanin rather binds to the opioid-like receptor called Orphanin

FQ/nociceptin receptor (NOPr). All four receptors belong to the superfamily of G

protein-coupled receptors (GPCRs) and exhibit a high sequence homology in their

protein structure and genomic organization (Kieffer and Gaveriaux-Ruff 2002;

Stevens 2009).

Opioids (and opioid receptors) are particularly well known for their important

effects in controlling pain. However, opioids are also involved in reward, addiction,

neuroprotection, and many other physiological processes such as respiration, gas-

trointestinal motility, as well as in the endocrine and the immune systems (for

reviews, see Kieffer and Gaveriaux-Ruff 2002; Kieffer and Evans 2009; Pradhan
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et al. 2011; Sauriyal et al. 2011; Chu Sin Chung and Kieffer 2013; Lutz and Kieffer

2013; Gendron et al. 2015). Indeed, MOPr agonists are widely prescribed for the

management of pain, although their pronounced unwanted effects (constipation,

respiratory depression, sedation, tolerance) often limit their usage (McQuay 1999;

Al-Hasani and Bruchas 2011). By contrast, DOPr agonists also produce pain relief

but they were shown to have fewer unwanted effects than MOPr agonists (Dondio

et al. 2001; Petrillo et al. 2003; Gallantine and Meert 2005) and do not induce

tolerance in various animal models (Dondio et al. 2001; Mika et al. 2001; Beaudry

et al. 2009). DOPr agonists therefore appear as a good and promising alternative for

the treatment of chronic pain (Pradhan et al. 2011). It is worth noting that DOPr

agonists also have anxiolytic, anti-depressive, analgesic, and cardio- and

neuroprotective effects (Pradhan et al. 2011; Headrick et al. 2015).

In this chapter, we will discuss the role and the functions of DOPr in pain

control. In particular, we will describe the distribution of DOPr along the pain

pathways and summarize the literature supporting a role for DOPr in the treatment

of pain. An overview of novel compounds and their effects in clinical trials will also

be provided.

2 The Delta Opioid Receptor: A One-of-a-Kind

2.1 Cloning of DOPr

In 1992, two distinct groups successfully identified an opioid binding site from

NG108-15 cells (Evans et al. 1992; Kieffer et al. 1992). Using similar approaches,

both groups concomitantly cloned the mouse DOPr by creating a random cDNA

library from the RNA of these cells. The cloning of MOPr and KOPr followed soon

afterward (Chen et al. 1993; Meng et al. 1993; Minami et al. 1993; Wang et al.

1993).

Oprd1, the gene encoding DOPr, was identified and its chromosomal localiza-

tion determined. In humans, oprd1 is located in the distal part of the short arm of

chromosome 1. Interestingly, although they share a similar genomic structure and a

high sequence homology (Zaki et al. 1996; Chaturvedi et al. 2000), genes encoding

MOPr and KOPr are found on different chromosomes, namely in the long arm of

chromosomes 6 and 8, respectively (Befort et al. 1994; Wang et al. 1994; Yasuda

et al. 1994). The detailed structure of oprd1 and its translational and epigenetic

regulation have been recently reviewed elsewhere (Wei and Loh 2011; Gendron

et al. 2016).

2.2 DOPr Structure and Signaling

As a member of the GPCR superfamily, DOPr contains seven hydrophobic trans-

membrane domains connected by intra- and extracellular loops. DOPr also

possesses N- and C-terminal tails, respectively, at its extra- and intracellular ends.
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The crystal structures of all three opioid receptors have been recently resolved

(Granier et al. 2012; Manglik et al. 2012; Wu et al. 2012). The structures revealed a

well-conserved amino acid backbone among the three receptors in the lower part of

the binding pocket, a region important for the recognition of the morphinan group.

This portion of the binding pocket interacts with the “message segment” of the

ligand which is responsible for its efficacy. The upper part of the binding pocket is,

however, divergent among the three receptors and its interaction with the distinct

“address” segment of the ligand is responsible for receptor selectivity (Granier et al.

2012). DOPr was also found to contain a sodium allosteric binding site regulating

biased signaling and constitutive activity (Fenalti et al. 2014).

As MOPr and KOPr, DOPr interacts with numerous proteins and signaling

partners (Gendron et al. 2016). When activated, conformational changes within

the receptor and its transmembrane domains are leading to the activation of

multiple signaling pathways. In particular, the G protein subunits Gαi/o and Gβγ
dissociate from each other and act on various intracellular effectors. The activation

of the G protein modifies the activity of calcium (P/Q-, N- and L-type) and

potassium channels (G protein gated inwardly rectifying potassium, Kir3) and

inhibits adenylyl cyclase activity (reducing the level of intracellular cAMP).

These events produce a decrease in neuronal excitability and modifications of

gene expression (Kieffer and Evans 2009; Al-Hasani and Bruchas 2011; Gendron

et al. 2016). Following agonist stimulation, DOPr also undergoes rapid phosphory-

lation by G protein-regulated kinases (GRKs). Phosphorylation of DOPr on its

C-terminal tail by GRKs is followed by the recruitment of β-arrestins and internali-
zation of the receptor via clathrin-coated vesicles (endocytosis). After internali-

zation, GPCRs are either recycled back to the plasma membrane or undergo

degradation (Bie and Pan 2007). While MOPr is mainly recycled back to the plasma

membrane, DOPr was shown to be primarily degraded through the lysosomal

pathway (Tsao and von Zastrow 2000; Finn and Whistler 2001; Whistler et al.

2002). Several motifs within the receptor are involved in controlling this process. In

particular, specific interactions with distinct sorting proteins are routing DOPr either

to the degradation or to the recycling pathways. As an example, the Na+/H+

exchanger regulatory factor (NHERF), also called ERM-binding phosphoprotein

50 (EBP50), and the N-ethylmaleimide sensitive factor (NSF) were found to be

important for the recycling of DOPr (Heydorn et al. 2004; Bie et al. 2010). By

contrast, GPCR associated sorting protein (GASP) and sorting nexin-1 (SNX-1)

were shown to sort the receptor to the degradation pathway. The C-terminal tail of

DOPr seems to have a high affinity for GASP and SNX-1 (Whistler et al. 2002;

Heydorn et al. 2004; Simonin et al. 2004). Indeed, swapping the C-terminal tail of

DOPr with that of MOPr was shown to shift the fate of the receptor from the

degradation toward the recycling pathway (Whistler et al. 2002). Similarly, GASP

inactivation was shown to reduce the amount of DOPr in lysosomal compartments

and to inhibit its downregulation following agonist stimulation (Whistler et al. 2002).
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2.3 DOPr Expression and Distribution

The expression of DOPrs in the mammalian central nervous system has been widely

investigated. Precisely, the distribution of DOPr mRNA and binding sites was

studied by in situ hybridization, autoradiography, and/or immunohistochemistry

(Mansour et al. 1987, 1993, 1994; Sharif and Hughes 1989; George et al. 1994;

Cahill et al. 2001a; Pradhan and Clarke 2005; Peng et al. 2012). In mice, the

expression of the opioid receptors begins at early developmental stages in the

CNS and in peripheral tissues (Zhu et al. 1998). MOPr and KOPr mRNA were,

respectively, detected in basal ganglia and midbrain as early as at embryonic stage

E11.5. By contrast, the expression of DOPr mRNA only begins at E13.5 in the pons

and the hypothalamus. Compared to MOPr and KOPr, DOPr remains restricted

within a few brain regions including the caudate–putamen, the olfactory tubercle,

and the parabrachial nucleus until late in the development. In dorsal root ganglia

(DRGs), DOPr mRNA was detected as early as the embryonic stage E12.5 while it

only appears at E15.5 in the ventral part of the spinal cord. Surprisingly, the

expression of DOPr mRNA in the mouse dorsal horn of the spinal cord only appears

at E17.5 (Zhu et al. 1998).

Although opioid binding sites have been observed by autoradiography in the

developing embryo (Kent et al. 1981), specific binding for DOPr has not been

observed in rodents before the second week after birth (McDowell and Kitchen

1986; Negri et al. 1997). However, DPDPE-induced GTPγS binding was reported

in the caudate–putamen at E12.5 and at E17.5 in the pons and the hypothalamus,

suggesting the existence of functional DOPrs at these stages, at least in mice

(Nitsche and Pintar 2003).

In the adults, the three opioid receptors are not evenly distributed throughout the

CNS, suggesting that they have distinct physiological roles (for reviews see

Mansour et al. 1995; Le Merrer et al. 2009). Whereas MOPrs are widely distributed

in the brain with an enrichment in the thalamus, striatum, interpeduncular complex,

habenula, cortex, superior and inferior colliculi, DOPrs are mainly expressed in

distinct areas of the forebrain, predominantly in the olfactory tubercle, cerebral

cortex, amygdala, nucleus accumbens, and striatum (Fig. 1a, b). KOPrs are mainly

found in the cortex, olfactory tubercle, striatum, nucleus accumbens, hypothalamus,

amygdala, and periaqueductal gray (PAG) (Mansour et al. 1987; Sharif and Hughes

1989; Slowe et al. 1999). Interestingly, in the areas where the three receptors were

found, their cellular distribution often differs. This is exemplified in the striatum,

where DOPr and KOPr are diffusely distributed while MOPrs are expressed in

patch-like clusters (Mansour et al. 1987).

Of a particular interest for this chapter, DOPrs are known to be largely expressed

along the pain pathways in all animal species studied to date, including humans.

DOPrs are indeed present in primary afferents (i.e., DRGs), in the spinal cord, as

well as in important structures along the ascending and descending pain pathways

(Fig. 1). Among these structures, it is worth noting that DOPr is expressed in the

PAG, the rostro-ventral medulla (RVM), the cerebral cortex, and the amygdala

(Mansour et al. 1994, 1995; Cahill et al. 2001a; Mennicken et al. 2003; Poulin et al.
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2006; Peng et al. 2012). Interestingly, the distribution of DOPr in the spinal cord –

and possibly in other structures as well – significantly differs among species. In the

rodent spinal cord (mice and rats), DOPr is diffusely distributed in the gray matter

(Sharif and Hughes 1989; Arvidsson et al. 1995; Mennicken et al. 2003) (Fig. 2). In

monkeys, although DOPr binding sites are also found in all lamina of the spinal

cord, a higher density of binding could be observed in the superficial lamina. Most

interestingly, DOPr binding sites are restricted to the superficial lamina as well as in

the Clark’s column in the human spinal cord (Mennicken et al. 2003) (Fig. 2). The

fact that the DOPr transcript is virtually absent in the human spinal cord (Fig. 2)

suggests that DOPr binding sites are exclusively present on presynaptic primary

afferent axon terminals. These observations strongly advise for a specialization of

DOPr toward the pain pathways in higher species. For instance, the intrathecal

injection of DOPr agonists in various acute and chronic pain models has been

shown to produce antinociception, supporting a role for DOPr in pain.

The exact distribution of DOPr in primary afferents remains a matter of contro-

versy and most certainly differs among species. While DOPr was commonly shown

to be expressed in all three types of DRG neurons (Dado et al. 1993; Mansour et al.

1994; Ji et al. 1995; Minami et al. 1995; Zhang et al. 1998; Wang and Wessendorf

2001; Mennicken et al. 2003; Gendron et al. 2006), in DOPr-GFP knock-in mice
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Fig. 1 DOPr distribution and functions in the central nervous system. (a) Schematic representa-

tion of DOPr binding sites and presumed functions in the central nervous system (CNS). DOPrs are

highly expressed in the rostral part of the brain (black squares), especially in the olfactory bulb,

cortex, striatum, and amygdala suggesting a role in pain processing and awareness, in emotional

disorders (depression and anxiety), in addiction and impulsivity. Moderate (grey squares) to weak
(open squares) expression of DOPr is also observed throughout the caudal part of the brain,

including the spinal cord and the DRGs. (b, c) Representative photomicrographs showing a similar

pattern of expression between DOPr binding sites labeled with [3H]-Deltorphin II and DOPr

immunofluorescence from DOPr-GFP knock-in mice (modified with permission from Pradhan

et al. 2011; Bardoni et al. 2014)
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DOPr was rather found to be primarily expressed in large myelinated non-

peptidergic neurons and around hair follicles supporting a role in the perception

of mechanical stimuli and light touch (Bardoni et al. 2014). These observations

support the fact that MOPr and DOPr were, respectively, shown to specifically

inhibit thermal and mechanical pain (Scherrer et al. 2009). This is, however, in

sharp contrast with the work of others. Firstly, DOPr has often been found in

substance P-containing neurons by a number of independent groups, and with

different experimental approaches (Guan et al. 2005; Zhang et al. 2006, 2010;

Riedl et al. 2009; Wang et al. 2010; Zhao et al. 2011). In particular, a role for an

interaction between DOPr and preprotachykinin A (the precursor for substance P)

in the targeting of DOPr to the cell surface through the regulated secretory pathway

has been described (Guan et al. 2005). DOPr was indeed found to be present in large

dense core vesicles (LDCV) containing substance P (Guan et al. 2005; Zhao et al.

2011). The presence of DOPr in substance P-containing neurons was also confirmed

by single-cell RT-PCR (Wang et al. 2010). Also contrasting with the work cited

above is the fact that the activation of DOPr by various agonists and in different

animal models of pain was not only found to inhibit noxious mechanical stimuli but

also heat-induced pain (Tables 1 and 2).

For a GPCR, DOPr was found to have an uncommon subcellular location.

Indeed, under normal conditions DOPr was found to be retained in the cytoplasm,

in association with intracellular compartments (Pasquini et al. 1992; Arvidsson

et al. 1995; Cheng et al. 1995, 1997; Zhang et al. 1998; Cahill et al. 2001a;

Commons et al. 2001; Wang and Pickel 2001) (Fig. 3a). Interestingly, it was

observed that the density of cell surface DOPr can be increased under certain

conditions such as in chronic pain models, or following prolonged morphine

Fig. 2 Phylogenetic changes in DOPr expression in spinal cord and DRGs. Representative

photomicrographs illustrating (A) DOPr mRNA expression (in situ hybridization) and (B) [125I]-
Deltorphin labeled DOPr binding sites in spinal cord and DRGs of mice, rats, monkeys, and

humans (modified with permission from Mennicken et al. 2003)
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Table 1 Acute pain modulation by DOPr agonists

Type Test Agonist

Effective doses

(route of

administration)

Animal

species References

Thermal

pain

Tail flick Deltorphin II 2.5–5 μg (i.t.) Mouse Dubois and

Gendron

(2010)

Tail flick (warm

water)

SNC80 104 nmol (i.c.v.)

69 nmol (i.t.)

57 mg/kg (i.p.)

Mouse Bilsky et al.

(1995)

Tail flick (light

beam)

SB-235863 100–300 mg/kg

(p.o.)

no effect

Rat Petrillo et al.

(2003)

Deltorphin II 30–45–60 nmol

(i.c.v.)

Rat Fraser et al.

(2000a)

SNC80 200–300–400 nmol

(i.c.v.)

Rat Fraser et al.

(2000a)

Tail flick SNC80 80 mg/kg (s.c.)

no effect

Rat Gallantine and

Meert (2005)

DPDPE 20 μg no effect

Intra-RVM

Intra-PAG

Rat Rossi et al.

(1994)

Deltorphin II 20 μg
Intra-RVM

Intra-PAG

Rat Rossi et al.

(1994)

Hot plate Deltorphin II 10 μg (i.t.) Rat Cahill et al.

(2001b)

SNC80 100 nmol (i.c.v.) Mouse Bilsky et al.

(1995)

SB-235863 No effect (p.o.) Rat Petrillo et al.

(2003)

Hargreaves test SNC80 No effect at 200 μg
(i.t.)

Rat Kouchek et al.

(2013)

Deltorphin II No effect at 50 μg
(i.pl.)

Rat Kabli and

Cahill (2007)

Mechanical

pain

Von Frey test SNC80 No effect

(10 mg/kg, i.p.)

Mouse Pradhan et al.

(2013)

Paw pressure Deltorphin II EC80 60 nmol

(i.c.v.)

Rat Fraser et al.

(2000b)

SNC80 EC80 400 nmol

(i.c.v.)

Rat Fraser et al.

(2000b)

Chemical

pain

Capsaicin Deltorphin II 10 μg (i.t.) Rat Beaudry et al.

(2011)

Capsaicin (tail

thermal

hypersensitivity)

SNC80 1–10 mg/kg (s.c.) Monkey Brandt et al.

(2001)

Capsaicin

(mechanical)

DPDPE 10–100–300 μg
(i.m.)

Rat Saloman et al.

(2011)

Prostaglandin

E2

SNC80 3.2 mg/kg (s.c.) Monkey Brandt et al.

(2001)

(continued)
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treatment (Cahill et al. 2001a, 2003; Commons 2003; Morinville et al. 2003, 2004;

Lucido et al. 2005; Gendron et al. 2006) (Fig. 3b, c). Since it is not the purpose of

this chapter, the distinct mechanisms involved in the regulation of DOPr trafficking

will not be discussed here. This topic has, however, recently been extensively

reviewed elsewhere (Gendron et al. 2016). Simply, it should be kept in mind that

the subcellular localization of DOPr and the possibility to increase its density at the

cell surface could explain why DOPr agonists are more potent under certain

conditions than in control/naı̈ve animals.

Table 1 (continued)

Type Test Agonist

Effective doses

(route of

administration)

Animal

species References

Formalin Deltorphin II 10 μg (i.t.) Rat Beaudry et al.

(2011)

Deltorphin II 5 μg (i.t.) Mouse Morinville

et al. (2003)

Deltorphin II ED50 7.7 μg/phase
I and 32.4 μg/phase
II (i.t.)

Rat Cahill et al.

(2001b)

Deltorphin II 20 nmol (i.t.)

100 nmol (ipl)

Rat Bilsky et al.

(1996b)

Deltorphin II 1–10 μg (i.t.) Rat Pradhan et al.

(2006)

SNC80 200 μg (i.t.) Rat Kouchek et al.

(2013)

Deltorphin II 50 μg (ipl) Rat Kabli and

Cahill (2007)

SNC80 11–44–111 nmol

(ipl)

Rat Obara et al.

(2009)

DSLET 14–42–70 nmol

(ipl)

Rat Obara et al.

(2009)

KNT-127 3 mg/kg (s.c.) Mouse Saitoh et al.

(2011)

SNC80 3 μmol/kg (i.v.) Mouse Barn et al.

(2001)

Acetic acid KNT-127 3 mg/kg (s.c.) Mouse Saitoh et al.

(2011)

SNC80 10 mg/kg (s.c.) Rat Gallantine and

Meert (2005)
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Table 2 Chronic pain modulation by DOPr agonists

Type Test Agonist

Effective doses

(route of

administration)

Animal

species References

Inflammatory

CFA

Thermal pain

Hargreaves

Plantar test

Deltorphin II 1–3–10 μg (i.t.) Rat Cahill et al.

(2003),

Gendron et al.

(2007a), and

Beaudry et al.

(2009, 2015b)

Deltorphin II 1–2.5 μg (i.t.) Mouse Gendron et al.

(2007b),

Beaudry et al.

(2009, 2015b),

and Dubois and

Gendron (2010)

DPDPE

Deltorphin II

50 nM (i.t.) Mouse Qiu et al. (2000)

Deltorphin II 3–10–30–60 nmol

(i.c.v.)

Rat Fraser et al.

(2000a)

SNC80 100–300 nmol

(i.c.v.)

Rat Fraser et al.

(2000a)

SB-235863 30–70 mg/kg

(s.c.)

Rat Beaudry et al.

(2009)

SNC80 40 mg/kg (s.c.) Rat Gallantine and

Meert (2005)

SNC80 10 mg/kg (s.c.) Mouse Gaveriaux-Ruff

et al. (2008)

DPDPE 77.4–154.8 nmol

(ipl)

Mouse Hervera et al.

(2009)

Tail flick SNC80 3.2 mg/kg (s.c.) Monkey Brandt et al.

(2001)

Mechanical pain

Von Frey

filament

Deltorphin II 10–30 μg (i.t.) Rat Otis et al.

(2011)

SNC80 10 mg/kg (i.p.) Mouse Pradhan et al.

(2013)

SNC80 10 mg/kg (s.c.) Mouse Gaveriaux-Ruff

et al. (2008)

Paw pressure

test (Randall–

Stiletto)

DPDPE 10–100 μg (ipl) Rat Zhou et al.

(1998)

Carrageenan Thermal pain

Hargreaves

Plantar test

SB-235863 10 mg/kg (p.o.) Rat Petrillo et al.

(2003)

Deltorphin II 10 μg (i.t.) Rat Stewart and

Hammond

(1994)

(continued)

156 K. Abdallah and L. Gendron



Table 2 (continued)

Type Test Agonist

Effective doses

(route of

administration)

Animal

species References

DPDPE 30 μg (i.t.) Rat Stewart and

Hammond

(1994)

Mechanical pain

Von Frey

filament

SNC80 200 μg (i.t.) Rat Kouchek et al.

(2013)

Cancer pain Mechanical pain

Von Frey

filament

Deltorphin II 3–10–30 μg (i.t.) Rat Otis et al.

(2011)

DVal Ala-E 1.3 mg/kg (i.p.) Mouse Brainin-Mattos

et al. (2006)

SNC80 10 nmol (ipl) Mouse Ye et al. (2012)

Thermal pain

Unilateral

hotplate test

DPDPE 30 μg
(peritumoral)

Mouse Baamonde et al.

(2005)

Diabetic

neuropathy

Tail flick TAN-67 ED50 ~6 μg
(i.c.v.)

Mouse Kamei et al.

(1997b)

Formalin TAN67 30 mg/kg (s.c.) Mouse Kamei et al.

(1997a)

Neuropathic

pain

Thermal pain

Hargreaves

Plantar test

DSLET 111 nmol (ipl) Rat Obara et al.

(2009)

SNC80 111 nmol (ipl) Rat Obara et al.

(2009)

SB-235863 10 mg/kg (p.o.) Rat Petrillo et al.

(2003)

Noxious

thermal stimuli

(paw)

Deltorphin II 10 μg (i.t.) Rat Holdridge and

Cahill (2007)

Tail flick (cold

allodynia)

Deltorphin II 15–25 μg (i.t.) Rat Mika et al.

(2001)

Tail flick (heat

and cold

stimuli)

Deltorphin II 1.5–15–25 μg
(i.t.)

Rat Mika et al.

(2001)

Tail flick (cold

allodynia)

DPDPE 25 μg (i.t.) Rat Mika et al.

(2001)

Tail flick (heat

and cold

stimuli)

DPDPE 5–25 μg (i.t.) Rat Mika et al.

(2001)

Acetone

application

DPDPE 20 μg intra-PAG Rat Sohn et al.

(2000)

Mechanical pain

Von Frey

filament

Deltorphin II 10–15–30 μg (i.t.) Rat Holdridge and

Cahill (2007)

(continued)
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3 DOPr and Pain Modulation

The analgesic efficacy of DOPr agonists was widely investigated using pharmaco-

logical and genetic approaches. Before describing the effects of DOPr agonists in

acute and chronic pain models, it is worth noting that mice deficient for DOPr

(DOPr knockout mice) did not show any significant change in pain perception

following acute noxious stimuli (thermal, mechanical, or chemical stimuli) (Zhu

et al. 1999; Filliol et al. 2000). However, sensitivity to thermal and mechanical

stimuli is increased in inflammatory and neuropathic pain models in DOPr knock-

out mice (Nadal et al. 2006; Gaveriaux-Ruff et al. 2008). These observations

therefore suggest that a constitutive tone of endogenous opioid release acting on

DOPr would prevent exacerbation of chronic pain. This hypothesis is supported by

the fact that the selective ablation of DOPr in NaV1.8 sensory neurons increases

chronic pain (Gaveriaux-Ruff et al. 2011).

3.1 DOPr-Mediated Analgesia in Acute Pain Models

Agonists acting at DOPr are known to produce antinociception (Gaveriaux-Ruff

and Kieffer 2011). Although first evidence for DOPr-mediated antinociception was

provided in the early 1980s (Brantl et al. 1982), the lack of highly selective DOPr

ligands prevented a clear demonstration of the physiological effects of this receptor.

A pioneer study used [2-D-penicillamine, 5-D-penicillamine]enkephalin (DPDPE),

a highly selective DOPr agonist (Mosberg et al. 1983), and confirmed that DOPr

could mediate antinociception in the hot plate test (Porreca et al. 1984). Although

their antinociceptive effects have been commonly reported thereafter, it is generally

accepted that DOPr agonists, no matter the route of administration, only have weak

Table 2 (continued)

Type Test Agonist

Effective doses

(route of

administration)

Animal

species References

Deltorphin II 50 μg (ipl) Rat Kabli and Cahill

(2007)

SNC80 22–66–111 nmol

(ipl)

Rat Obara et al.

(2009)

DSLET 22–56–111 nmol

(ipl)

Rat Obara et al.

(2009)

DPDPE 20 μg intra-PAG Rat Sohn et al.

(2000)

BUBU 1.5–6 mg/kg (i.v.) Rat Desmeules et al.

(1993)

ipl intraplantar, s.c. subcutaneous, i.t. intrathecal, i.m. intramuscular, i.c.v. intracerebroventricular,
i.p. intraperitoneal, p.o. perorally, i.v. intravenous
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Fig. 3 Enhancement of DOPr expression at the plasma membrane of neurons under inflammatory

or chronic morphine conditions. (a) Intracellular localization of DOPr in the neostriatum labeled

with [125I]-Azido-DTLET (a DOPr selective agonist, left panel) or by a DOPr antibody directed

against the 3–17 segment (left panel) in untreated animals. (b, c) Electron microscopy of

immunolabeled DOPr in the superficial laminae of lumbar spinal cord dorsal horn in animals

treated with morphine (b, right panel) or in the CFA pain model (c, right panel) showing an

increase in immunogold particles associated with the plasma membrane (adapted with permission

from Pasquini et al. 1992; Cahill et al. 2001b, 2003, Lucido et al. 2005)
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or no antinociceptive effects when healthy animals are tested with routinely used

acute pain tests (e.g., tail flick and hot plate tests). Indeed, DOPr agonists seem to

have only modest antinociceptive effects in acute pain models when compared to

MOPr agonists. As an example, the i.c.v. administration of [D-Ala2, N-methyl-

Phe4, Gly5-ol]enkephalin (DAMGO; a selective MOPr agonist) produced a more

profound analgesia than DPDPE in the hot plate test (Porreca et al. 1984). Similarly,

DAMGO was also shown to reduce mechanical nociception by 80% at a dose of

0.2 nmol (i.c.v.) in the paw pressure test while doses of 60 and 400 nmol of the

DOPr agonists Deltorphin II and SNC80, respectively, were needed to produce

similar effects (Fraser et al. 2000b). Table 1 summarizes the DOPr-mediated

antinociceptive effects in acute pain tests.

3.1.1 Regulation of DOPr by MOPr in Healthy Animals
As described above, the antinociceptive effects of centrally administered DOPr

agonists are generally weak. However, it was demonstrated that morphine or other

MOPr agonists can potentiate the analgesic effects of spinally administered DOPr

agonists (Cahill et al. 2001b; Morinville et al. 2003; Gendron et al. 2007a). The

cellular mechanisms involved in the potentiation of DOPr functions are unclear.

However, it was noted that the administration of morphine induces a translocation

of DOPr to the plasma membrane in DRG (Gendron et al. 2006), spinal cord (Cahill

et al. 2001b; Morinville et al. 2003; Gendron et al. 2007a), and central gray neurons

(Lucido et al. 2005; see also Fig. 3b). As of to date, the exact mechanisms involved

in this process have not been totally unveiled. We do know, however, that it

involves MOPr as these effects are completely abolished in MOPr knockout

animals (Morinville et al. 2003). In the PAG, morphine also increases the DOPr-

mediated presynaptic inhibition of GABAergic synaptic currents (Hack et al. 2005).

Both MOPr and β-arrestin 2 have been shown to be important for the upregulation

of DOPr functions in the PAG (Hack et al. 2005). A more recent study also suggests

that morphine induces a cdk5-mediated phosphorylation of the threonine 161 resi-

due located in the second intracellular loop of DOPr (Xie et al. 2009). Phosphory-

lation of this residue by cdk5 would indeed increase the membrane expression of

DOPr and, ultimately, enhance the antinociceptive effects of DOPr agonists in

morphine-treated animals (Beaudry et al. 2015b). The phosphorylation of DOPr

by cdk5 was further hypothesized to disrupt the formation of the MOPr-DOPr

heterodimer (Xie et al. 2009). This is consistent with the observations made by

others who show that chronic morphine treatment potentiates MOPr and DOPr

heterodimerization throughout the CNS including areas involved in pain processing

and in the DRGs (Gupta et al. 2010). It was further demonstrated that a mixture of

the MOPr agonist methadone and the DOPr antagonist naltriben can stabilize DOPr

at the cell surface in a heterodimer form preventing its endocytosis and therefore

avoiding degradation (Milan-Lobo and Whistler 2011; Milan-Lobo et al. 2013).
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3.2 DOPr-Mediated Analgesia in Acute Inflammatory Pain
Models

By contrast to their minor effects in acute pain tests, DOPr agonists were found to

be more efficient at alleviating acute inflammatory pain. Formalin- and capsaicin-

induced pain behaviors are indeed efficiently inhibited following DOPr activation

(Bilsky et al. 1996b; Cahill et al. 2001b; Morinville et al. 2003; Pradhan et al. 2006;

Beaudry et al. 2011). As an example, the intrathecal administration of Deltorphin II

was shown to significantly reduce the typical biphasic nociceptive response induced

by formalin as well as the spontaneous pain-like behaviors – licking, biting, and

flinching – induced by capsaicin. These effects were completely antagonized by the

DOPr selective antagonist naltrindole, therefore supporting a role for DOPr (Bilsky

et al. 1996b; Cahill et al. 2001b; Morinville et al. 2003; Pradhan et al. 2006;

Beaudry et al. 2011). At the spinal level, DOPr-mediated analgesia was shown to

involve an inhibition of substance P release (Beaudry et al. 2011; Kouchek et al.

2013). Substance P is produced in peptidergic C fibers and released upon activation

of these neurons by peripheral noxious stimuli (Cao et al. 1998). As revealed by an

inhibition of c-fos expression, the intrathecal administration of Deltorphin II or

SNC80 reduces the activation of spinal neurons (Beaudry et al. 2011; Kouchek

et al. 2013). Activation of DOPr in the spinal cord also prevents substance P release

and blocks NK1 internalization in the superficial lamina of the lumbar dorsal horn

induced by intraplantar formalin and capsaicin (Beaudry et al. 2011; Kouchek et al.

2013).

The systemic administration of DOPr agonists also produces antinociception in

response to chemical stimuli (Barn et al. 2001; Brandt et al. 2001; Saitoh et al.

2011; Saloman et al. 2011). In primates, thermal hypersensitivity induced by

capsaicin and prostaglandin E2 was completely reversed following subcutaneous

administration of SNC80 (Brandt et al. 2001). KNT127 and SNC80 were also found

to inhibit the biphasic nociceptive response induced by formalin as well as the

acetic acid induced abdominal constrictions in mice (Barn et al. 2001; Saitoh et al.

2011).

Beside their central mechanism of actions, DOPr agonists also produce analgesia

via receptors expressed in the periphery (Stein et al. 2001). The intraplantar

administration of Deltorphin II, SNC80, and DSLET was shown to effectively

suppress formalin-induced pain behaviors in rodents (Bilsky et al. 1996b; Kabli

and Cahill 2007; Obara et al. 2009). This antinociceptive effect was completely

reversed by intraplantar treatment with the DOPr antagonist naltrindole or by a

pretreatment with DOPr antisense oligodeoxynucleotides (Bilsky et al. 1996a, b).

Again, DOPr agonists had no significant effect on thermal or mechanical nocicep-

tive thresholds under normal conditions (Bilsky et al. 1996b; Kabli and Cahill 2007;

Obara et al. 2009).

3.2.1 Regulation of DOPr in Acute Inflammatory Pain
A recent study by Doyle Brackley and collaborators has provided mechanistic

insights for the lack of efficacy of peripheral DOPr agonists in naı̈ve animals.
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They indeed observed that peripheral DOPr expressed on sensory nerves is consti-

tutively desensitized by a GRK2-dependent mechanism. They found that under

basal conditions GRK2 is constitutively associated with DOPr, therefore preventing

its coupling to G proteins or other signaling partners. The knockdown of GRK2 was

found to be sufficient to increase peripheral DOPr-mediated analgesia. Interest-

ingly, in inflamed tissues PKC activation leads to RKIP phosphorylation which in

turn sequesters GRK2. In this model, the sequestering of GRK2 “awakens” DOPr in

sensory neurons and increases the analgesic effects of peripheral DOPr agonists

(Brackley et al. 2016).

3.3 DOPr-Mediated Analgesia in Chronic Pain Models

The antinociceptive effects of various DOPr agonists in animal models of chronic

pain are summarized in Table 2. In general, the efficacy and the potency of DOPr

agonists at producing antinociception in chronic pain models are more important,

when compared to acute pain models. Overall, the observations made in preclinical

models of chronic pain suggest that DOPr agonists efficiently inhibit inflammatory,

neuropathic, diabetic, as well as cancer pain. Interestingly, recent observations also

support a role for DOPr in the treatment of migraine.

3.3.1 DOPr in Inflammatory Pain Models
Complete Freund’s adjuvant (CFA) and carrageenan are commonly used to induce

inflammation or as rodent models of arthritis (Klareskog 1989; Hansra et al. 2000).

In these inflammatory pain models, spinal DOPr activation was shown to alleviate

hyperalgesia (Hylden et al. 1991; Stewart and Hammond 1994; Qiu et al. 2000). In

the CFA model of inflammation, Deltorphin II is effective at reducing both thermal

hyperalgesia and mechanical allodynia in a dose-dependent manner (Cahill et al.

2003; Gendron et al. 2007a, b; Beaudry et al. 2009, 2015a; Dubois and Gendron

2010; Otis et al. 2011). The effects of Deltorphin II are DOPr-mediated since

they are completely antagonized by DOPr selective antagonists. Interestingly,

Deltorphin II has no analgesic effect on the uninflamed paw, supporting a lack of

effects in healthy tissues (Cahill et al. 2003; Gendron et al. 2007a; Beaudry et al.

2009; Dubois and Gendron 2010; Otis et al. 2011). Indeed, in these chronic pain

models, DOPr agonists commonly display a leftward shift of their dose-response

effects when compared to dose-response curves in healthy animals.

The enhancement of DOPr analgesic potency in inflammatory pain models is

thought to be the result of an increase in DOPr expression at the plasma membrane

of spinal neurons. As stated above, the subcellular distribution of DOPr in the

lumbar dorsal horn, as assessed by electron microscopy, revealed a predominant

localization of the receptor within the intracellular compartments of neurons

(Fig. 3b, c). However, following some inflammatory/pain state, an increase in

DOPr distribution at the plasma membrane was seen in the ipsilateral lumbar spinal

cord and the DRG neurons (Cahill et al. 2003; Gendron et al. 2006) (see also

Fig. 3c). Studies based on fluorescent ligand internalization (used as a tool to
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evaluate the density of membrane receptors) further revealed an increased level of

internalization in the lumbar spinal cord and in small and medium DRG neurons in

inflamed animals, thus supporting an upregulation of DOPr at the neuronal plasma-

lemma (Gendron et al. 2006, 2007a). Again, the mechanisms involved in this

process are still unclear. As for the morphine-induced regulation of DOPr,

CFA-induced inflammation requires MOPr to increase the membrane density of

DOPr and the antinociceptive effects of DOPr agonists (Cahill et al. 2003; Gendron

et al. 2007b). Similarly, the inhibition of cdk5-induced phosphorylation of DOPr

prevents the enhancement of DOPr-mediated analgesia (Beaudry et al. 2015b).

However, if an interaction between DOPr and preprotachykinin A appears to be

essential for the membrane expression of DOPr in non-treated mice, the

upregulation of DOPr function in the CFA model was shown to be independent

of substance P (Dubois and Gendron 2010).

Centrally administered (i.c.v.) DOPr agonists also produce analgesia in the CFA

model of inflammatory pain. SNC-80 and Deltorphin II were shown to increase the

time to paw withdrawal in response to a thermal stimulus (Hargreaves test) (Fraser

et al. 2000a). The potency of centrally administered DOPr agonists was also found

to be improved in animals with persistent inflammation when compared to healthy

animals. Indeed, the effective i.c.v. dose of SNC80 and Deltorphin II required to

produce antihyperalgesic effect in the rat CFA model of inflammation is three times

lower than that needed to induce analgesia to thermal stimulus in acute pain models

(Fraser et al. 2000a). Other groups have also demonstrated an involvement of DOPr

in the descending pain pathways. In fact, DOPr activation in supraspinal sites such

as the RVM and PAG was found to produce analgesia in various animal models of

chronic pain (for review, see Bie and Pan 2007). As an example, microinjection of

Deltorphin II into the RVM was shown to dose-dependently reverse thermal

hyperalgesia in CFA-treated rats (Hurley and Hammond 2000).

Activation of peripheral DOPr produces antinociception under pathological pain

conditions. DPDPE, when administered in the periphery, produces antinociception

in CFA and neuropathic pain models (Zhou et al. 1998; Hervera et al. 2009;

Obara et al. 2009). Following inflammation, opioid receptors were shown to be

upregulated in primary afferents in which they are highly transported toward the

free nerve endings in the periphery. As a consequence, the potency of peripheral

opioid agonists in mediating analgesia is enhanced. The low pH in the inflamed

tissues is also thought to facilitating ligand/receptor coupling (for reviews, see Stein

et al. 2001; Stein and Lang 2009). The local administration of the DOPr agonist

SNC80 was also shown to dose-dependently reduce the mechanical hyperalgesia

induced by the subcutaneous injection of prostaglandin E2 in the hindpaw (Pacheco

and Duarte 2005). DOPr-induced analgesia in the periphery is thought to be

mediated by the nitric oxide/cGMP pathway. Indeed, in the CFA model of inflam-

mation the nitric oxide donor NOC-18 potentiates the antihyperalgesic effect of

DPDPE (Hervera et al. 2009). Nitric oxide synthase or guanylate cyclase inhibitors

also prevent the SNC80-mediated analgesia in the prostaglandin E2 pain model

(Pacheco and Duarte 2005). Interestingly, the intraplantar administration of

glibenclamide and tolbutamide, two ATP-sensitive K+ channel blockers, was
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shown to reduce the analgesia produced by the local administration of SNC80,

suggesting that the antinociceptive effect of this compound is specifically mediated

by ATP-sensitive K+ channels (Pacheco and Duarte 2005).

3.3.2 DOPr in Neuropathic Pain Models
As reported in Table 2, DOPr agonists are also efficient at alleviating neuropathic

pain in various preclinical models. The intrathecal administration of DPDPE or

Deltorphin II was shown to significantly relieve allodynia and hyperalgesia in the

sciatic nerve ligation model (Mika et al. 2001; Holdridge and Cahill 2007). DPDPE

injected into the ventral PAG also effectively reduces mechanical and thermal

allodynia in a neuropathic pain model where both the tibial and sural nerves are

completely cut (Sohn et al. 2000). In other nerve injury models, peripherally

administered DOPr agonists also produce anti-allodynic effects (Kabli and Cahill

2007; Obara et al. 2009). In the peripheral nerve injury model, the increased

analgesic effects of DOPr agonists may be the consequence of a higher level of

DOPr expression or as a relocalization of DOPr at the cell surface (Kabli and Cahill

2007; Obara et al. 2009).

3.3.3 DOPr in Diabetic Neuropathy
Diabetic neuropathy represents another disease in which DOPr agonists may be

used to reduce pain. For instance, the non-peptide TAN-67 was found to produce a

dose-dependent antinociception in the mouse tail flick assay when administered

i.c.v. (Kamei et al. 1997b). In diabetic mice, an increase in the endogenous tone of

the spinal DOPr system was demonstrated. Indeed, in these mice, the inflammatory

phase of the formalin test is greatly reduced, an effect reversed by naltrindole

(Kamei et al. 1997a).

3.3.4 DOPr in Bone Cancer Pain
Although it has a unique set of characteristics, bone cancer-induced pain includes

an important neuropathic component (Honore et al. 2000). It is therefore not

surprising to see that DOPr agonists are effective in bone cancer models. In a rat

model of metastatic bone cancer-induced pain (Dore-Savard et al. 2010), the

intrathecal administration of Deltorphin II was shown to dose-dependently reverse

mechanical allodynia, an effect completely blocked by a pretreatment with the

DOPr antagonist naltrindole (Otis et al. 2011). The intraperitoneal administration of

[dVal(L)2,Ala(L)5]E, another selective DOPr agonist, also produces analgesia in a

mouse model of bone cancer-induced pain (Brainin-Mattos et al. 2006). The

analgesic effect of DOPr was also demonstrated in mice bearing a tibial osteosar-

coma (Baamonde et al. 2005). In this model the peritumoral injection of DPDPE

induced a naltrindole-sensitive increase in the paw thermal withdrawal latencies

(Baamonde et al. 2005). Similarly, DOPr activation alleviates mechanical hyper-

sensitivity in an orthotopic mouse oral cancer model (Ye et al. 2012). In humans

coping with cancer pain, intrathecally administered DADLE, a DOPr-preferred

agonist, has also been shown to produce analgesia, even in patients who had
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developed tolerance to morphine (Onofrio and Yaksh 1983; Moulin et al. 1985;

Krames et al. 1986).

3.3.5 DOPr Agonists in Trigeminal and Migraine Pain Models
DOPr appears to play a crucial role in the modulation of trigeminal pain. In rodents

and humans, DOPr mRNA can be found in small-, medium-, and large-sized

trigeminal ganglia neurons (Mennicken et al. 2003). In the trigeminal nucleus

caudalis (Sp5C), a structure involved in modulating and processing somatosensory

and nociceptive inputs originating from the orofacial region, DOPr binding sites

have a more widespread distribution in rodents than humans. In humans, DOPr

binding sites are confined to the superficial laminae of the Sp5C (Mennicken et al.

2003; Ichikawa et al. 2005). Supporting a role for DOPr in trigeminal pain, the

activation of peripheral DOPrs was found to attenuate the capsaicin-induced

mechanical hypersensitivity in the masseter muscle via the activation of GIRK

channels in rats (Saloman et al. 2011; Chung et al. 2014). The activation of DOPr

with low doses of DPDPE was also found to reduce substance P release from Sp5C

slices, a hallmark of opioid-mediated analgesia (Suarez-Roca and Maixner 1992).

Yet, the systemic administration of Deltorphin II produces a pronounced inhibition

of C fiber-evoked responses in wide dynamic range neurons of the Sp5C (Wang

et al. 1996). Under inflammatory conditions, DOPr-mediated trigeminal analgesia

is also enhanced. As measured by a reduction in CGRP release and adenylate

cyclase activity, a pretreatment with bradykinin increases the potency of DPDPE

to inhibit the activity of trigeminal nociceptors (Patwardhan et al. 2005). In

trigeminal nociceptors, this effect is concomitant to an increase of cell surface

DOPr (Patwardhan et al. 2005).

In patients unresponsive to classical treatments, opioids acting on MOPrs are

often prescribed to treat severe cases of migraine headaches1 (for review see Becker

2015). In some cases, however, extensive treatments with opioids can lead to an

exacerbation of the frequency and the intensity of migraine episodes in addition to

interfere with other migraine therapies (Bigal and Lipton 2008; Bigal et al. 2008;

Ansari and Kouti 2016). Recent reports revealed a promising therapeutic potential

for DOPr in alleviating migraine headaches (Charles and Pradhan 2016). In an

animal model of migraine induced by nitroglycerine (NTG), DOPr activation

efficiently reduces thermal hyperalgesia and mechanical allodynia, two symptoms

often observed in humans coping with migraine (Pradhan et al. 2014). In this model,

the antinociceptive effect of SNC80 is similar to that obtained with sumatriptan, a

classical serotonergic receptor (5-HT1B and 5-HT1D) agonist used to treat migraine

headaches. SNC80 was also found to be efficient in reducing the aversive state

1Migraine is the most common and disabling neurological disorder that occurs as recurrent,

pulsatile, episodic headaches with or without aura. It is thought to be the result of trigeminal

nerve activation leading to distension in cerebral and meningeal blood vessels. The cortical

spreading depression (CSD) is defined as a slowly propagated wave of depolarization originating

from the occipital to the frontal part of the brain which is followed by a suppression of brain

activity (Goadsby et al. 2009; Olesen et al. 2009).
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evoked by NTG in the conditioned place preference test, further supporting a

role for DOPr in alleviating migraine headaches (Pradhan et al. 2014). These

observations are supported by the fact that cortical spreading depression events

(CSD; a phenomenon thought to be responsible for the occurrence of migraine with

aura, Charles and Baca 2013) evoked by KCl were reduced by the systemic

administration of SNC80 (Pradhan et al. 2014).

4 Novel Compounds and Clinical Trials

DOPr is commonly considered as a potential target for the development of novel

therapies for the management of chronic pain and emotional disorders (Pradhan

et al. 2011). One of the major challenges in the development of novel DOPr

agonists for the clinic is the propensity of such ligands to induce nonlethal

convulsions at analgesic doses (Comer et al. 1993; Dykstra et al. 1993; Pakarinen

et al. 1995; Broom et al. 2002a, b; Chung et al. 2015). Still, a few drugs targeting

DOPr have been moved to clinical trials. ADL5747 and ADL5859 are two orally

bioavailable compounds (Le Bourdonnec et al. 2008, 2009) that were tested in

small cohorts of patients. These compounds, which are devoid of pro-convulsive

actions in preclinical models, have indeed been tested for acute (NCT00993863)

and chronic (NCT00979953) pain management in Phase 2 clinical trials. Unfortu-

nately, none of the compounds were more effective than the placebo in patients

suffering from osteoarthritic pain.

More recently, it was proposed that DOPr-induced seizures are mediated by the

activation of the β-arrestin 2 pathway. Exploiting the concept of biased ligands,

Trevena, Inc. has developed a novel orally available DOPr-selective compound

with a robust bias toward the G protein signaling pathway. This is to say that the

compound has virtually no ability to recruit β-arrestin 2 but still activates G proteins

with high efficiency. The preclinical evaluation of TRV250 is promising for the

treatment of migraine headaches. TRV250 was found to preserve the analgesic

properties of common DOPr agonists without producing seizures (http://www.

trevenainc.com/TRV250.php).

Although this was not thoroughly covered in this chapter, one should note that

DOPr can form dimers or interact with other GPCRs (reviewed in Gendron et al.

2016). Because of their unique pharmacology, GPCR dimers represent a novel class

of targets for the development of new drugs and/or therapies (Fujita et al. 2014,

2015). One such target is the MOPr-DOPr heteromer (Fujita et al. 2015). A library

screening for this target led to the identification of CYM51010, a selective MOPr-

DOPr agonist (Gomes et al. 2013). In the tail flick test, CYM51010 was found to

produce antinociception without inducing tolerance (Gomes et al. 2013). This target

is thought to induce analgesia without causing the common unwanted effects

associated with opioids (Fujita et al. 2015). Bivalent ligands designed to have a

high affinity for MOPr and DOPr or KOPr and DOPr were found to exhibit good

analgesic properties. Compounds targeting MOPr and DOPr such as L2, L4

(Harvey et al. 2012), MDAN (Daniels et al. 2005b), or RV-JIM-C3 (Podolsky
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et al. 2013) as well as compounds targeting KOPr and DOPr such as KDAN-18

(Daniels et al. 2005a) and KDN-21 (Bhushan et al. 2004) were found to produce

robust analgesia with no apparent signs of tolerance, physical dependence, or

sedation (Daniels et al. 2005b; Ansonoff et al. 2010; Podolsky et al. 2013). Two

such bivalent ligands targeting MOPr and DOPr are currently in clinical trials.

Compound 51 and MuDelta (both acting as MOPr agonist and DOPr antagonist)

completed clinical trials in patients suffering from irritable bowel syndrome

(Breslin et al. 2012; Wade et al. 2012). The MuDelta was approved recently by

the US authorities to be commercialized under the name of Eluxadoline (Garnock-

Jones 2015). This compound proved to be efficient in relieving abdominal pain

symptoms and diarrhea (Garnock-Jones 2015; Lembo et al. 2016).

5 Conclusion

DOPr represents a promising therapeutic target for the treatment of chronic pain

and emotional disorders. Although DOPr agonists produce only weak analgesic

effects in healthy animals and in acute pain models, numerous groups have previ-

ously described an increase in their analgesic potency in chronic pain models (e.g.,

inflammatory, neuropathic, and bone cancer-induced pain models). Interestingly,

the increased analgesic effects of DOPr agonists are paralleled by a translocation of

DOPr from the intracellular compartments to the plasma membrane of spinal cord

and DRG neurons.
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