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Abstract

Mast cells and basophils represent the most relevant source of histamine in the

immune system. Histamine is stored in cytoplasmic granules along with other
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amines (e.g., serotonin), proteases, proteoglycans, cytokines/chemokines, and

angiogenic factors and rapidly released upon triggering with a variety of stimuli.

Moreover, mast cell and basophil histamine release is regulated by several

activating and inhibitory receptors. The engagement of different receptors can

trigger different modalities of histamine release and degranulation. Histamine

released from mast cells and basophils exerts its biological activities by

activating four G protein-coupled receptors, namely H1R, H2R, H3R (expressed

mainly in the brain), and the recently identified H4R. While H1R and H2R

activation accounts mainly for some mast cell- and basophil-mediated allergic

disorders, the selective expression of H4R on immune cells is uncovering new

roles for histamine (possibly derived from mast cells and basophils) in allergic,

inflammatory, and autoimmune disorders. Thus, the in-depth knowledge of mast

cell and basophil histamine release and its biologic effects is poised to uncover

new therapeutic avenues for a wide spectrum of disorders.
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1 Introduction

Mast cells and basophils are the major source of the biogenic amine histamine

among immune cells (Graham et al. 1955; Riley and West 1952, 1953). These cells

store histamine in cytoplasmic granules along with other amines, proteases,

proteoglycans, some cytokines/chemokines, and angiogenic factors that are rapidly

released upon triggering with a variety of stimuli (Stone et al. 2010; de Paulis et al.

2006; Marone et al. 2005; Detoraki et al. 2009). Although several differences exist

between mast cells and basophils, the stimuli that induce their activation and the

mechanisms of degranulation, histamine release from mast cells and basophils is

regarded as a central event in the development of rapid anaphylactic reactions and

allergic responses due to its activation of histamine receptors expressed on vascular

and stromal cells as well as immune cells. In this chapter we will introduce the

biology of mast cells, basophils, histamine and histamine receptors to review recent

advancements in mast cell and basophil degranulation and histamine release.

2 Biology of Mast Cells and Basophils

Mast cells and basophils are characterized by the expression of the tetrameric

(αβγ2) high affinity receptor for IgE (FcεRI) and the ability to synthesize histamine

(Stone et al. 2010; Marone et al. 2005). Nevertheless, they also show crucial

differences. Basophils are a rare population of fully mature, short-lived circulating

immune cells (they account for approximately 1% of blood leukocytes) that are

recruited to tissues upon inflammation (Karasuyama et al. 2011; Borriello et al.

2014a; Marone et al. 2014). On the other hand, mature mast cells are tissue-resident

cells distributed throughout mucosal and connective tissues, often in close proximity
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to blood and lymphatic vessels, near or within nerves, and beneath epithelial

surfaces (Galli and Tsai 2012). In response to IgE crosslinking (e.g., antigens,

superantigens, anti-IgE) or IgE-independent stimuli (e.g., cytokines, anaphyla-

toxins, proteases, Toll-like receptor [TLR] ligands) mast cells and basophils release

a partially overlapping set of preformed (e.g., histamine, proteases, some cytokines)

and de novo synthesized (e.g., lipids, cytokines/chemokines, angiogenic and

lymphangiogenic factors) mediators, albeit differences exist (Stone et al. 2010; de

Paulis et al. 2006; Marone et al. 2005; Detoraki et al. 2009; Galli and Tsai 2012;

Borriello et al. 2014b; Voehringer 2012; Moon et al. 2014; Patella et al. 2000;

Genovese et al. 2003). For example, prostaglandin D2 (PGD2) is synthesized only by

mast cells, while interleukin (IL)-4 (an important cytokine for the development of

type 2 immunity) is produced mainly by basophils.

Mast cells and basophils play a major role in the development of anaphylactic

reactions and allergic responses (Stone et al. 2010; Marone et al. 2005). However,

their involvement has also been shown in several pathophysiological conditions,

such as acute and chronic response to pathogens (including but not limited to ticks

and other ectoparasites) (Chan et al. 2012; Eberle and Voehringer 2016), cancer

development and progression (Varricchi et al. 2016; Marichal et al. 2013a; Melillo

et al. 2010; Visciano et al. 2015), and also resistance to animal venoms (Akahoshi

et al. 2011; Metz et al. 2006; Schneider et al. 2007). In this regard, mast cells

enhance innate resistance of mice to venoms derived from several species of

snakes, the venomous lizard Gila monster, scorpions, and the honeybee at least in

part by releasing proteases (i.e., carboxypeptidase A3 and chymase MCP4) that

degrades toxins present in some of these venoms. Moreover, mast cell activation by

IgE specific for components of honeybee venom or Russell’s viper venom protects

mice from challenge with lethal doses of these venoms (Marichal et al. 2013b).

Interestingly, basophils also exert non-redundant roles in some experimental

models (Karasuyama et al. 2011). For example, basophils are required for acquired

resistance against Haemaphysalis longicornis second infestation (Wada et al.

2010).

In conclusion, the release of mast cell and basophil mediators (including hista-

mine) is involved in several pathophysiological conditions and may result in either

beneficial or detrimental effects.

3 Histamine and Histamine Receptors

The first physiological characterization of β-imidazolylethylamine (the chemical

formula of histamine) was reported in 1910 by Dale and Laidlaw (Dale and Laidlaw

1910). They demonstrated that this molecule causes vasodilation, the contraction of

smooth muscles in the airway, uterus, and the intestine, stimulates heart rate and

contractility, and induces a shock-like syndrome when injected into animals.

Further investigations showed that histamine also stimulates stomach hydrochloric

acid secretion (Popielski 1920). Moreover, in 1924 Lewis and Grant described the

classic “Triple Response” elicited by the subcutaneous injection of histamine: a red
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spot due to vasodilatation, a wheal due to increased permeability, and flare due to an

axon reflex (Lewis and Grant 1924). Nevertheless, the first demonstration of the

physiological relevance of histamine came in 1927 when histamine was isolated

from liver and lungs (Best et al. 1927). Later, histamine was also recognized as a

mediator of experimental anaphylaxis (Feldberg and Kellaway 1937; Feldberg and

Keogh 1937; Feldberg and O’Connor 1937). Of note, Riley and West (1952, 1953)

demonstrated that mast cells are the predominant cellular source of histamine

(Riley and West 1952, 1953). Subsequently, basophils were identified as the main

source of histamine among blood cells (Graham et al. 1955).

Histamine binds to four G protein-coupled receptors (GPCRs), namely H1-

receptor (H1R), H2-receptor (H2R), H3-receptor (H3R), H4-receptor (H4R) (Panula

et al. 2015; Seifert et al. 2013) (Fig. 1). H1R activation mediates many symptoms of

type I allergic reactions, including pruritus, erythema and edema. Indeed, H1R

Fig. 1 Biological effects of histamine. Histamine exerts its effects through the engagement of

four G-protein coupled receptors (H1R, H2R, H3R, H4R). H1R is expressed on endothelial cells

and bronchial smooth muscle cells and plays a major role in allergic disorders. The presence of

H1R in the central nervous system mediates several behavioral effects. H1R activation also exerts

proinflammatory and immunomodulatory activities due to its expression on several immune

cells (e.g., dendritic cells, macrophages, Th1 cells). H2R activation induces the secretion of

hydrochloric acid from gastric parietal cells and modulates/inhibits a variety of immune cells

(e.g., mast cells, basophils, neutrophils, eosinophils, dendritic cells, γδ cells, Th1 and Th2 cells).

H3R regulates various aspects of behavior and body temperature at the level of central nervous

system. In addition, H3R inhibits norepinephrine release from sympathetic nerve terminals in the

heart. H4R modulates the migration and activation of a wide spectrum of immune cells (e.g., mast

cells, basophils, eosinophils, monocytes, dendritic cells, NK, iNK T and γδ cells, CD8+ T cells,

Treg and Th2 cells) and is thereby involved in allergic and immune-mediated disorders
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antagonists are used for local and systemic treatment of these symptoms (although

H2R is also involved in the pathophysiology of IgE-mediated systemic anaphylaxis)

(O’Mahony et al. 2011; Wechsler et al. 2013). In addition, H1R knockout mice have

impairment in locomotor activity and exploratory behavior (Inoue et al. 1996), a

decrease in aggression and anxiety (Yanai et al. 1998), a significant impairment in

nociception and an enhancement in the sensitivity to the analgesic effect of mor-

phine (Mobarakeh et al. 2000, 2002). H1R knockout mice also show an impairment

of the immune response since several immune cell subsets express H1R. H1R

deletion results in lower percentages of IFN-γ-producing T cells and more ovalbu-

min (OVA)-specific IgG1 and IgE compared with wild-type (Jutel et al. 2001).

Interestingly, although allergen-stimulated T cells from H1R knockout mice exhibit

an enhanced production of Th2 cytokines, allergen-challenged H1R knockout mice

show reduced lung Th2 cytokines associated with lower airway inflammation,

goblet cell metaplasia, and airway hyperresponsiveness. These conflicting results

can be explained, at least in part, by considering that histamine promotes T cell

chemotaxis. Thus, defective T cell trafficking could be responsible for reduced lung

inflammation in allergen-challenged H1R knockout mice (Bryce et al. 2006). In

addition to T cells, human lung macrophages, monocyte-derived macrophages, and

monocyte-derived dendritic cells express higher levels of H1R compared with

precursor monocytes. Histamine induces the release of proinflammatory mediators

(β-glucuronidase, IL-8 and IL-6) by MDM and HLM through the activation of H1R

(Triggiani et al. 2001, 2007; Marone et al. 2001).

H2R is expressed on the parietal cells of the stomach and its activation induces

hydrochloric acid secretion. Nevertheless, H2R knockout mice are phenotypically

normal and show normal basal gastric pH due to gastric mucosa hypertrophy and

increased circulating levels of gastrin (Kobayashi et al. 2000). Interestingly, these

mice show a dysregulated T lymphocyte activity, that is upregulation of both Th1

and Th2 cytokines and decreased OVA-specific IgE production compared with

wild-type and H1R knockout mice (Jutel et al. 2001). H2R is extensively expressed

among immune cells. H2R gene expression increases in human IL-4+ T cells upon

bee venom exposure of non-allergic beekeepers (Meiler et al. 2008) and in

basophils during the first hours of ultra-rush venom immunotherapy (Novak et al.

2012). H2R upregulation is responsible for the inhibition of IL-4 and the stimula-

tion of IL-10 secretion by IL-4+ T cells (Meiler et al. 2008) as well as the inhibition

of histamine release and cytokine secretion from basophils (Novak et al. 2012;

Lichtenstein and Gillespie 1973). In addition, activation of H2R inhibits histamine

release from rodent mast cells (Masini et al. 1982), neutrophil activation (Burde et al.

1989), eosinophil chemotaxis (Clark et al. 1975) and degranulation (Ezeamuzie and

Philips 2000), γδ T cell-mediated cytotoxicity (Truta-Feles et al. 2010), and reduces

the inflammatory response of dendritic cells to microbial ligands (Frei et al. 2013;

Mazzoni et al. 2003). Interestingly, histamine via H2R protects natural killer cells

from myeloid cells-dependent inactivation and fosters their killing of human acute

myeloid leukemia blasts (Brune et al. 1996).

H3R is expressed mainly in the central nervous system (Sadek et al. 2016).

Accordingly, H3R knockout mice exhibit a neurological phenotype: decrease in
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locomotor activity, wheel-running behavior, and body temperature (Toyota et al.

2002). In addition, mild obesity (Takahashi et al. 2002) and reduction in anxiety

(Rizk et al. 2004) were reported in these mice. Levi and collaborators reported the

presence of H3R on sympathetic nerve terminals in the human heart (Imamura et al.

1995). Activation of this receptor leads to the attenuation of norepinephrine release

in conditions associated with enhanced adrenergic activity, such as acute myo-

cardial ischemia (Imamura et al. 1994). Moreover, activation of H3R inhibits

norepinephrine release during protracted myocardial ischemia (Imamura et al.

1996).

H4R has limited homology with the other histamine receptors and is preferen-

tially expressed on immune cells, namely T cells (Truta-Feles et al. 2010; Gantner

et al. 2002; Gutzmer et al. 2009; Leite-de-Moraes et al. 2009; Morgan et al. 2007),

NK cells, dendritic cells (Damaj et al. 2007), eosinophils (Buckland et al. 2003;

O’Reilly et al. 2002), basophils (Shiraishi et al. 2013), and mast cells (Thurmond

et al. 2004; Godot et al. 2007; Hofstra et al. 2003). Interestingly, this receptor

modulates immune cell chemotaxis as well as several other functions of these cells.

At variance with mast cells from wild type mice, mast cells from H4R knockout

mice do not migrate in response to histamine (Hofstra et al. 2003). H4R antagonism

prevents histamine-induced [Ca2+]i increase, mast cell chemotaxis, and submucosal

mast cell accumulation in the trachea of mice after histamine inhalation (Thurmond

et al. 2004). Histamine acting through H4R enhances C-X-C motif chemokine

(CXCL) 12-induced chemotaxis of mast cell precursors, but not mature mast cells

(Godot et al. 2007). H4R can impair cardiac mast cell renin release in a model of

ischemia/reperfusion (Aldi et al. 2014). A role for H4R was also demonstrated in

the modulation of eosinophil and basophil chemotaxis in response to histamine

(Buckland et al. 2003; O’Reilly et al. 2002; Shiraishi et al. 2013). In addition, H4R

activation reduces basophil expression of CD63 and CD203c and the production of

sulfidoleukotrienes following FcεRI cross-linking (Mommert et al. 2016). Interest-

ingly, the involvement of H4R in the development of allergic disorders has also

been shown in vivo. For example, in a mouse model of allergic rhinitis histamine

released from mast cells recruits H4R-expressing basophils to the nasal cavity, an

event that is required for the development of early or late phase nasal responses

following allergen challenge (Shiraishi et al. 2013). Combined treatment with H1R

and H4R antagonists in the challenge phase prevents the development of diarrhea

and intestinal inflammation in an experimental model of peanut sensitization and

challenge, probably by affecting dendritic cell chemotaxis and function (Wang

et al. 2016). H4R knockout mice develop less skin lesions compared with wild type

mice in an experimental model of atopic dermatitis, although pharmacological

blockade of H4R is required during both sensitization and challenge to partially

mimic the results observed in H4R knockout mice (Rossbach et al. 2016). H4R

might also contribute to skin allergic inflammation by activating Th2 cells and

inducing pruritus via IL-31 (Gutzmer et al. 2009). Nevertheless, in a murine

model of allergic asthma intratracheal administration of the H4R agonist

4-Methylhistamine mitigated airway inflammation, probably by inducing the

recruitment of CD4+ CD25+ FoxP3+ T regulatory cells (Morgan et al. 2007).
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These results highlight the complex role of H4R in allergic inflammation. Interest-

ingly, H4R has also been involved in the pathogenesis of non-allergic disorders by

affecting multiple cell types. H4R blockade decreases neutrophil accumulation in

experimental models of peritonitis (Thurmond et al. 2004) and pleurisy (Takeshita

et al. 2003). H4R activation induces chemotaxis of IL-2-activated NK cells, den-

dritic cells, THP-1 cells (a human acute monocytic leukemia cell line) (Damaj et al.

2007), γδ T cells (Truta-Feles et al. 2010), and enhances cytokine secretion from

invariant NK T (iNKT) (Leite-de-Moraes et al. 2009).

4 Mast Cell and Basophil Degranulation and Histamine
Release

Mast cell and basophil degranulation and histamine release is a complex process

that can be initiated and modulated by IgE-dependent and non-IgE-dependent

stimuli activating a wide variety of receptors (Fig. 2), including cytokines like

IL-3, IL-33 and SCF and TLR agonists that can also enhance the response to other

stimuli (Stone et al. 2010; Marone et al. 2005; Galli and Tsai 2012; Borriello et al.

2014b; Voehringer 2012; Schroeder 2011). Cross-linking of FcεRI-bound IgE

induced by antigens, superantigens, and the histamine-releasing factor (which

bind a relatively large fraction of IgE and IgG on the Fab portions) (Kawakami

et al. 2014) results in the release of histamine as well as other factors, including

lipid mediators, cytokines, and chemokines. A key singling protein involved in this

process is the cytosolic spleen tyrosine kinase (Syk) that induces the phosphoryla-

tion of adaptor and signaling molecules (Borriello et al. 2014b; Havard et al. 2011;

Kepley et al. 1999; Lavens-Phillips and MacGlashan 2000; MacGlashan 2007). An

important target of Syk is the Tec family Bruton’s tyrosine kinase (Btk). Indeed,

Btk inhibition blocks mast cell degranulation and IgE-mediated basophil activation

(MacGlashan et al. 2011; Hata et al. 1998; Kuehn et al. 2008). Mast cell and

basophil activation can also be inhibited by negative regulators of signaling

pathways. For example, the lipid phosphatase SHIP-1 dephosphorylates the inositol

ring of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) to yield phospha-

tidylinositol 3,4-bisphosphate (PI(3,4)P2), thereby reducing calcium influx and

cell activation (Huber and Gibbs 2015).

Mast cell and basophil histamine release is also modulated by other factors, like

substance P, complement anaphylatoxins C3a and C5a, endothelin 1, formyl-

methionyl-leucyl phenylalanine (fMLF), many of them acting through GPCRs

(Maurer et al. 2004; Schafer et al. 2013; Yano et al. 1989; Grant et al. 1975;

Siraganian and Hook 1977). Interestingly, mast cells express the MAS-related G

protein-coupled receptor (MRGPR) B2 (mouse) or X2 (human) that binds to and

mediates mast cell activation in response to anti-microbial peptides, basic secreta-

gogues (e.g., substance P, mastoparan, compound 48/80) as well as the peptidergic

drug icatibant, neuromuscular blocking drugs, and fluoroquinolones (McNeil et al.

2015; Subramanian et al. 2011, 2013; Kashem et al. 2011). Mast cell degranulation

events in response to FcεRI crosslinking and MRGPRB2 or X2 (as well as other

Histamine Release from Mast Cells and Basophils



GPCRs) activation are qualitatively and quantitatively different. FcεRI crosslinking
induces a slower but sustained Ca2+ response compared to MRGPRX2 activation

and is associated with granule fusion and the release of PGE2, cytokines, and

vascular endothelial growth factors (VEGFs). On the other hand, MRGPRX2-

induced activation is rapid and associated with a transient Ca2+ response. Inhibition

of IĸB kinase-β (IKK-β) converted the FcεRI-induced degranulation phenotype to

the MRGPRX2-mediated degranulation phenotype. Of note, the different mast cell

degranulation profiles were also confirmed in vivo following FcεRI and MRGPRB2

Fig. 2 Surface receptors expressed by human mast cells. Human mast cells express the tetrameric

high affinity receptor for IgE (FcεRI) and the FcγRIIA, and their cross-linking induces the release

of proinflammatory and immunomodulatory mediators. Mast cells express the KIT receptor

(CD117), which is activated by stem cell factor (SCF). These cells express a plethora of receptors

such as Toll-like receptor (TLR) 2, TLR4, TLR5, TLR6, receptors for chemokines (CCR2, CCR3,

CXCR1, CXCR2, CXCR3, and CXCR4), two receptors for cysteinyl leukotrienes (CysLTR1 and

CysLTR2), two leukotriene B4 receptors (BLT1 and BLT2), the prostaglandin D2 receptor

(CRTH2), the prostaglandin E2 receptor (EP2), two adenosine receptors (A2B and A3), and

histamine H4 receptor (H4R). Mast cells express receptor for various cytokines (IL-4Rα,
IL-5Rα, IFN-γRα, ST2) and the MAS-related G protein coupled receptor (MRGPRX2). These

cells also express receptors for vascular endothelial growth factors (VEGFR1 and VEGFR2), and

VEGFR co-receptors, neuropilin-1 and neuropilin-2 (NRP1 and NRP2), for anaphylatoxins

(C5aR1/CD88, C5aR2 and C3aR), and the high affinity urokinase plasminogen activator receptor

(uPAR). Human mast cells also express co-receptors for T-cell activation [CD40 ligand (CD40L),

tumor necrosis factor superfamily member 4 (OX40L), inducible costimulator ligand (ICOS-L),

programmed death ligands (PD-L1 and PD-L2)]
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activation (Gaudenzio et al. 2016). Two different modes of degranulation and

histamine release that likely require distinct pathways and calcium signaling have

also been described for basophils: the anaphylactic degranulation that consists

in rapid morphologic changes and exocytosis of intracellular granules and is

associated with up-regulation of CD63 (Knol et al. 1991; MacGlashan 2010); the

piecemeal degranulation that consists in granule content secretion without exocy-

tosis and may be associated with CD203c up-regulation (MacGlashan 2012;

Buhring et al. 2004).

Mast cell and basophil degranulation and histamine release may also be hindered

by the concurrent activation of inhibitory receptors (Fig. 3). Inhibitory receptors

can be divided into the Ig receptor and the C-type (calcium dependent) lectin

superfamilies and are characterized by immunoreceptor tyrosine-based inhibition

motifs (ITIMs) that downregulate the activation signals transmitted through immu-

noreceptor tyrosine-based activation motifs (ITAMs). Upon activation of ITIM-

containing receptors, tyrosine residues within the motifs become phosphorylated.

This leads to the recruitment of phosphatases, namely tyrosine phosphatases SHP-1

and SHP-2 and lipid phosphatase SHIP-1. SHP-1/2 inhibits the action of tyrosine

kinase, while SHIP-1 terminates the phosphoinositide 3-kinase (PI3K)-mediated

Fig. 3 Inhibitory receptors expressed by human mast cells (hMC) and basophils (hB) and murine

mast cells (mMC). Human basophils and mast cells share the expression of three inhibitory

allergin receptors (Allergin-1S1, Allergin-1S2, and Allergin-1L) and sialic acid immunoglobulin

(Ig)-like lectins (Siglec)-8. Human mast cells express signal-regulatory protein-α [SIRPα] and
CD300a, whereas human basophils express FcγRIIb, histamine H2 receptor (H2R), and leukocyte

Ig-like receptor (LIR3). Mouse mast cells express paired Ig-like receptor B (PIR-B), myeloid-

associated Ig-like receptor (MAIR)-I, the mast cell function associated antigen (MAFA) and

gp49B1
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pathway (Daeron et al. 2008; Karra and Levi-Schaffer 2011). Several inhibitory

receptors on mast cells and basophils have been characterized, including FcγRIIB,
CD300, and sialic acid binding Ig-like lectin (Siglec)-8.

FcγRIIB is a low affinity IgG receptor that can inhibit IgE-mediated responses

of both mast cells and basophils (Macglashan et al. 2014; Zhu et al. 2002).

Co-aggregation of FcγRIIB and FcεRI suppresses FcεRI-mediated activation.

Interestingly, a chimeric protein composed of key portions of the human γ1 and

the human ε immunoglobulin heavy chains can inhibit FcεRI-mediated activation

of human basophils in vitro and FcεRI-mediated degranulation of murine mast cell

expressing the human FcεRI in an in vivo model of passive cutaneous anaphylaxis.

The CD300 molecules are a family of immunoglobulin receptors that includes

activating (CD300b, CD300e) and inhibitory (CD300a, CD300f) members (Clark

et al. 2009). Mast cells express CD300a and CD300f and their respective murine

orthologs LMIR1 and LMIR3 (Kumagai et al. 2003). LMIR1/CD300a cross-linking

inhibits both FcεRI-dependent and SCF-dependent signaling (Bachelet et al. 2005).
Interestingly, bispecific antibodies that co-aggregate LMIR1/CD300a with either

FcεRI or KIT (CD117) inhibit allergic responses in vivo (Bachelet et al. 2006,

2008). LMIR3/CD300f binding to its ligands ceramide and sphingomyelin inhibits

FcεRI-mediated activation of mast cells in vitro and in vivo (Izawa et al. 2012,

2014). Basophils also express CD300a in the peripheral blood of both healthy and

allergic subjects, and its activation inhibits IgE-mediated anaphylactic degranula-

tion (Sabato et al. 2012, 2014; Gibbs et al. 2012).

Siglecs are a group of sialic acid-binding cell surface proteins predominantly

expressed by immune cells. In particular, Siglec-8 is expressed on human

eosinophils, mast cells, and to a lesser extent on basophils (Kiwamoto et al.

2012). Siglec-8 cross-linking inhibits FcεRI-dependent histamine and PGD2 release

from human mast cells (Yokoi et al. 2008). However, mouse mast cells do not

express Siglec-F, which makes it difficult to understand its function on these cells

in vivo.

5 Biological Effects of Mast Cell and Basophil Histamine
Release

Mast cells and basophils have been involved in several pathophysiological

conditions. Since these cells release a variety of preformed and de novo synthesized

mediators, a specific role for mast cell- or basophil-derived histamine has not

always been identified. Mast cell-derived histamine plays an important role in

conditions associated with vascular leakage like urticaria and anaphylaxis (Meyer

et al. 2013; Cohen and Rosenstreich 1986; Lieberman and Garvey 2016). Its

involvement in other disorders like atopic dermatitis, asthma, and rheumatoid

arthritis might be supported by the pre-clinical results showing that genetic or

pharmacological blockade of H4R ameliorates these conditions (Liu 2014).

Whether H4R activation in these models relies on mast cell- or basophil-derived

histamine has still to be demonstrated. Indeed, in a model Th2-dependent skin
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inflammation H4R blockade was effective in reducing itch and edema even in mast

cell-deficient mice (Cowden et al. 2010).

Mast cell- and basophil-derived histamine may mediate the communication with

other cell types. For example, in a mouse model of allergic rhinitis histamine

released following IgE-mediated activation of mast cells recruits H4R-expressing

basophils to the nasal cavity, an event that was required for the development of

early or late phase nasal responses following allergen challenge (Shiraishi et al.

2013). Mast cell-derived histamine enhances the proliferation and activation of

cholangiocytes and hepatic stellate cells, an event that might be relevant for the

development of sclerosing cholangitis (Jones et al. 2016). Moreover, human dermal

mast cell-derived tumor necrosis factor (TNF)-α and histamine increase CXCL8/

IL-8 expression in human melanoma cell lines (Artuc et al. 2011). Mast cells

activated by IL-33 and immune complexes release IL-10 and histamine that in

turn inhibit LPS-mediated monocyte activation (Rivellese et al. 2015). Similarly,

monocyte activation can also be restrained by basophil-derived histamine released

upon IL-33 stimulation and FcεRI-crosslinking (Rivellese et al. 2014), while

monocyte alternative activation relies on basophil-derived IL-4 and IL-13 follow-

ing IL-3 stimulation and FcεRI-crosslinking (Borriello et al. 2015). Basophil-

derived histamine also enhances IL-17 production by memory CD4 T cells at

least in part by activating H2R and H4R on T cells (Wakahara et al. 2012).

Interestingly, basophil histamine release is altered in some clinical conditions.

For example, basophils isolated from patients with food allergy or severe asthma

show spontaneous histamine release in vitro (May 1976; Sampson et al. 1989;

Schroeder et al. 2013; Findlay and Lichtenstein 1980). IgE-mediated basophil

histamine release is reduced in chronic idiopathic urticaria (CIU) patients (Kern

and Lichtenstein 1976). In particular, CIU patients can be classified as responders

(CIU-R) or non-responders (CIU-NR) on the basis of basophil histamine release in

response to anti-IgE (>10% or <10% of cellular histamine content, respectively).

There is evidence that the pattern of basophil IgE-mediated histamine release

observed in these patients results from altered FcεRI-mediated signaling (Saini

2009; Vonakis and Saini 2008; Vonakis et al. 2007).

6 Conclusions

Several stimuli can induce or modulate mast cell and basophil histamine release.

Although the pathophysiological relevance of this phenomenon has been demon-

strated in some pre-clinical or clinical disorders, the discovery of H4R expressed

mainly on immune cells has uncovered new roles for histamine (possibly derived

from mast cells and basophils) in a wider range of inflammatory and autoimmune

disorders. Moreover, the identification and characterization of inhibitory receptors

expressed by mast cells and basophils as well as distinct modalities of mediator

release upon triggering of different classes of receptors may uncover new therapeu-

tic approaches for modulating mast cell and basophil degranulation and histamine

release.
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