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Abstract

The sigma-2 (σ2) receptor has been validated as a biomarker of the proliferative

status of solid tumors. Therefore, radiotracers having a high affinity and high

selectivity for σ2 receptors have the potential to assess the proliferative status

of human tumors using noninvasive imaging techniques such as Positron Emis-

sion Tomography (PET). Since the σ2 receptor has not been cloned, the current

knowledge of this receptor has relied on receptor binding studies with the

radiolabeled probes and investigation of the effects of the σ2 receptor ligands

on tumor cells. The development of the σ2 selective fluorescent probes has

proven to be useful for studying subcellular localization and biological functions

of the σ2 receptor, for revealing pharmacological properties of the σ2 receptor
ligands, and for imaging cell proliferation. Preliminary clinical imaging studies

with [18F]ISO-1, a σ2 receptor probe, have shown promising results in cancer
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patients. However, the full utility of imaging the σ2 receptor status of solid

tumors in the diagnosis and prediction of cancer therapeutic response will rely

on elucidation of the functional role of this protein in normal and tumor cell

biology.

Keywords

Breast cancer • Cell proliferation • Confocal microscopy • Positron emission

tomography • Sigma-2 receptor

1 Introduction

Sigma (σ) receptors represent a class of proteins thatwere initially identified as a subtype
of the opiate receptors. Subsequent studies revealed that they represented a distinct class

of receptors that are located in a variety of tissues and organs including the central

nervous system (Hellewell et al. 1994;Walker et al. 1990). Two separate σ receptors, σ1
and σ2 receptors, were distinguished based on differences in the binding profile of

benzomorphan compounds and respective molecular weights based on photoaffinity

labeling. σ1 receptors have a molecular weight of ~25 kDa, whereas σ2 receptors have a
molecular weight of ~21.5 kDa (Rothman et al. 1991). The σ1 receptor has been cloned
and displays a 30% sequence homology with the enzyme, yeast C8-C7 sterol isomerase

(Seth et al. 1997; Hanner et al. 1996), but this receptor lacks C8-C7 isomerase activity.

Studies have shown that some neuroactive steroids bind with moderate affinity to σ1
sites and suggested that σ1 receptors may modulate the activity of GABA and NMDA

receptors in the CNS (Maurice et al. 1996, 1997; Romieu et al. 2003).More recently, the

s1 receptor was classified as a receptor chaperone which forms a complex with the

inositol triphosphate receptor at the endoplasmic reticulum (ER) membrane, thereby

regulating ER-mitochondrial Ca2+ signaling and cell survival (Tsai et al. 2009). Since

the σ2 receptor has not been cloned, most of what is known regarding the biology,

function, and subcellular distribution of this receptor has been obtained through the use

of in vitro receptor binding studies in tissues having a high receptor expression, and

fluorescent microscopy studies in cancer cells under cell culture conditions.

2 Relationship Between the Density of s2 Receptors
and Measures of Cell Proliferation

The first group to report that sigma receptors were overexpressed in cancer cells was

Bem et al. (1991), who demonstrated that there is a twofold higher expression of σ
receptors in tumor cells than in nonmalignant tissue. Vilner et al. (1995) later reported a

high density ofσ2 receptors in a panel ofmurine and human tumor cells grownunder cell

culture conditions. The density of σ2 receptors in the cancer cells was generally much

higher than that of the σ1 receptor. These results suggested that the σ2 receptor may

function as a biomarker for differentiating solid tumors from the surrounding, normal

tissues. However, this study did not explore the relationship between the density of σ2
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receptors and the two key properties of cell proliferation, proliferative status and

proliferation rate. The proliferative status of cancer cells is defined as the ratio of

proliferating (P) cells to quiescent (Q) cells in either a solid tumor or cell culture dish

(i.e., the P:Q ratio). Proliferating cells are driven into a quiescent state by either nutrient

deprivation and/or hypoxia in a solid tumor or by nutrient deprivation or contact

inhibition under cell culture conditions. The second property of cell proliferation,

proliferation rate, refers to the time it takes a proliferating (P) cell to pass through the

four different phases of the cell cycle, G1, S, G2, andM phase. Since quiescent cells are

not dividing, they are typically described as being in G0 phase.

In order to determine the relationship between the density of σ2 receptors and
the proliferative status of cancer cells, Wheeler et al. used the mouse mammary

adenocarcinoma cell line 66 (Wallen et al. 1984a, b) to determine if there was a

difference in the density of σ2 receptors between proliferating (66P) and quiescent

(66Q) tumor cells under cell culture conditions. They observed that the density of

σ2 receptors in 66P cells was ~10 times greater than the density measured in 66Q

cells (Fig. 1a) (Mach et al. 1997). The density of σ2 receptors in 66P cells was

Fig. 1 The σ2 receptor
densities in proliferating and

quiescent 66 tumor cells

under cell culture conditions

(a) or in solid tumor

xenografts (b)
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~900,000 copies/cell versus ~90,000 receptors/cell in the 66Q cells. This group also

reported that the expression kinetics of σ2 receptors follows the growth kinetics

of the 66 cells (Al-Nabulsi et al. 1999). Since it took ~4 days for the σ2 receptor
to downregulate in the 66Q cells, the density of the σ2 receptor appears to be

independent of the phase of the cell cycle. Using a graphical method that correlates

the density of σ2 receptors with the P:Q ratio of a tumor determined by flow

cytometry (i.e., the Wheeler equation), a similar P:Q ratio of σ2 receptor density
was observed in solid tumor xenografts of 66 tumors (Fig. 1b) (Wheeler et al. 2000;

Shoghi et al. 2013). These results indicate that the σ2 receptor is a biomarker of the

proliferative status of cancer cells and the density of the receptor is independent of

the proliferation rate. Therefore, σ2 receptor radiotracers have the potential to

measure the proliferative status of human breast tumors using noninvasive imaging

techniques such as Positron Emission Tomography (PET) and Single Photon Emis-

sion Computed Tomography (SPECT). Since many cancer cells of different origin

have a high density of σ2 receptors (Vilner et al. 1995), it is likely that this approach
can be extended to assess the proliferative status of other human tumors, including

head and neck, melanoma, and lung tumors.

3 Identification of s2 Receptor Selective Ligands

Although a number of structurally diverse compounds have been shown to possess a

high affinity to σ receptors (Walker et al. 1990), most of these compounds bind

selectively to the σ1 receptor or have similar affinities to both σ1 and σ2 receptors.
The first σ2 selective ligand reported was the benzomorphan-7-one analog, CB-64D

(Fig. 2) (Bowen et al. 1995a). This compound was synthesized as part of a structure–

activity relationship (SAR) study aimed at improving the affinity of (�)-2-methyl-5-

(3-hydroxyphenyl)morphan-7-one for μ versus κ opioid receptors (Bertha et al.

1994). A second class of compounds having a high affinity for σ2 receptors are the
3-(ω-aminoalkyl)-1H-indole analogs (Perregaard et al. 1995; Moltzen et al. 1995).

These compounds were originally designed to be serotonin 5-HT1A agonists, but

SAR studies resulted in the identification of Lu 28-179 (Soby et al. 2002), also

known as siramesine, which has a high affinity for σ2 receptors and a 140-fold

selectivity for σ2 versus σ1 receptors. Other compounds that were reported to have a

higher affinity for σ2 versus σ1 receptors are: (1) the hallucinogen, ibogaine (Bowen
et al. 1995b; Mach et al. 1995), (2) the mixed serotonin 5-HT3 antagonist/5-HT4

agonist BIMU-1 (Bonhaus et al. 1993), (3) the tropane analog SM-21 (Mach et al.

1999; Ghelardini et al. 2000), (4) the trishomocubane analog ANSTO-19 (Nguyen

et al. 1996), (5) the piperazine analog PB28 (Azzariti et al. 2006), and (6) the

conformational-flexible benzamide analog YUN252 (Mach et al. 2004). Many of

these structures have served as the lead compounds for fluorescent probes and

radioligands for imaging σ2 receptors both in vitro and in vivo.
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4 Development of Fluorescent Probes for Studying
the Subcellular Distribution of s2 Receptors

A number of SAR studies using BIMU-1 as the lead compound have resulted in the

identification of high affinity, high selectivity σ2 receptor ligands (Vangveravong
et al. 2006; Ariazi et al. 2006; Arttamangkul et al. 2000). Themost promising analog

from the initial SAR study was the compound SV-119 which had a σ2 receptor

affinity of 5.2 nM and a σ2:σ1 selectivity of ~275 (Fig. 3a) (Ariazi et al. 2006).

SV-119 was used as a lead compound for the development of the fluorescent probes,

K05-138, SW120, SW107, and SW116 that have proven useful in two-photon and

confocal microscopy studies of σ2 receptors in tumor cells growing under cell

culture conditions (Zeng et al. 2007, 2011). This was accomplished by the recogni-

tion that introduction of a spacer group onto the bridgehead nitrogen group in

SV-119 allowed for the introduction of bulky large fluorescent moieties with only

a modest loss in affinity for the σ2 receptor.
A second compound which has proven to be useful in developing fluorescent

probes for σ2 receptors is PB28. In this case, introduction of a spacer group into the

Fig. 2 Structures of σ2 receptor ligands in the literature
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5-methoxy group enabled the introduction of fluorescent moieties having a high

affinity for σ2 receptors and a good σ1:σ2 selectivity ratio (Abate et al. 2011).

Another promising fluorescent probe for studying the σ2 receptor utilized the

3,4-dihydroisoquinoline-1-one scaffold (Niso et al. 2015) (Fig. 3b). Examples of

Fig. 3 Structures of SV-119 and the fluorescent probes, K05-138, SW120, SW107, and SW116

(a). Structures of the fluorescent probes based on PB28 and the 3,4-dihydroisoquinoline-1-one

scaffold (b)
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fluorescent probes based on SV-119, PB28, and the 3,4-dihydroisoquinoline-1-one

scaffold are shown in Fig. 3.

The fluorescent probes shown in Fig. 3 have provided valuable information regarding

the localization of σ2 receptors in breast tumor cells. Zeng et al. (2007, 2011) conducted

a series of confocal and two-photon microscopy studies in MDA-MB-435 cells

incubated with 30 nMK05-138 (confocal microscopy studies) and SW120 (two-photon

microscopy studies) and five subcellular organelle markers: the mitochondria tracker,

MitoTracker Red CMXRos (20 nM), the endoplasmic reticulum tracker, ER-Tracker™
Red (500 nM), the lysosome tracker, LysoTracker Red DND-99 (50 nM), the nuclear

marker, DAPI (300 nM), or the plasma membrane tracker, FM 4-64FX (5 μg/mL).

The results showed that SW120 and K05-138 partially co-localized with MitoTracker

(Fig. 4a), ER-Tracker (Fig. 4b), LysoTracker, and the plasma membrane tracker,

Fig. 4 Subcellular distribution of SW120 in MDA-MB-435 cells with and without MitoTracker

(a), and ER-Tracker (b). Ki-67 expression and SW120 fluorescent intensity in solid mouse breast

tumors and peripheral blood mononuclear cells (PBMC) of mice by flow cytometric analysis (c)
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suggesting that σ2 receptors may localize in mitochondria, endoplasmic reticulum,

lysosomes, and the plasmamembrane. The data also showed that SW120 andK05-138

did not co-localize with the nuclear marker, DAPI, suggesting that either the σ2 recep-
tor does not exist in the nucleus or SW120 does not enter the nucleus. Similar results

were obtained for the other σ2 fluorescent probes (SW116 and SW107) (Zeng et al.

2007, 2011). This subcellular distribution of σ2 receptors was recently confirmed with

confocal microscopy studies by Abate et al. using the fluorescent probes based on

PB28 (Abate et al. 2011) and the 3,4-dihydroisoquinoline-1-one scaffold (Niso et al.

2015) (Fig. 3b).

The microscopy studies conducted by Zeng et al. (2007) and Abate et al. (2011)

have provided useful information for the interpretation of studies evaluating σ2 receptor
ligands as potential cancer chemotherapeutic agents. Mitochondria are a key organelle

to regulate the intrinsic pathway of apoptosis. Apoptotic signals such as UV irradiation

or treatment with chemotherapeutic agents cause the release of cytochrome C from the

mitochondria and the subsequent activation of caspase-3 leading to an apoptotic cell

death (Jiang andWang 2004). The subcellular localization of σ2 ligands in mitochondria

is consistent with previous studies demonstrating that σ2 ligands trigger apoptosis in

tumor cells by acting on mitochondria (Balakumaran et al. 2009). The endoplasmic

reticulum (ER) serves as a dynamic Ca2+ storage pool (Berridge 2002). σ2 selective
ligands have been reported to induce transient Ca2+ release from the ER, whichmay be a

mechanism for σ2 ligand-induced cell death (Vilner and Bowen 2000). The presence of
the σ2 fluorescent probes in the ER is consistent with these results. Lysosomal proteases,

such as cathepsins, calpains, and granzymes, have been reported to contribute to

apoptosis (Chwieralski et al. 2006). Under physiological conditions, these proteases

are found within the lysosomes but are released into the cytoplasm upon exposure to

cell damaging agents, thereby triggering a cascade of intracellular events leading to

cell death. The σ2 selective ligand siramesine has been reported to cause lysosomal

leakage and induce cell death by caspase-independent mechanisms (Ostenfeld et al.

2005, 2008). The localization of fluorescent σ2 receptor probes in the lysosomes is

consistent with the premise that siramesine induces cell death partially by targeting

lysosomes to cause lysosomal damage, the release of proteases, and eventually cell

death. Evidence has also been reported that σ2 receptors exist in lipid rafts which are
mainly found in the plasma membrane (Gebreselassie and Bowen 2004). Lipid rafts

play an important role in the signaling associated with a variety of cellular events

including adhesion, motility, and membrane trafficking (Brown and London 1998;

Simons and Toomre 2000). The observation that σ2 fluorescent ligands are co-localized
with cytoplasmic membrane markers, and undergo receptor mediated endocytosis, is

consistent with their localization in lipid rafts.

Since the σ2 receptor has been validated as a proliferation marker in cell culture

and in solid tumors, it is possible that σ2 fluorescent probes could preferentially

label proliferating cells versus nonproliferating cells and serve as agents to image

cell proliferation in vivo. To test this hypothesis, nude mice implanted with murine

mammary adenocarcinoma 66 cells (Zeng et al. 2011) were treated with SW120

(50 μg in 100 μL PBS) for 1 h. Both peripheral blood mononuclear cells (PBMC),

which are commonly used as controls for nonproliferative cells, and tumor cells
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were isolated from the mice. These cells were analyzed by flow cytometry for

SW120 uptake and for Ki67 expression, a commonly used proliferation marker.

The data showed that PBMC were Ki67 negative, whereas a large portion of the

tumor cells were Ki-67 positive (Fig. 4c). The data also showed that PBMC were

not labeled by SW120, whereas a portion of the tumor cells were labeled with

SW120. The trend of the positive correlation between Ki67 expression and SW120

labeling indicates that the fluorescent probe may possess in vivo selectivity toward

proliferating cells versus nonproliferative cells. The data also suggest that σ2 recep-
tor ligands hold a potential to serve as cancer chemotherapeutics since they may

selectively target tumor cells in vivo.

5 In Vivo Imaging Studies of s2 Receptors

The conformationally flexible benzamide analog YUN252 has been used in the devel-

opment of PET radiotracers for imaging the σ2 receptor status of solid tumors. The first

PET radiotracers prepared were the 11C-labeled analogs shown in Fig. 5a (Tu et al.

2005). MicroPET and tumor uptake studies were conducted with [11C]1-4; the most

promising analog proved to be [11C]4. Although all four analogs had a high affinity for

σ2 receptors, the optimal lipophilicity of [11C]4 played an important role for the high

tumor uptake and suitable signal:normal tissue ratios for imaging (Fig. 5b). These data

indicate that both receptor affinity and lipophilicity are important properties for suc-

cessful receptor-based tumor imaging agents.MicroPET/CT imaging studies in EMT-6

breast tumors show the potential of [11C]4 as a radiotracer for imaging the σ2 receptor
status of breast tumors with PET.

Although [11C]4 demonstrated feasibility in themicroPET imaging studies described

above, the short half-life of carbon 11 (t1/2¼ 20.4 min) is not ideal for the utilization of

PET radiotracers inmulticenter clinical PET imaging studies. The longer half-life of 18F

(t1/2 ¼ 109.8 min) compared to 11C places fewer time constraints on tracer synthesis,

allows imaging studies to be conducted up to 2 h after injection of the radiotracers, and

often results in higher tumor:normal tissue ratios relative to their 11C-labeled analogs.

A number of 18F-labeled conformationally flexible benzamide analogs (Fig. 6a) have

been evaluated in murine breast tumor models (Tu et al. 2007). The design of these

analogs involved replacement of the 2-methoxy group in the benzamide ring with

a 2-fluoroethoxy group. The 2-fluoroethoxy- for methoxy-substitution is a common

strategy used in the development of 18F-labeled radiotracers. Biodistribution studies in

female Balb/c mice bearing EMT-6 tumor allografts demonstrated that all four 18F-

labeled compounds had a high tumor uptake (2.5–3.7% ID/g) and acceptable tumor:

normal tissue ratios at 1 and 2 h post-i.v. injection. The moderate to high tumor/

normal tissue ratios and the rapid clearance from the blood for [18F]ISO-1 and [18F]

ISO-2 suggest that these radiotracers are likely the best candidates for imaging of solid

tumors with PET. MicroPET imaging studies indicate that [18F]ISO-1 and [18F]ISO-

2 are suitable probes for imaging the σ2 receptor status of solid tumors with PET

(Fig. 6b).

Molecular Probes for Imagingthe Sigma-2 Receptor: In Vitroand In Vivo. . . 317



Anumber of 18F- and 11C-labeled analogs of the σ2 receptor ligands developed in the
Abate lab have been reported in the literature. The 3,4-dihydroisoquinoline-1-one

analog, [18F]5, which can be considered to be a rigid analog of the conformationally

flexible benzamide derivatives described above, was found to have a high affinity for

σ2 receptors and an excellent selectivity for σ2 versus σ1 receptors (Fig. 6c). This

compound was developed as a radiotracer for imaging σ2 receptors in the CNS;

unfortunately, the radiotracer has very low brain uptake, which may be a consequence

of it being a substrate for P-glycoprotein. The aminotetralin analog, [11C](S)-6, which is
structurally related to PB28 and has a good σ2 affinity and reasonable selectivity versus
σ1 receptors, was evaluated in a similar manner and was found to have a high uptake in

Fig. 5 Structure of YUN252 and 11C-labeled radiotracers, [11C]1–4 (a). The relationship between
tumor uptake and log P is shown in (b)

318 C. Zeng et al.



rodent brain. Surprisingly, this radiotracer had only a modest uptake in EMT6 mouse

breast tumor allografts. However, the tumors used in this imaging studywere quite large

and likely had regions of tumor necrosis, and possibly quiescence, which could reduce

the uptake of a σ2 receptor imaging agent.

A second technique which could be used in molecular imaging studies of tumors

is Single Photon Emission Computed Tomography or SPECT. This technique was

the Nuclear Medicine imaging procedure of choice prior to the emergence of clinical

PET imaging studies. Although it does not have the prominence it once had, SPECT

still represents a sensitive molecular imaging technique and would benefit from the

Fig. 6 Structures of [18F]ISO-1 and [18F]ISO-2 (a) and microPET imaging studies of these

radiotracers in a murine model of breast cancer (b). Structures of the PET radiotracers based on

PB28 and the 3,4-dihydroisoquinoline-1-one scaffold (c)
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development of receptor-targeting radiotracers for tumor imaging studies. One advan-

tage SPECT has over PET is that it does not require a cyclotron to produce the

radionuclides used in the radiolabeling studies; the longer half-lives of the SPECT

radionuclides (e.g., 6 h for 99mTc and 13.2 h for 123I) make it more accessible for

delayed imaging studies. A limited number of 123I- and 99mTc-labeled σ2 receptor

probes have been reported in the literature. The presence of an iodo group in compound

ISO-2 indicates that it can be readily labeled with 123I, and gammaSPECT/CT images

of [123I]ISO-2 in a murine model of breast cancer indicate that it has potential as

an SPECT radiotracer for translational imaging studies (Fig. 7a). A 99mTc-labeled

analog of SV-119 (Fig. 7b) has also been prepared and evaluated in a murine model

of breast cancer (Mach et al. 2001). Since there are no stable isotopes of Tc, in vitro

binding studies to determine the σ2 receptor affinity and selectivity versus σ1 receptors
were conducted with the corresponding rhenium (Re) analog. Re-7 was found to

have a reasonable σ2 affinity and good selectivity versus σ1 receptors. In vivo studies

with [99mTc]7 demonstrated a clear visualization of 66 murine breast tumor xenografts

in nude mice (Fig. 7b). These data suggest that [99mTc]7 may also be a useful radio-

tracer for SPECT imaging studies of breast cancer patients.

Fig. 7 Structure of [123I]ISO-2 and gammaSPECT imaging in a murine model of breast cancer

(a). Structure of [99mTc]7 and microSPECT studies in the same murine model of breast cancer (b).
The arrow points to the tumor in each image
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6 The Importance of Imaging Proliferative Status in Cancer
Patients

Treatments that specifically target proliferation and produce a cytostatic response are

not well evaluated by traditional imaging methods such as MRI, CT, and bone scan

(Marinovich et al. 2013). Measures of cancer metabolism using the radiolabeled

glucose analog, [18F]FDG, provide information about cancer response to cytotoxic

and endocrine agents, but cannot measure proliferation (Avril et al. 2001), prolifera-

tion rate, or tumor proliferative status (Shoghi et al. 2013). Many researchers have

noted that there is a need for new biomarkers to enable patient selection for new cell-

cycle drugs and sophisticated methods need to be developed to measure the effect of

these drugs on cellular proliferation (Migliaccio et al. 2014).

An excellent method of imaging cell proliferation would be to develop a tracer

that closely mimics the expression of Ki-67, the “gold standard” method for

measuring proliferation in histology studies. Ki-67 is expressed in all phases of

the cell cycle and has low expression in quiescent tumor cells and senescent normal

tissue. While the radiolabeled thymidine analog, [18F]FLT, is well established as a

proliferation marker, there are two key features that create the need to find an

alternative agent to image proliferation: (1) [18F]FLT has high background uptake

in bone marrow, making it impossible to monitor bone metastasis and (2) [18F]FLT

is taken up only during S phase, measuring proliferation rate, and not during G1, M,

and G2, like Ki-67, which measures proliferative status.

While Ki-67 is a good biomarker for measuring proliferative status in biopsy

specimens, there are no small molecules that could be used in the development of

PET radiotracers for imaging Ki-67. The σ2 receptor behaves exactly like Ki-67 and
has small molecules that bind with high affinity, allowing PET radiotracer devel-

opment. Therefore, the σ2 receptor radiotracers described above provide the only

means to date to image the proliferative status of solid tumors with PET.

The only σ2 selective PET radiotracer that has been used in human studies is [18F]

ISO-1 (Fig. 6). There is a high correlation between uptake of [18F]ISO-1 and the P:Q

ratio of 66 solid mammary tumors (Fig. 8a) (Shoghi et al. 2013). These data indicate

that [18F]ISO-1 images both proliferating and quiescent tumor cells. An early valida-

tion study in a dichotomous group of patients with head and neck, lymphoma, and

breast cancer demonstrated specific uptake in cancer with ability to stratify patients

into high or low Ki-67 scores based on [18F]ISO-1 uptake (Fig. 8b) (Dehdashti et al.

2013). The results of this study provided the foundation for an expanded clinical trial

in breast cancer patients which is currently ongoing at the University of Pennsylvania.

Additionally, bone marrow uptake was at a low level, making this a possible imaging

agent for bone metastasis (Fig. 8c), in contrast to what has been reported for [18F]FLT

(Mankoff et al. 2005; Shields et al. 1998).

In addition to identifying primary tumors and metastases, imaging the proliferative

status with [18F]ISO-1 could be used to guide cancer therapy. An example of this is the

therapies targeting the cyclin-dependent kinase 4/6 (CDK4/6). The current indication

for the newly approved CDK 4/6 inhibitor, palbociclib, is for primary therapy of ER-

expressingmetastatic breast cancer, where the addition of palbociclib has been shown to
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provide an average clinical benefit (Beaver et al. 2015). Currently, the use of palbociclib

is guided by the same marker used to direct endocrine therapy, namely the presence of

hormone receptors. However, it is difficult to predict which individual patients will

benefit from this intervention (Carey and Perou 2015). There is evidence that pro-

liferative measures, like Ki-67, provide an early indication of response to endocrine

therapy. In the Immediate Preoperative Anastrozole, Tamoxifen, or Combined with

Tamoxifen (IMPACT) trial, pretreatment Ki-67 levels were prognostic for endocrine

response and the change in Ki-67 from baseline to 2 weeks after therapy initiation was

predictive; in multivariate analysis only the 2-week value was an independent predictor

of risk and long-term outcome (Klintman and Dowsett 2015). Therefore, a PET study

with [18F]ISO-1 to measure proliferative status is expected to be useful in identifying

patients likely to have a favorable response to CDK4/6 inhibitors.

Fig. 8 Correlation of [18F]ISO-1 uptake and P:Q ratio in a murine model of breast cancer (a) and
with Ki-67 score in a heterogeneous population of cancer patients (b). PET imaging studies of [18

F]ISO-1 in a patient with lymphoma having a bone metastasis (c)
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7 Molecular Identification of the s2 Receptor

Although the above preclinical and clinical imaging studies have identified the

σ2 receptor as a biomarker for imaging solid tumors, the clinical significance of this

protein as a receptor-based marker of cell proliferation has been impeded by the fact

that the molecular identity of this protein was not known. The early work of Bowen

et al. yielded valuable information regarding the molecular weight of the σ2 recep-
tor, its localization in lipid rafts, and its involvement as a mediator of cell death

(Bowen 2000; Gebreselassie and Bowen 2004). However, these studies did not lead

to either the sequencing of the σ2 receptor protein or the identification of the gene

encoding this protein.

In 2011, the Mach group reported their work to determine the molecular identity

of the σ2 receptor. This group developed a strategy to utilize a σ2 selective photo-
affinity probe, WC-21, to irreversibly label σ2 receptors in rat liver membrane

homogenates (Xu et al. 2011). WC-21 contains an azide moiety for the photoaffinity

tagging of the protein and an FITC group for protein visualization (Fig. 9a). WC-21

exhibits high binding affinity for sigma-2 receptors (Ki¼ 8.7 nM) and relatively low

binding affinity for sigma-1 receptors (Ki > 4,000 nM). The rat liver membrane

homogenates were photolabeled with 100 nM WC-21 and then separated by gel

electrophoresis. The western blot analysis using anti-FITC antibodies showed that

WC-21 labeled a protein band at ~24 kD. Labeling of this protein band with WC-21

could be blocked by DTG and haloperidol, which are ligands with high affinities to

σ1 and σ2 receptors, as well as RHM-1, which is the σ2 ligand. These data suggest
that WC-21 labeled proteins are σ2 receptors. Proteomic studies of the protein in the

~24 kD band labeled byWC-21 identified progesterone receptor membrane compo-

nent 1 (PGRMC1). A review of the literature revealed a number of similarities

between PGRMC1 and sigma-2 receptors: (1) both PGRMC1 and σ2 receptors are
cancer biomarkers and therapeutic targets, (2) both are found in microsomal

membranes and have similar subcellular localization, (3) both are associated with

cytochrome P-450 proteins, and (4) progesterone binds to both PGRMC1 and

σ2 receptors with the modest affinity. It is also important to note that the molecular

weight of the protein sequence of the PGRMC1 is 21.4 kDa, which is virtually

identical to the 21.5 kDa of the σ2 receptor identified previously (Hellewell et al.

1994). Therefore, PGRMC1 was chosen for further validation.

Receptor binding studies showed that the PGRMC1 ligand, AG-205, and the

known σ2 ligands, DTG, siramesine, SV119, and WC-26, readily displaced σ2
radioligand, [125I]RHM-4, binding in HeLa cell membrane homogenates. Knock-

down of PGRMC1 using a PGRMC1-specific siRNA reduced the binding of [125I]

RHM-4 to HeLa cells (Fig. 9a), whereas the overexpression of PGRMC1 in HeLa

cells increased the binding of [125I]RHM-4. Knocking down PGRMC1 in HeLa

cells decreased caspase-3 activation induced by WC-26, suggesting that σ2 ligand-
induced caspase-3 activation is mediated by PGRMC1. Taken collectively, the

results of these studies suggest that the PGRMC1 protein complex is the putative

σ2 receptor binding site.
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Recently, Izzo and colleagues reported the link between theσ2 receptor andPGRMC1

during the discovery and development of small molecule therapeutics targeting beta

amyloid (Aβ) 1-42 oligomers for treating Alzheimer’s disease (AD) (Izzo et al. 2014).

Soluble oligomers of Aβ have been recognized to be early and key intermediates in AD

related synaptic dysfunction. Soluble Aβ oligomers caused synaptic dysfunction and

impaired performance in memory tasks. Alterations in membrane trafficking induced by

Aβ oligomers are believed to mediate synaptic dysfunction. By screening a library of

Fig. 9 Photoaffinity labeling of the PGRMC1 using the σ2 receptor photoaffinity probe WC-21

(a). Co-localization of the PGRMC1 with the σ2 fluorescent probe SW120 (b)
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central nervous systemdrug-like smallmolecules for their abilities to reverseAβ-induced
membrane trafficking deficit in primary neurons, the lead compounds were identified.

These compounds can displace Aβ oligomer binding to synaptic puncta, and prevent and

reverseAβ oligomer-induced synapse loss in primary neuronal culture, as well as reverse

the memory loss in mouse models of AD. In order to identify the molecular target of

the lead compounds, these compounds were examined for their activities to displace

radioligand binding to receptors or for their effects on enzyme activities for 100 receptors

and enzymes in the central nervous system. As a result, these compounds were found to

be σ2 receptor ligands. Since PGRMC1 has been reported to be associated with the

σ2 receptor, validation of PGRMC1 as a potential molecular target of the σ2 ligands was
conducted. The data showed that knockdown of PGRMC1 with increasing doses of

siRNA decreased Aβ binding to neurons up to 91% in a dose dependent manner.

Incubation of PGRMC1 antibody against the C-terminal amino acids 185–195 of

PGRMC1 in live cells for 30 min significantly reduced Aβ oligomer binding to hippo-

campal and cortical neurites. These data suggest that PGRMC1 is a key mediator in Aβ
oligomer-induced synaptic dysfunction. That bothσ2 ligand treatment and knockdownof

PGRMC1 can reduce Aβ oligomer binding to neurons strongly supports the concept that

PGRMC1 or its closely associated proteins contain the σ2 receptor binding site.
In another recent report, the Mach group demonstrated the positive correlation

between PGRMC1 protein expression and σ2 fluorescent probe binding activity in rat
hippocampal cell culture (Zeng et al. 2015). In this study, the PGRMC1 protein levels

were examined in rat primary cultures of neurons, astrocytes, oligodendrocytes,

and microglia cells by immunohistochemistry. The σ2 receptor binding activities of

SW120, a σ2 fluorescent probe, were also examined in the aforementioned cell types.

The data showed that the PGRMC1 is expressed in all brain cell types but with

different expression levels. The expression level of PGRMC1 in neurons is consis-

tently higher than that in astrocytes, oligodendrocytes, and microglia. Similarly,

SW120 binding activity is also high in neurons and relatively low in astrocytes,

oligodendrocytes, and microglia. In order to study whether PGRMC1 and SW120

co-localize in the cells, double staining of a rat hippocampal cell mixture for PGRMC1

with anti-PGRMC1 antibodies and the σ2 receptor with SW120 was performed. The

results showed that PGRMC1 and SW120 partially co-localized in the same subcellu-

lar organelles of cells and PGRMC1 protein levels and SW120 binding activity were

highly correlated (the Pearson correlation coefficient is 0.818) (Fig. 9b). These results

are consistent with our previous report that the PGRMC1 protein complex is the

putative σ2 receptor binding site.
Two recent reports have challenged the concept that the σ2 receptor binding site

resides within the PGRMC1 protein complex. Abate and colleagues (Abate et al.

2015) stably silenced PGRMC1 with shRNA targeting PGRMC1 or overexpressed

PGRMC1 in human MCF7 adenocarcinoma cells. Western blot analyses showed

that PGRMC1 protein level was reduced by about 80% in PGRMC1 knockdown

cells, whereas PGRMC1 protein level is increased by about twofold in PGRMC1

overexpressed cells. Scatchard analyses with radioligand [3H]DTG showed that

the σ2 receptor densities in wild-type, PGRMC1 knockdown and PGRMC1 over-

expressed cells are essentially the same. They also showed that AG205, a known
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PGRMC1 ligand, did not displace [3H]-DTG in the competition binding assay in rat

liver membranes (Ki > 10,000 nM). The data suggest that PGRMC1 is not the

binding site of DTG and does not affect the DTG binding site either.

In another report, the Ruoho group knocked out or overexpressed PGRMC1 using

CRISPR/cas9 inhibition technology in a mouse motor neuron-like cell line, NSC34

cells (Chu et al. 2015). Western blot analysis showed that PGRMC1 expression was

reduced by more than 90% in knockdown cells and dramatically increased in over-

expression cells. Scatchard analysis using [3H]DTG showed that the maximal

σ2 receptor densities (Bmax) and the binding affinities (Kd) of [3H]DTG were similar

in the wild-type, PGRMC1 knockout and overexpression cells. In addition, using a

σ2 photoaffinity probe [125I]-iodoazido-fenpropimorph ([125I]IAF) developed in this

group (Fontanilla et al. 2008), they showed that the intensities of the [125I]IAF

photolabeled protein band (~18 kDa) on an SDS gel were similar in the wild-type

and PGRMC1 knockout cells, and this band could be protected by DTG but not (+)-

pentazocine, a specific σ1 ligand. These results suggested that PGRMC1 and the

σ2 receptor are distinct binding sites. However, the molecular weight of the protein

labeled by [125I]IAF (~18 kDa) is significantly lower than the 21.5 kDa molecular

weight of the σ2 receptor reported previously (Hellewell et al. 1994).

One possible explanation for these discordant findings is that since the PGRMC1

is a protein complex containing one or more partner proteins, the ligands used in the

above studies label different members of the PGRMC1 protein complex. That is,

the azide group of WC-21 comes in contact with PGRMC1, but the DTG binding

site resides on one of the partner proteins making up the PGRMC1 protein complex.

Studies aimed at identifying the different partner proteins that bind to the PGRMC1

and form the σ2 receptor binding site should clear up the discordant observations

described above.

8 Conclusions

The σ2 receptor continues to be an important protein in the field of tumor biology. The

high expression of this receptor in proliferating versus quiescent breast tumors

indicates that the σ2 receptor is an important clinical biomarker for determining the

proliferative status of solid tumors using the functional imaging techniques PET and

SPECT. The σ2 receptor fluorescent probes identified the subcellular localization of

σ2 receptors using confocal and two-photon microscopy techniques, and this informa-

tion has proven useful in identifying the mechanism of action of σ2 receptor ligands
as cancer chemotherapeutics. The full utility of the σ2 receptor in the diagnosis,

prediction of therapeutic response, and treatment of cancer will rely on additional

studies clarifying the functional relationship between the σ2 receptor binding site and
PGRMC1, and the functional role of this protein complex in normal and tumor cell

biology.
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