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Abstract

Although the eye is an accessible organ for direct drug application, ocular drug

delivery remains a major challenge due to multiple barriers within the eye. Key

barriers include static barriers imposed by the cornea, conjunctiva, and retinal

pigment epithelium and dynamic barriers including tear turnover and blood and

lymphatic clearance mechanisms. Systemic administration by oral and
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parenteral routes is limited by static blood–tissue barriers that include epithelial

and endothelial layers, in addition to rapid vascular clearance mechanisms.

Together, the static and dynamic barriers limit the rate and extent of drug

delivery to the eye. Thus, there is an ongoing need to identify novel delivery

systems and approaches to enhance and sustain ocular drug delivery. This

chapter summarizes current and recent experimental approaches for drug deliv-

ery to the anterior and posterior segments of the eye.

Keywords

Anterior segment • Implants • Microparticles • Nanomedicines • Ocular
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1 Introduction

Ocular drug delivery systems or dosage forms range from the most common eye

drops and other conventional formulations that are dosed daily to more complex

implant systems that can be dosed once every few years. Conventional dosage

forms like solutions, suspensions, emulsions, and ointments are only able to treat a

limited number of ocular diseases. Ocular inserts and/or implants; preformed gels;

in situ gels; microparticles; liposomes; nanotechnology-derived drug delivery

systems such as nanoparticles, nanoemulsions, and nanomicelles; and the physical

approaches to enhance drug delivery like iontophoresis and microneedles are some

of the widely investigated ophthalmic drug delivery systems and approaches to

meet unmet medical needs while overcoming ocular drug delivery challenges.

Each ocular tissue layer might act like a barrier based on drug physicochemical

properties, drug carrier properties, and clearance mechanisms of a given route of

administration. Thus, a delivery system or approach should be optimized for a given

target tissue. For drug delivery purposes, the eye can be divided into two major

segments, the anterior segment from the front of the eye to the lens and the posterior

segment including eye tissues beyond the lens. These two different ocular regions

are unique and face different challenges in drug delivery and should be dealt

separately. Current studies are promising in terms of overcoming the challenges

in treating various anterior and posterior segment diseases.

This chapter will briefly discuss the general considerations for ocular drug

delivery and focus on drug delivery to both the anterior and posterior segments of

the eye. The challenges, different application routes, and recent efforts to overcome

these challenges will be elaborated for both segments separately.

2 General Considerations for Ocular Drug Delivery

A multitude of ocular diseases affect millions of individuals all over the world, and

most of them have a significant negative impact on vision, leading to a decrease in

patients’ quality of life. The major ocular diseases include age-related macular
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degeneration (AMD), diabetic retinopathy (DR), cataract, uveitis, and glaucoma,

which can lead to blindness unless treated (Pascolini and Mariotti 2012).

The human eye is a 7.5 g globular structure with a diameter of approximately

24 mm, comprised of various tissues each presenting different features and playing

a necessary role in vision (Hosoya et al. 2011). Since the eye is an extension of the

central nervous systems, it is well protected from toxic materials through multiple

barriers that inherently restrict drug delivery. Drug delivery barriers are specific

depending on the target tissue and administration route (Gaudana et al. 2009, 2010).

One of the main problems with ocular drug delivery via conventional dosage

forms is eye irritation that results in patient discomfort as well as reduced ocular

bioavailability due to reflex tear flow. Most of the ophthalmological drugs are weak

bases, and to enhance their solubility, they are usually formulated in an acidic pH,

which may result in poor ocular diffusion due to the ionized state of the drug

molecule. Another drug-related concern for ocular drug delivery is frequent dosing

to maintain therapeutic amounts in the target tissue due to short drug residence time

in the precorneal area. Drug administered in a drop is rapidly drained into the nose

via the nasolacrimal ducts, resulting in unwanted systemic absorption and side

effects.

Several factors need to be considered when designing an ocular drug delivery

system that overcomes current limitations. These include improved dose accuracy,

enhanced ocular bioavailability by overcoming static and dynamic barriers, and

sustained and targeted drug delivery in order to enhance treatment efficacy and

patient convenience (Macha and Mitra 2003).

2.1 Drug Administration Routes

Ocular barriers are generally specific for application route. The main administration

routes for ocular drug delivery include topical, periocular, intraocular, and

systemic.

Topical administration is the most common route for treating diseases of the

anterior segment of the eye, due to ease of application, drug localization and

adequate efficacy, and low cost. However, only about 30–50 μl of ophthalmic

solution is delivered using a dropper, due to limited holding capacity of the

precorneal area. The eye drop mixes with tears and drains rapidly from the eye

surface via nasolacrimal drainage till it reaches approximately 7 μl, the normal

resident tear volume in the eye. As a result of this and continuous tear replacement,

drug on the eye surface is rapidly lost, and the remaining drug encounters perme-

ability barriers, resulting in less than 5% dose delivery to the anterior segment of the

eye for most therapeutic agents. Drug entering the intraocular tissues is rapidly

cleared through turnover of aqueous humor and blood circulation. Therefore,

frequent drug application is required to maintain adequate drug concentrations in

the eye. In addition to low corneal permeability, short precorneal residence time is a

critical rate-limiting factor for drugs to cross corneal barrier after topical instillation

(Shell 1985; Lee and Robinson 1986; Hughes et al. 2005). Because of poor drug
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delivery, topical administration is usually reserved for ocular surface and anterior

segment diseases but not posterior segment diseases, although there are studies

indicating that topical application can deliver drugs to the posterior segment of the

eye (Furrer et al. 2009).

Oral and parenteral applications are the most common methods for systemic

delivery, with the oral route being more convenient. Even though systemic admin-

istration might be useful in treating posterior segment eye diseases, high doses and

frequent dosing may be required since there are various limitations including

extensive drug dilution in the blood, low cardiac output to the eye, and blood–

ocular barriers that restrict drug permeability. Furthermore, drugs administered by

the systemic route are subjected to metabolism by the liver and clearance by the

kidney, resulting in only a small quantity of the drug typically reaching the vitreous

humor (Furrer et al. 2009; Duvvuri et al. 2003; Barar et al. 2008). High drug doses

and frequent administrations usually result in systemic side effects.

Subconjunctival and sub-Tenon routes are commonly employed periocular

routes for off-label drug dosing via injections. Other periocular modes of adminis-

tration include posterior juxtascleral, peribulbar, and retrobulbar. The sclera has a

large surface area (16.3 cm2) (Olsen et al. 1998), and the subconjunctival space can

expand and serve as a depot location for both anterior and posterior segment drug

delivery (Ranta et al. 2010; Mac Gabhann et al. 2007).

When compared to noninvasive modes of administration including topical and

oral routes, intraocular administration via injection or implantation is more difficult

and uncomfortable for the patients; however, it is the only option to treat the

diseases of the posterior segment of the eye in most cases. Intravitreal injection,

one type of intraocular injection, gained widespread acceptance in the recent years

with the commercial success of a few approved drug products. Other intraocular

routes of administration include subretinal and suprachoroidal routes. Thus,

intravitreal, periocular, subretinal, and suprachoroidal routes are the key routes

that have been studied to overcome the drug delivery challenges where topical and

systemic applications were not adequate (Gaudana et al. 2009; Raghava

et al. 2004). Key advantages and disadvantages of the intraocular as well as

conventional drug administration routes are summarized in Table 1.

2.2 Pharmacokinetic Considerations

Ocular pharmacokinetics including absorption, distribution, metabolism, and

excretion are more complicated and harder to describe than systemic pharmacoki-

netics. This is due in part to the unique structure of the eye, various application

routes, and formulation types that are used for ocular drug delivery. Since it is

difficult to collect ocular pharmacokinetic data and data modeling may be difficult,

the literature is very limited about ocular pharmacokinetics and mostly covers the

measurement of drug levels in aqueous humor following ocular administration

(Macha and Mitra 2003; Schoenwald 1990; Mishima 1981; Davies 2000). It is

difficult to develop quantitative predictions for interspecies dose adjustments since

B. Yavuz and U.B. Kompella



most of these studies were performed in rabbit eyes with different anatomical and

physiological features (such as blinking rate, tear volume, and corneal dimensions)

relative to human eyes and because there is little or no data available in human eyes.

However, predictive models are being developed to estimate vitreal half-life of a

new chemical entity (Durairaj et al. 2009a).

Drug physicochemical properties such as molecular weight, solubility,

lipophilicity, and degree of ionization play an important role in drug absorption

into the eye. The cornea is the most important barrier with a multilayered structure

for drug absorption into the anterior segment; however, the conjunctiva is generally

more permeable than the cornea. Elimination processes from the eye vary for

different drugs. Tear drainage, aqueous humor turnover, and entry into systemic

circulation from the eye tissues are some of the major elimination routes. These

aspects and ocular pharmacokinetics are discussed in detail in another chapter.

Table 1 Advantages and disadvantages of key routes for ocular drug delivery (modified from

Gaudana et al. 2010)

Route Advantages Disadvantages

Topical – Noninvasive

– Self-administration possible

– Patient convenience

– Sustained delivery for a day is possible;

inserts allow more prolonged release

– Low ocular bioavailability

– Nasolacrimal drainage

– Epithelial barriers

– Not yet approved/effective for

posterior segment

Systemic – Noninvasive

– Self-administration possible

– Patient convenience

– Low ocular bioavailability

– Blood–aqueous barrier

– Blood–retinal barriers

– Systemic toxicity and side

effects

Periocular/

suprachoroidal

– Delivery possible for both anterior and

posterior segments

– Possible depot site

– Invasive

– Patient inconvenience

– Clearance by circulation

– Retinal pigment epithelial

(RPE) barrier for retinal

delivery

– Potential hemorrhage

Subretinal – Useful for retinal gene delivery

– Bypasses RPE barrier

– Sustained retinal gene delivery

– Invasive

– Patient inconvenience

– Retinal detachment and risk of

retinal damage

Intravitreal – Effective retinal delivery

– Sustained delivery up to about 3 years

– Bypasses multiple ocular barriers

– 100% vitreal bioavailability

– Invasive

– Patient inconvenience
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2.3 Transporters in the Eye

Several transporters including influx and efflux transporters are present in the

cornea, conjunctiva, retina and blood–ocular barriers, which may influence drug

bioavailability (Gaudana et al. 2009; Macha and Mitra 2003). Modifications

targeting these transporters might be an alternative approach to improve ocular

bioavailability of drugs.

Efflux transporters tend to reduce cellular bioavailability by transporting drugs

out of the cell. Key efflux transporters associated with ocular tissues are

P-glycoprotein (P-gp) and multidrug resistance protein (MRP), which belong to

the ATP-binding cassette (ABC) superfamily (Eytan and Kuchel 1999; Dey

et al. 2003; Mannermaa et al. 2006). P-gp effluxes lipophilic drugs and prevents

drug accumulation in the cells. P-gp is present in the cornea, conjunctiva, ciliary

nonpigmented epithelium, iris, and retina (Saha et al. 1998; Wu et al. 1996). MRP

works in a similar way as P-gp to efflux organic anions and their conjugates

(Aukunuru et al. 2001; Steuer et al. 2005).

On the other hand, influx transporters that belong to the solute carrier (SLC)

superfamily transport essential nutrients and xenobiotics across biologic

membranes (Hosoya et al. 2005; Hosoya and Tachikawa 2012). Influx transporters

include amino acid, peptide, vitamin, glucose, lactate, and nucleoside carriers.

Designing prodrugs targeting these influx transporters has been an important

approach for ocular drug delivery, and two key influx transporters are the amino

acid and peptide transporters. Some amino acid transporters identified in ocular

tissues include ASCT1, ASCT2, B(0,+), LAT1, and LAT 2 (Hosoya et al. 1997,

2005; Hosoya and Tachikawa 2012; Hosoya and Lee 1997; Jain-Vakkalagadda

et al. 2003, 2004). Peptide transporters in the eye have also been investigated, and it

was reported that PEPT1 and PEPT2 were detected in the corneal epithelium

(Zhang et al. 2008; Xiang et al. 2009). In addition to these transporters, organic

cation/anion, monocarboxylate, nucleoside, and vitamin transporters have been

identified in various ocular tissues (Talluri et al. 2006; Janoria et al. 2006).

Both anterior and posterior segment tissues of the eye express various

transporters, which are promising for the design of prodrugs for transporter-targeted

drug delivery.

3 Drug Delivery to the Anterior Segment of the Eye

3.1 Recent Anterior Segment Drug Delivery Approaches

Various approaches have been studied in order to improve drug delivery across

ocular tissues and enhance therapeutic efficacy of drugs intended for the treatment

of anterior segment diseases such as dry eye syndrome, conjunctivitis, glaucoma,

postoperative inflammation, and uveitis. Conventional dosage forms including

solutions, suspensions, emulsions, and ointments are routinely used for treating

anterior segment diseases. Viscous gels, mucoadhesive agents, prodrugs, and
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nanosystems are some of the novel approaches employed to increase or sustain drug

delivery and efficacy, to reduce systemic side effects, and to improve patient

comfort and compliance. Some key novel dosage forms are further discussed

below.

3.1.1 Mucoadhesive Formulations
Increasing the retention time in the precorneal area is one of the main approaches to

enhance ocular bioavailability. Mucoadhesion, which refers to attachment to mucus

either by hydrogen bonding or electrostatic binding with mucin layer, may influ-

ence drug absorption (Sigurdsson et al. 2013). The most common mucoadhesives

employed in ocular formulations are water-soluble polymers that cannot cross

ocular barriers such as the polyacrylic derivatives including carbomers and

thiomers, xanthan gum, carrageenan, chitosan, and hyaluronic acid. Bioadhesive

microspheres are also prepared to adhere to ocular mucin layer and prolong corneal

contact time of any associated therapeutic agents (Gu et al. 1988; Ruponen and

Urtti 2015; Kaur and Smitha 2002). Horvat et al. (2015) tested new hyaluronic acid

(HA) derivatives for their mucoadhesive properties in ocular formulations (Horvat

et al. 2015). Cross-linked sodium-, linear sodium-, and zinc-hyaluronate

formulations of a nanosize were all characterized as potential ocular drug delivery

systems. Another approach is to combine nanotechnology with mucoadhesive

systems. As a recent example to this approach, Chaiyasan and co-workers have

developed and characterized mucoadhesive chitosan–dextran sulfate nanoparticles

for sustained ocular drug delivery. Based on the mucoadhesion and in vitro release

studies, the system was reported as promising (Chaiyasan et al. 2013).

3.1.2 Gels: In Situ Gels
The main focus of the research is on in situ gels, which are solutions that start

gelation upon contact with the ocular tissues via pH- or temperature-dependent

activation. These systems have the advantage to be easily instilled as a regular eye

drop and can provide prolonged retention time and sustained drug release with

unique gelation properties. Gels and in situ gel-forming systems have been

investigated to increase the retention time. Pilocarpine formulated in a gel has

proved to be more effective than the solution form (Ticho et al. 1979). Sachinkumar

et al. (2015) prepared a pH-triggered in situ gel formulation of norfloxacin using

hydroxypropyl methylcellulose (HPMC) for the treatment of ocular infections. The

system was tested in vitro and still requires in vivo studies to confirm in situ

gelation properties (Sachinkumar et al. 2015).

Hydrogels have a variety of applications in ophthalmology including in situ

gelling formulations, soft contact lenses, foldable intraocular lenses, and ocular

adhesives for wound repair. High water content of hydrogels may be advantageous

in preserving peptide/protein stability. Chemically cross-linked temperature-sensi-

tive hydrogels that have high water content and retain transparency have been used

as in situ forming gels (Kirchhof et al. 2015).

A dendrimeric hydrogel system has been developed using polyamidoamine

(PAMAM) dendrimer G3.0 for delivery of antiglaucoma drugs brimonidine and
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timolol maleate. Dendrimeric hydrogel was found to be mucoadhesive to mucin

particles on the cornea. PAMAM dendrimers were linked with polyethylene glycol

(PEG) acrylate to achieve in situ gelation upon UV light activation (Holden

et al. 2012).

Yu et al. have developed a crossed-linked PEG in situ hydrogel for sustained

bevacizumab delivery (Yu et al. 2014). The same group has also prepared cross-

linked polysaccharide hydrogels using glycol chitosan and oxidized alginate for

sustained bevacizumab release (Xu et al. 2013). Following in vitro and cell culture

studies, both systems have been suggested to be promising for the treatment of

intraocular neovascularization. Examples of in situ forming gels in the market

include timolol maleate-loaded gellan gum-based product (Timoptic XE®) and

another timolol maleate-containing formulation based on methyl cellulose, sodium

citrate, and polyethylene glycol (Rysmon® TG) (Agrawal et al. 2012).

3.1.3 Prodrugs
Prodrugs are intended to be pharmacologically inactive or less-active derivatives of

drug molecules, and ophthalmic prodrugs are typically designed to achieve

improved drug delivery and/or therapeutic index. Following tissue entry, the

prodrug is expected to be metabolized and produce the active form of the drug.

Prodrugs are chemically synthesized to usually contain ester, amide, or other

enzymatically cleavable chemical bonds. The enzymes in the ocular tissues play

an important role in the conversion of prodrug to drug. Esterases and amidases are

the most common enzymes in ocular tissues with high enzyme activity detected in

the iris–ciliary body, cornea, and aqueous humor (Lee 1983; Stratford and Lee

1985). Latanoprost is a successful ocular prodrug with high ocular penetration that

hydrolyzes via an esterase enzyme to produce the active form of the drug (Sjoquist

and Stjernschantz 2002).

Several prodrug strategies including transporter-targeted and lipophilic ester

prodrugs have been assessed to improve corneal and conjunctival permeability of

drugs targeting the anterior segment. Some prodrug strategies for anterior segment

drug delivery are summarized in Table 2.

3.1.4 Colloidal Drug Delivery Systems
Various types of colloidal dosage forms have been designed to increase precorneal

residence time and anterior segment drug delivery. Some of these particles can

interact with ocular mucosa and enhance permeability across the cornea and

conjunctiva. Polymeric nanoparticles, nanomicelles, nanosuspensions,

nanoemulsions, nanocrystals, liposomes, niosomes, cubosomes, and dendrimers

are among the most studied drug delivery systems for anterior segment diseases

such as dry eye, inflammation, glaucoma, uveitis, and retinopathies. Colloidal drug

delivery systems offer the advantage of being able to deliver a variety of drugs

(including macromolecules), providing stability for labile drugs and improving

ocular bioavailability (Reimondez-Troitino et al. 2015a).

A number of studies focused on these systems in the last decade. These colloidal

drug delivery systems have been classified and summarized in Table 3. Despite

B. Yavuz and U.B. Kompella



many promising results, reaching posterior segment via topically administered

systems is still a challenge. There is still more to be investigated, especially

regarding delivery of complex biomacromolecules to the eye.

3.1.5 Ocular Inserts and Implants for Anterior Segment Diseases
Ocular inserts and implants are designed to enhance the bioavailability and achieve

sustained drug delivery. These systems can be placed under the eyelid, in the

conjunctival cul-de-sac, anterior chamber, subconjunctival space, or episcleral

region to deliver drugs to the anterior segment of the eye. They can be either in

the biodegradable or nonbiodegradable form. Ocusert® was the first marketed

ocular insert, which provides an extended therapeutic effect for a week with a

low amount of pilocarpine. It consists of two ethylene–vinyl acetate copolymer

membranes that control drug release to achieve zero-order kinetics (Ghate and

Edelhauser 2006).

Anterior chamber implants can be placed in the aqueous humor.

Subconjunctival/episcleral implants require a small incision in the conjunctiva.

Surodex™ is a biodegradable anterior chamber insert made of poly(lactic-co-

glycolic acid) (PLGA) and provides sustained-release dexamethasone for about

Table 2 Summary of prodrug studies for anterior segment drug delivery

Drugs Prodrugs Outcome

Timolol (Chang et al. 1987) Lipophilic esters Increase in corneal permeation

Decrease in systemic drug

exposure

PGF2α (Chien et al. 1997) Lipophilic esters Increase in corneal permeation

Acyclovir (Hughes and

Mitra 1993; Katragadda

et al. 2006; Vadlapudi

et al. 2012a, b, 2014)

Aliphatic acyl esters

Amino acid prodrugs

Peptide prodrugs

Lipid prodrugs

Increase in corneal permeation

Enhancement of stability

Increase in efficacy

Increase in cell accumulation

Ganciclovir (Tirucherai

et al. 2002; Majumdar et al. 2005)

Lipophilic esters Increase in solubility

Increase in corneal permeation

Increase in activity

Dexamethasone (Civiale

et al. 2004)

Esters Increase in corneal permeation

Cyclosporine A (Lallemand

et al. 2005, 2007; Rodriguez-

Aller et al. 2012)

Phosphate ester Therapeutic concentrations in

precorneal area immediately after

application

Increase in water solubility

Flurbiprofen (Shen et al. 2011) Flurbiprofen axetil Less irritation

Increase in efficacy

Cannabinoid receptor (CB1/2)

agonist (Mainolfi et al. 2013)

Esters Improved solubility

Increased corneal permeation

Enhanced ocular bioavailability

Resolvin E1 (de Paiva et al. 2012) Methyl ester Reduced corneal disruption
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10 days. It was developed for the treatment of postoperative inflammation follow-

ing cataract surgeries (Kuno and Fujii 2011).

LX201 (Lux Biosciences) is a cyclosporine A-loaded silicone matrix episcleral

implant designed to sustain drug release for a year in order to prevent corneal

transplant rejection. A study aimed at a phase III trial (identification number

NCT00447187) was terminated in 2012. Another cyclosporine A implant study

for LX201 employed subconjunctival implantation that would not affect

neovascularization following keratoplasty (Bock et al. 2014). It was also reported

that cyclosporine A-loaded PLGA nanoparticles and poly[e-caprolactone] (PCL)

subconjunctival implants were prepared for dry eye syndrome treatment, and they

were able to extend the drug release up to 2 months and provided faster healing in

dry eye-induced mice (Pehlivan et al. 2015). Pfizer Inc. collaborated on a PLGA

subconjunctival insert for sustained-release latanoprost for glaucoma treatment;

however, the phase I/IIa (NCT01180062) study was terminated due to inadequate

supply of inserts.

Ang (2014) has developed prednisolone acetate-loaded PCL microfilms to be

implanted subconjunctivally for uveitis treatment and has reported that the formu-

lation was effective in a rabbit uveitis model (Ang 2014). Wong (1989) published a

patent (US 7846468) for immunosuppressive biodegradable ocular implants using

PLGA and HPMC against transplant rejection. It was reported that these systems

were able to prevent allograft rejection in a rat model when implanted into the

anterior chamber (Wong 1989).

Freeze-dried mini tablets as ocular inserts are another recent approach that

presents several advantages such as easy/noninvasive application, increased corneal

residence time, and reduced drug loss due to lacrimation. Cellulose derivatives,

acrylates, and chitosan are the most commonly employed polymers for ocular mini

tablet formulations (Moosa et al. 2014).

3.1.6 Punctal Plugs
Punctal plugs are small biocompatible implants used for dry eye treatment by

insertion of the plug into tear ducts or puncta to block tear drainage. Punctal

plugs may offer advantages such as being noninvasive and the ability to maintain

sustained drug release. Silicone, hydroxyethyl methacrylate, and polycaprolactone

were some of the materials used to prepare punctal plugs, but they require removal

after drug release (Kompella et al. 2010). Drug release from punctal plugs is usually

diffusion controlled, and the drug can be loaded in punctal plugs in various forms

including solutions, suspensions, colloids, etc. One of the common designs for

punctal plug drug delivery is loading drug to an impermeable core and releasing it

from the cross section that is in contact with the eye surface and tears. An alterna-

tive approach is coating the plug with drug solution; however, drug loading might

be low due to the small surface area (Yellepeddi et al. 2015).

Phase II studies were conducted for latanoprost and bimatoprost punctal plug

formulations (QLT Inc. and Vistakon Pharmaceuticals) for glaucoma and ocular

hypertension (Kuno and Fujii 2011). The system used for latanoprost is also being

studied for the anti-allergy drug olopatadine. Another phase I study assessed
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sustained-release moxifloxacin punctal plugs to prevent conjunctivitis after cataract

surgery. This system achieved 7-day drug release as a potential alternative to

topical antibiotic drops (Chee 2012). Gupta et al. (2011) reported a hydroxyl

ethyl methacrylate punctal plug system loaded with cyclosporine A microparticles

for dry eye treatment. The plug was covered with impermeable silicone shell and

was able to release drug for over 3 months near zero-order kinetics (Gupta and

Chauhan 2011).

Overall, drug-loaded punctal plugs are promising for sustained drug delivery to

the eye surface. On the other hand, their use is associated with some complications

such as conjunctivitis, corneal abrasion, distal lachrymal system blockage, exces-

sive tear production (epiphora), and plug extrusion. These complications may be

influenced by the design, size, and insertion method of the plug (Taban et al. 2006;

Bourkiza and Lee 2012). It is believed that the experience gained from previous

studies will lead to new plugs with less complications for anterior segment drug

delivery.

3.1.7 Contact Lenses
Contact lenses provide an alternative approach for sustained drug delivery on the

ocular surface and beyond. Polymethyl methacrylate was the first widely used

polymer for the production of contact lenses, which were not able to allow adequate

oxygen permeation for the cornea and had to be removed at night. This was a

limitation for the use of contact lenses as a long-term drug delivery system. Highly

oxygen-permeable silicone hydrogel contact lenses have overcome this issue, and

contact lenses are now more promising as drug delivery systems (Sedlacek 1965;

Chauhan 2015; Lu et al. 2013).

Pilocarpine-soaked contact lenses were the first example of these systems, and it

was reported to provide reduction in intraocular pressure for a few hours with the

equivalent efficacy of an eye drop (Hillman 1974). Cromolyn sodium, dexametha-

sone sodium phosphate, ketorolac tromethamine, ketotifen fumarate, and

natamycin contact lenses were subsequently tested in vitro (Karlgard et al. 2003;

Phan et al. 2014). Loading colloid nanoparticles and molecular imprinting have also

been investigated as improved drug loading techniques to achieve prolonged

release, since the commercial contact lenses are able to release for only 1–2 h

(Jung and Chauhan 2012). It was shown that latanoprost- (Mohammadi et al. 2014)

and norfloxacin-imprinted (Carmen et al. 2006) 2-hydroxyethylmethacrylate

(HEMA) contact lenses were able to provide extended release as well as

ciprofloxacin-imprinted silicone hydrogels (Hui et al. 2012).

Vitamin E-loaded contact lenses can provide extended drug release by forming

additional diffusion barriers (Peng et al. 2012). Vitamin E loading is also effective

for combination therapy. In a recent study, timolol and dorzolamide contact lenses

with vitamin E coating were prepared to achieve simultaneous extended release of

the two drugs, and the results indicated that the system was able to reduce intraoc-

ular pressure at a lower drug dose (Hsu et al. 2015). The main limitations with

contact lens delivery systems are their higher cost relative to eye drops and ultimate

acceptance by patients and clinicians.
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3.1.8 Intraocular Lenses (IOL)
Drug-loaded intraocular lenses were developed as an alternative to the currently

used postoperative drug products. Biodegradable polymer rings with triamcinolone

acetonide were developed, attached to the disk of IOL, and implanted in

New Zealand white rabbits, and the results indicated inflammation reduction in

inflammatory signals in aqueous humor up to 7 weeks (Eperon et al. 2008). In

another study, multilayer-coated intraocular lenses were designed for sustained

drug delivery (Shukla et al. 2011).

A nonbiodegradable capsule drug ring has been investigated to serve as a

refillable drug depot for multiple drugs. The system is to be placed around the

intraocular lens after cataract surgery and can accomplish either anterior or poste-

rior segment drug delivery depending on where the semipermeable membrane’s

location is in the capsule drug ring. This system has been studied using

bevacizumab and showed nearly zero-order release kinetics (Molokhia et al. 2010).

3.1.9 Transcorneal Iontophoresis
Iontophoresis is a noninvasive technique that employs electric current in contact

with eye tissues to deliver drug molecules across a biological membrane. An

iontophoresis device consists of two electrodes: one donor that holds the drug

solution and one receiver to close the electrical circuit and enhance drug delivery

either by electrophoresis, electroosmosis, or electroporation. Transcorneal ionto-

phoresis can deliver dugs to the anterior chamber, whereas transscleral iontophore-

sis may deliver drugs to the posterior segment. The efficiency of iontophoresis

usually depends on the charge of the drug, electrode placement, and duration of

pulse (Molokhia et al. 2008, 2013).

Eyegate® developed a transcorneal iontophoretic system made of soft silicone

rubber and tungsten electrodes. The drug solution is placed in the tungsten electrode

annularly well and flows through the silicone tubes. Dry eye, scleritis, and anterior

uveitis drug indications have been assessed with this system in clinical trials

(Halhal et al. 2004). Antibiotics (gentamicin, ciprofloxacin, and tobramycin) deliv-

ered via iontophoresis decreased the bacterial colony level when compared to

corresponding eye drop applications (Cohen et al. 2012; Hobden et al. 1990).

Dexamethasone when delivered using transcorneal iontophoresis exhibited greater

corneal penetration than positively charged antibiotics. Using iontophoresis, ribo-

flavin can be delivered across the intact corneal epithelium (epi-on technique) to

induce collagen cross-linking in order to treat keratoconus (Bikbova and Bikbov

2014). This technique significantly reduces the application time for riboflavin, and

it might be an alternative keratoconus treatment without removing the corneal

epithelium. Delivery of macromolecules such as Galbumin, bevacizumab, and

FITC dextrans can also be elevated, based on in vitro transcorneal iontophoresis

(Molokhia et al. 2009; Chopra et al. 2010; Nicoli et al. 2009).
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4 Drug Delivery to the Posterior Segment of the Eye

4.1 Barriers, Challenges, and Routes of Administration
for Posterior Segment Drug Delivery

Posterior segment of the eye includes the sclera, choroid, retinal pigment epithe-

lium, retina, optic nerve, and vitreous humor. Posterior segment diseases such as

age-related macular degeneration (AMD), macular edema, diabetic retinopathy

(DR), and posterior uveitis are eye diseases that lead to blindness. These diseases

are becoming more common with the aging of the general population. Thus, there is

a growing need to develop new therapies and delivery approaches to treat diseases

of the posterior segment or back of the eye. Posterior segment drug delivery is more

difficult than anterior segment delivery, due to the highly protected structure of the

back of the eye with static (sclera, RPE, and blood capillary endothelial cell walls)

and dynamic barriers (blood and lymph circulation). The delivery route depends on

the drug molecule, dosage form, and the target tissue (Gaudana et al. 2009; Ghate

and Edelhauser 2006).

Drug delivery to the retina and vitreous humor is limited and generally ineffec-

tive with an eye drop, due to the anatomical and physiological barriers. For retinal

drug delivery following systemic administration, drugs must cross the blood–ocular

barriers, which separate the eye from the rest of the body. Blood–ocular barriers

consist of two key components: blood–aqueous barrier and blood–retinal barrier.

Both these barriers are comprised of epithelial and endothelial tight junctions that

limit drug transport (Macha and Mitra 2003), with the blood–retinal barrier being

the limitation for back-of-the-eye drug delivery following systemic administration.

Systemic administration requires large doses for therapeutic effects, due to drug

dilution in blood prior to reaching the retina, low cardiac output to the eye, and the

presence of strong blood–retinal barriers. Thus, the extent of dose delivery by

conventional routes to the back of the eye is very limited.

Periocular dosing interfaces the drug with the sclera on one side and the

conjunctiva on the other side (Raghava et al. 2004). While the episclera is

vascularized, the sclera is the poorly vascularized white part of the globe that

contains collagen fibers and mucopolysaccharides. Drug permeability across the

sclera decreases with increasing molecular weight and lipophilicity; additionally,

drug surface charge affects permeability since positive charges can interact with the

negatively charged scleral matrix (Kim et al. 2007; Cruysberg et al. 2002; Dunlevy

and Rada 2004). A perioculary dosed drug and particles can be cleared by vascular

or lymphatic circulations (Amrite et al. 2008; Amrite and Kompella 2005; Cheruvu

et al. 2008).

Suprachoroidal dosing interfaces the drug with the choroid on one side and the

sclera on the other side. The choroid is a vascular tissue underlying Bruch’s

membrane that provides nutrients to the RPE and the retina. While the thickness
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of Bruch’s membrane increases with age, choroid thickness decreases with age

(Spraul et al. 1999). The changes in thickness may affect drug permeability across

these barriers. Furthermore, lipophilic drugs may bind to the pigment of choroid

and may not reach inner ocular tissues such as the retina (Cheruvu et al. 2008;

Cheruvu and Kompella 2006). Nano- and microparticles can potentially reside in

the suprachoroidal space to allow prolonged drug delivery (Patel et al. 2012).

Subretinal route interfaces the drug with the retina on one side and the RPE on

the other side, ideally suited to treat retinal degenerative diseases using gene

therapies (Ghazi et al. 2016; Hauswirth et al. 2008). However, the safety of this

route of administration needs further investigation.

Intravitreal injection allows placement of 100% of the dose in the back of the

eye. Thus, intravitreal injections are the mainstay at the moment for treating back-

of-the-eye diseases. However, the inner limiting membrane, which separates the

retina and the vitreous humor, can be a barrier for drug diffusion, particularly

macromolecules. As a result, retinal delivery of macromolecules with 76 kDa and

larger molecular weight is limited (Jackson et al. 2003). Also, expression of efflux

pumps such as P-gp and MRP in eye tissues may restrict retinal delivery of small

molecules. Intravitreally dosed drugs are eliminated along the anterior pathway via

the aqueous humor or restricted from reaching retinal cells by the inner limiting

membrane, as mentioned above (Pederson 2006). Furthermore, drug elimination by

the posterior segment tissues is another factor limiting retinal drug exposure. Due to

the barriers present in the eye, the vitreal half-life of a molecule can be prolonged

by increasing its molecular size (Durairaj et al. 2009a). Additionally, injection of a

drug suspension and increasing the dose number of a suspension are suitable

approaches to increase the persistence of drug molecules injected in the vitreous

humor (Durairaj et al. 2009a, b). Drug and dosage form physicochemical properties,

interaction with solute/efflux transporters, site of administration, and pathophysiol-

ogy all influence drug delivery to the posterior segment.

4.2 Penetration Pathways for Posterior Segment Drug Delivery

Penetration pathways to the posterior segment of the eye, for an eye drop applica-

tion, are summarized in Table 4. Non-corneal route is generally deemed the most

efficient for back of the eye drug delivery among the pathways listed, although the

bioavailability from a drop is not significant to be typically effective in the back of

the eye. By injecting the drug at various depths (e.g., periocular, suprachoroidal,

subretinal, and intravitreal with increasing depths of injection into the vitreous

humor), as opposed to drops on a surface, some or all of the barriers for posterior

segment delivery can be overcome. The preferred administration route is dependent

on drug and dosage form, physicochemical properties, and disposition (Ahmed and

Patton 1985).

The current first choice for posterior segment delivery is intravitreal administra-

tion, which bypasses the corneal, conjunctival, scleral, choroidal, RPE, blood–

tissue, and lens barriers to reach the vitreous humor. However, the risks involved
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with repeated injections and low patient compliance are leading to the development

of slow-release systems as well as assessment of other routes including subretinal,

suprachoroidal, and periocular applications including subconjunctival, sub-Tenon,

peribulbar, and retrobulbar (Raghava et al. 2004; Eljarrat-Binstock et al. 2010).

4.3 Recent Posterior Segment Drug Delivery Approaches

Even though the anterior segment medications contribute the most to the number of

currently marked ophthalmic drug products, the drug product market for the

posterior segment is rapidly growing with the development of innovative new

molecular therapies and delivery systems. The validated VEGF target alone for

wet AMD resulted in three approved intravitreally injectable anti-VEGF products

to date: Macugen®, Lucentis®, and Eylea®, with Avastin®, a fourth product being

compounded and used off-label. As new therapeutic agents enter the back-of-the-

eye market, there is continued effort in developing new drug delivery approaches in

order to allow noninvasive dosing, to reduce dosing frequency with invasive

approaches, and to improve drug efficacy and safety. Penetration enhancers,

prodrugs, and iontophoresis are some of the strategies employed to increase drug

flux and enhance bioavailability, whereas colloidal delivery systems, gels, inserts,

implants, and intraocular refillable devices are being investigated to achieve

sustained release and reduce application frequency. A few noteworthy slow-release

systems approved for sustained delivery of small molecule drugs in the back of the

eye include Vitrasert®, Retisert®, Ozurdex®, and Iluvien®, with drug release

durations ranging from approximately 6 months to 3 years.

4.3.1 Colloidal Dosage Forms for Posterior Segment Drug Delivery
Colloidal dosage forms like nanoparticles, nanogels, liposomes, and dendrimers

have been evaluated for drug delivery to the posterior segment as well as the

anterior segment of the eye. Since drug loading in these systems is generally low,

they might be limited to drugs that are effective at low therapeutic doses.

Table 4 Key pathways of drug delivery to tissues of the posterior segment of the eye from an

eye drop

Non-corneal pathway Tears! conjunctiva! sclera! choroid!RPE! neural

retina! vitreous humor

Systemic recirculation from one

eye to the other eye

Tears! conjunctival/choroidal/retinal vessels! systemic

circulation! contralateral ocular circulation! intraocular

tissues! vitreous humor of the contralateral eye

Corneal pathway Tears! cornea! aqueous humor! posterior chamber/

lens! vitreous humor! neural retina

Uveal pathway Tears! cornea! aqueous humor! sclera/

choroid!RPE! neural retina! vitreous humor

Injecting the drug in a deeper layer can bypass the preceding barriers
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Polymeric nanoparticles have been studied extensively for ocular drug delivery,

and the FDA-approved polymer PLGA is one of the most investigated materials in

the eye, in addition to polyvinyl alcohol, chitosan, and albumin (Kompella

et al. 2013).

Nanogels are hydrogels that swell in water to form compactly packed

nanoparticles, and they can be used for controlled release of hydrophilic or

lipophilic compounds. Nanogel drug release kinetics may be controlled by pH

and temperature. Cationic nanogels have been investigated for gene delivery

(Vinogradov et al. 2004).

Dendrimers or highly branched polymers are also among the nanotechnology-

based delivery systems studied for posterior segment drug delivery. Dendrimers can

be interfaced with drug molecules either covalently or non-covalently.

Polyamidoamine (PAMAM) dendrimers are the most studied dendrimers for drug

and gene delivery, and they are available in a number of generations or sizes and

surface charges. Kang et al. (2009) complexed carboplatin with PAMAM

dendrimers for periocular delivery and showed that these complexes can reduce

retinoblastoma tumor growth (Kang et al. 2009). In a recent study, PAMAM

dendrimers with anionic and cationic charges were investigated for retinal dexa-

methasone delivery via topical and subconjunctival applications. It was reported

that these systems were able to improve corneal and scleral permeability and

provide higher ocular bioavailability; however, drug loading in these systems was

limited (Yavuz et al. 2015). PAMAM–triamcinolone acetonide conjugates with

21% drug loading were also prepared, and cell culture studies indicated increased

anti-inflammatory activity of triamcinolone acetonide (Kambhampati et al. 2015).

Liposomes are vesicular systems with various sizes in the range of nanometers to

micrometers, composed of one or more phospholipid bilayers segregated by aque-

ous layers. Liposomes offer many advantages for drug delivery since they can

encapsulate both hydrophilic and hydrophobic dugs as well as ionic molecules by

using cationic or anionic lipids. It was reported that intravitreally injected liposomal

formulations caused minimal toxicity while providing prolonged vitreal residence

time (Peyman et al. 1989).

In some studies, macromolecules were delivered to the back of the eye following

topical dosing with liposomes. In one study, plasmid DNA-loaded liposomes were

found to express genes in retinal ganglion cells following topical application in a rat

model (Matsuo et al. 1996). Coating diclofenac-loaded liposomes with hydrophobic

PVA enhanced diclofenac delivery to the retina–choroid after topical instillation in

rabbits (Fujisawa et al. 2012). Annexin A5-functionalized liposomes enhanced

delivery of bevacizumab to the vitreous humor and retina following topical instil-

lation to rats and rabbits (Davis et al. 2014). While these studies are promising,

more confirmatory studies and mechanistic studies are needed to establish the

therapeutic potential of liposomes in achieving macromolecule efficacy in the

back of the eye.

Micelles are formed at concentrations above the critical micellar concentration

of a substance, and they typically consist of monolayers of amphiphilic molecules

that form a core and a corona. Based on the properties of the vehicle or continuous
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medium and the properties of the amphiphilic compound, standard, reverse, and

unimolecular micelles can be formed. These micelles can be formed at a very small

size, typically less than 100 nm. Polyethylene glycol coating of the corona reduces

micelle aggregation, and they have the potential for posterior segment drug delivery

(Trivedi and Kompella 2010; Trivedi et al. 2012).

4.3.2 Prodrugs for Posterior Segment Drug Delivery
Prodrug approach is potentially useful in enhancing drug delivery to the posterior

segment as well as the anterior segment. Lipophilic esters with increased perme-

ability are among the most widely assessed prodrugs for ophthalmic drug delivery.

In addition to the topical route, prodrugs can be dosed by various routes including

intravitreal and periocular routes. Prodrugs can be designed to preferentially tra-

verse solute transporters in the tissue barriers of the eye. Furthermore, incorporation

of prodrugs within polymeric carriers may provide controlled drug delivery to the

retina and vitreous (Eljarrat-Binstock et al. 2010).

Transporter-targeted gatifloxacin prodrugs have been prepared for topical appli-

cation, and organic cation transporter, monocarboxylate transporter, and ATB

transporters were targeted for enhanced drug delivery to the back of the eye. Ex

vivo transport studies were performed against the cornea and sclera–choroid–RPE,

as well as in vivo studies in rats. It was reported that prodrug increased solubility

and enhanced organic cation transporter-mediated delivery of gatifloxacin (Vooturi

et al. 2012). Posterior segment distribution of nepafenac (which is a prodrug for

amfenac) has been studied in rabbit and monkey models following topical admin-

istration. The study suggested that nepafenac and amfenac were able to distribute in

posterior segment tissues via transconjunctival/transscleral delivery (Chastain

et al. 2016).

4.3.3 Light-Activated Systems
Light-activated systems are drugs and delivery systems that are capable of con-

trolled activation. A classic example in the eye is Visudyne®, which is a clinically

approved intravenously administered liposomal light-activated system. Visudyne®

localizes a photosensitizer in the eye and activates the same by a nonthermal laser

light. Visudyne is predominantly used for classic subfoveal choroidal

neovascularization in AMD. Laser light at 689 nm is used for activating Visudyne

at 15 min after the start of a 10 min infusion with Visudyne. The laser activates

verteporfin, a photosensitizer present as an active ingredient in Visudyne. How-

ever, photodynamic therapy itself causes neovascularization; thus, the effect of

Visudyne® might be insufficient and repeated treatment might be required

(Thrimawithana et al. 2011; Christie and Kompella 2008). Photrex® (rostaporfin)

is another liposomal photosensitizing system, which did not meet the primary

clinical endpoint in wet AMD trials (Huang 2005).

Dendritic porphyrin-loaded micelles are also of potential value in treating

choroidal neovascularization. Following laser application micelles accumulate in

the neovascularization area and 80% of them remained there up to 7 days (Ideta

et al. 2005). Vectosomes or particles made of VP22 protein were also investigated
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in vitro and in vivo for light-induced targeted delivery of antisense

oligonucleotides. Once injected intravitreally, white light was exposed

transsclerally at 24 h to activate vectosomes and release their contents. The results

indicated that vectosomes were able to distribute in the various retinal layers and

RPE (Normand et al. 2005). Another approach for light-sensitive drug delivery is

gold nanoparticle-loaded liposomes, wherein UV light-induced heating of gold

nanorods melts and releases the contents of the liposomes (Paasonen et al. 2007).

In a recent study, a light-activated in situ gelling system has been designed for

suprachoroidal application of bevacizumab, using polycaprolactone dimethacrylate

and HEMA. Following 10 min of cross-linking, the gel was able to release

bevacizumab for approximately 1 month in a rodent model (Tyagi et al. 2013).

4.3.4 Intraocular Implants for Posterior Segment Drug Delivery
The goal of designing intraocular implants is to provide prolonged and controlled

drug delivery up to several months or years using either biodegradable or nonbio-

degradable polymers. Sustained-release implants have been studied for chronic

diseases that affect the back of the eye such as posterior uveitis, AMD, and diabetic

retinopathy. Drug release from these systems occurs either by degradation of the

polymer or diffusion through a membrane. Even though some intravitreal implants

require surgical implantation, bypassing some drug delivery barriers and reducing

dosing frequency and associated side effects are some of their advantages (Jaffe

et al. 2006; Guidetti et al. 2008).

Vitrasert® is the first nonbiodegradable, implantable device, designed for ganci-

clovir delivery and approved by the US FDA in 1996 for the treatment of cytomeg-

alovirus retinitis. Side effects of Vitrasert include endophthalmitis and retinal

detachment (Bourges et al. 2006). Retisert®, which is an implant containing

fluocinolone acetonide and used for uveitis treatment, was approved by the US

FDA in 2005. It is able to release the drug for up to 3 years, but patients who used

Retisert® showed a high likelihood of cataract formation and glaucoma (Kempen

et al. 2011).

Another FDA-approved intravitreal implant system is Ozurdex®, which is an

injectable sustained-release dexamethasone insert approved for posterior uveitis,

retinal vein occlusion, and diabetic macular edema. In some cases, it was observed

that Ozurdex® implant can migrate into the anterior chamber from its initial

location (Khurana et al. 2014; Bratton et al. 2014). Iluvien® is a similarly injectable

nonbiodegradable implant system for diabetic macular edema and uveitis treat-

ment, and it was recently approved by the FDA in 2014. It is designed to deliver

fluocinolone acetonide for 24–36 months (Pearce et al. 2015).

Neurotech has developed an implant called NT-501 using cell encapsulation

technology. Genetically engineered human RPE cells are encapsulated in this

implant to secrete ciliary neurotrophic factor. The company is currently conducting

clinical trials in patients with early-stage retinitis pigmentosa and Usher syndrome

types 2 and 3 (Normand et al. 2005; NeurotechUSA; Lo et al. 2009; Rowe-

Rendleman et al. 2014).
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4.3.5 Refillable Devices
While the above-described slow-release systems need to be readministered after

their intended duration of release, an alternative approach to minimize surgical

placement of implants is to use refillable systems and reinject drug as required (Lee

et al. 2012). Lo et al. (2009) developed a surgically implantable system to be placed

under the conjunctiva and release a specified amount of drug following mechanical

activation by a patient’s finger (Lo et al. 2009). Since it is a refillable system, it only

requires implantation once and allows for continual treatment of chronic diseases.

The Replenish MicroPump is also an implantable microreservoir that releases drug

at a programmed interval with nanoliter doses, while the drug reservoir can be

refilled via transconjunctival injection (Saati et al. 2010). The port delivery system

is another refillable device that is in phase II trials for (Pearce et al. 2015) sustained

release of ranibizumab in wet AMD patients with subfoveal neovascularization.

4.3.6 Microneedles
Application of microneedles is a recent approach for suprachoroidal and intrascleral

drug delivery. There are solid or hollow microneedles available, which were

initially developed for transdermal application. Microneedles can deliver free or

encapsulated drugs with minimal invasion and may avoid the safety concerns

associated with repeated intravitreal applications (Rowe-Rendleman et al. 2014).

Based on animal studies, it was reported that insertion site disappears 1 h after

microneedle injection (Patel et al. 2012).

Jiang et al. (2009) used human cadaver eyes to test hollow borosilicate

microneedle and investigated distribution of sulforhodamine in the posterior seg-

ment of the eye (Jiang et al. 2009). The results indicated that distribution was

dependent on conditions such as pressure and no significant effect was observed on

delivery. Nevertheless, it should be noted that the microneedles were inserted in the

sclera and not in the suprachoroidal space.

In another study, Gilger et al. (2013) compared intravitreal drug delivery with

suprachoroidal microneedles using triamcinolone acetonide as a model drug using

domestic weanling pigs. The delivery system was reported to be safe and effective

(Gilger et al. 2013).

Currently, there is one ongoing clinical trial for suprachoroidal drug delivery

using microneedles. It is a phase II trial for triamcinolone acetonide suspension in

patients with macular edema associated with noninfectious uveitis

(NCT02303184).

4.3.7 Transscleral Iontophoresis
Transcorneal iontophoresis has been investigated for anterior segment drug deliv-

ery over the years. On the other hand, transscleral iontophoresis is recently gaining

attention since it overcomes the lens–iris barrier and delivers drug directly to the

back of the eye. In this method an iontophoretic device is placed over the pars plana

area on the conjunctiva. A wide variety of drugs have been studied for transscleral

iontophoresis including antibiotics, steroids, proteins, genes, drug-containing

hydrogels, and nanoparticle delivery systems (Eljarrat-Binstock et al. 2010).
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Several studies have shown that transscleral iontophoresis is able to deliver high

concentration of drugs to the choroid and retina. Transscleral OcuPhor™ hydrogel

has been tested for saline iontophoresis in healthy volunteers. Different intensities

have been investigated for 20 and 40 min, and it was reported that the system was

well tolerated (Parkinson et al. 2003). DSP-Visulex® is another transscleral ionto-

phoresis system, which consists of a scleral-lens-shaped applicator and currently is

in clinical trial phase I/II (Aciont).

Molokhia et al. (2009) reported that transscleral iontophoresis was not efficient

in delivering macromolecules to the vitreous in a rabbit model. It was shown that

Galbumin, the macromolecule used in the study, was only present in the sclera and

conjunctiva (Molokhia et al. 2009). On the other hand, using isolated human sclera

showed that large molecules ranging from 51 bp to 2 kbp plasmids can be delivered

using iontophoresis (Davies et al. 2003).

In spite of the advantages of transscleral iontophoresis in enhancing drug

delivery, tissue damage risk is still a concern. The damage depends on the site of

application, duration, and density of the current applied (Eljarrat-Binstock and

Domb 2006). Side effects caused by iontophoresis include decrease in endothelial

cells, burning, epithelial edema, and inflammation. At high densities choroidal

damage and destruction of retinal layers have also been reported (Thrimawithana

et al. 2011).

5 Conclusions

Effective drug delivery for the treatment of ocular diseases has always been a

challenge especially for the posterior segment, due to the anatomy of the eye, the

ocular barriers, and the physiological changes caused by the nature of the diseases.

Scientists continue to work on new drug delivery systems to enhance target access,

extent of delivery, and duration of drug exposure in order to improve drug efficacy

while reducing side effects, in the hope to ultimately improve patient benefit and

convenience.

Sustained drug delivery systems, noninvasive approaches for improving back-

of-the-eye drug delivery, and contact lenses to prolong ocular surface drug expo-

sure are currently seeing a lot of innovation for improving ocular drug delivery.

Despite the promising research, development of eye drops for back-of-the-eye drug

effects remains the most formidable challenge. A combination of approaches and a

multidisciplinary effort may be needed to overcome this challenge. Translational

sciences including understanding of animal models vs. human subjects are critical

for improving the predictability of clinical outcomes based on preclinical studies.

For translation of ophthalmic drug and gene therapies, it is necessary to create a

functional network between scientists, clinicians, regulatory agencies, and industry

representatives.

B. Yavuz and U.B. Kompella
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