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The ability of cells to generate, maintain, and repair tissues with complex
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cues. Polarity can be described as an asymmetry along a defined axis, manifested

at the molecular, structural, and functional levels. Several types of cell and tissue

polarities were described in the literature, including front-back, apical-basal,

anterior–posterior, and left-right polarity. Extensive research provided insights

into the specific regulators of each polarization process, as well as into generic

elements that affect all types of polarities. The actin cytoskeleton and the

associated adhesion structures are major regulators of most, if not all, known

forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to

bind many proteins including the mechanosensitive adhesion and motor

proteins, such as myosins, play key roles in cell polarization. The actin cytoskel-

eton can generate mechanical forces and together with the associated adhesions,

probe the mechanical, structural, and chemical properties of the environment,

and transmit signals that impact numerous biological processes, including cell

polarity. In this article we highlight novel mechanisms whereby the mechanical

forces and actin-adhesion complexes regulate cell and tissue polarity in a variety

of natural and experimental systems.
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1 Introduction

1.1 The Metazoan Revolution and the Emergence
of Multicellular Morphogenesis

The evolution of multicellular forms of life (“metazoa”) was a long and gradual

process, which is commonly believed to have taken place between 1,300 and

600 million years ago (Conway Morris 1998). During that period, unicellular

organisms started to develop colonial forms of life, which led, over time, to the

development of independent, “individualized” metazoan organisms, most likely

resembling today’s sponges (Muller and Muller 2003). This transition from rela-

tively simple unicellular organisms (protozoa) to the considerably more complex

multicellular life was apparently associated with major changes in the cells’

survival strategy; while in protozoan organisms, all life processes (e.g., reproduc-

tion, motility, feeding, and protection) are independently executed by all individual

cells. In metazoans these missions are performed by specialized sub-populations of

cells. With the advent of metazoan evolution, mainly during the “Cambrian explo-

sion,” an increasing order in body plan was observed (mainly, through detailed

fossil records), with a common form, characterized by tissue polarization along a

single longitudinal axis [anterior (front)–posterior (back)], which is often

associated with the direction of locomotion (Martindale 2005) (Fig. 1). The cellular

and molecular processes underlying this tissue polarization will be discussed below.
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Interestingly, many studies, initially based on biochemical information (e.g.,

Burger and Jumblatt 1977; Muller et al. 1982; Wiens et al. 2003) and later on

molecular genetic data (Wiens et al. 2003), revealed diverse adhesion molecules in

sponges (“aggregation factors,” Burger and Jumblatt 1977), which promote

species-specific clustering of sponge cells. Moreover, the inter-cellular space in

sponges contains galectin (Wagner-Hulsmann et al. 1996), as well as additional

components related to the extracellular matrix (ECM) of higher metazoans, includ-

ing collagen, and fibronectin-like protein (Labat-Robert et al. 1981). Naturally, in

higher metazoa the repertoire of ECM proteins is considerably larger than that of

sponges, reflecting the increasing complexity of tissue and organ architecture.

1.2 Cell-to-Tissue Polarity

Asymmetric distribution of molecules, sub-cellular structures, and organelles is a

hallmark of many cell types. These basic asymmetries can lead to local changes in

cell shape and/or function, transiently or constitutively, and are largely known as

cell polarity. In fact, polarity is a fundamental property of nearly all living cells; it

can be detected in vitro and in vivo, in a wide variety of cell types from those

forming complex metazoans to simpler unicellular eukaryotes such as amoeba and

yeast and also in some bacteria.

Polarity plays a critical role in cells’ life. The fate of a new daughter cell may be

determined by polarity cues that orient the mitotic spindle and assign the daughter

Fig. 1 Schematic overview of polarity from the cell and tissue level to the whole organism level.

The example shown here is of simple epithelia that exhibit front-back polarity, apico-basal

polarity, and anterior–posterior polarity (a). At the whole organism level (bilaterians) three distinct

axes can be evident: anterior–posterior, dorsal-ventral, and left-right (b)
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cells into a specific niche (Williams and Fuchs 2013; Vorhagen and Niessen 2014).

Polarity also plays a key role in cells’ ability to execute many biological functions,

such as migrating directionally as individuals or collectively (Vicente-Manzanares

et al. 2009; Devreotes and Horwitz 2015). It is also essential for cell ability to

maintain properly its architecture and function by regulating cytoskeletal organiza-

tion, trafficking, and signaling events (Guyer and Macara 2015; Narimatsu

et al. 2015; Sasaki 2015). Morphogenesis, a process that shapes tissues and

organisms, rely on complex polarity cues, and once a tissue takes shape, polarity

allows it to maintain homeostasis and function as a coherent and, largely, indepen-

dent unit (Roignot et al. 2013; Tellkamp et al. 2014). Moreover, upon injury,

polarity cues allow cells to repair the tissue effectively and resume normal function.

With so many vital processes that take place throughout the life of an organism,

it is not surprising that defects in cell polarity may have dire consequences, such as

severe neural tube closure defects (Juriloff and Harris 2012), deafness and kidney

diseases, and severe homeostasis defects associated with the development of cancer

(Fischer et al. 2006; Martin-Belmonte and Perez-Moreno 2012).

While most cells exhibit some sort of asymmetry, polarity can be quite diverse in

space and time (Fig. 1). Some cell types maintain a highly polarized architecture

throughout life, while other cells transiently polarize to execute a specific biological

function (e.g., immune cells during inflammation).

As briefly mentioned above, polarity can be classified, according to the axis that

defines the asymmetry. The most common types of polarity are

Front-back polarity, found in many types of migratory cells; it can be recognized

by the assembly of motility related actin-rich protrusions at the front of the cell

(the leading edge), while at the back of the cell is enriched with contractile

structures that facilitate the retraction of the trailing edge of the cell (Devreotes

and Horwitz 2015).

Apical-basal polarity is commonly found in simple, single-layered epithelia

(Figs. 1, 2, and 3) where it relates to the following sub-cellular domains:

(a) The apical domain – the cell’s part that faces the lumen of an organ or the

environment; (b) The lateral domain – the cell’s part that faces the neighboring

cells in the monolayer; and (c) The basal domain – the part of the cell that faces

and interacts with the ECM. In some simple epithelia apico-basal polarity can be

recognized by the appearance of actin-rich microvilli at the apical region, cell–

cell adhesion structures at the lateral domain, and cell–ECM adhesions at the

basal aspect (Roignot et al. 2013; Rodriguez-Boulan and Macara 2014).

Planar cell polarity (PCP) refers to the collective polarization of cells along the

plain of a tissue, orthogonal to apical-basal polarity (Figs. 1 and 2). This polarity

allows long-range communication between cells, affecting their internal organi-

zation relative to the anterior–posterior/proximal-distal axes and supports their

functional coordination as coherent units (McNeill 2010; Devenport 2014;

Sebbagh and Borg 2014; Sokol 2015) (for more details, see Chapter 2).

Left-right polarity (also known as “chirality” or “handedness”) refers to bilateral

asymmetry that can be detected in many organisms. It can be evident at the cell
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level as many cultured cell types establish asymmetry with consistent handed-

ness. At the tissue/organ level left-right polarity cues shape our organs, such as

heart and viscera that exhibit clear asymmetry (Coutelis et al. 2014; Hamada and

Tam 2014; Yoshiba and Hamada 2014) (for more details, see Chapter 3).

While every type of polarity has unique regulators, some proteins and cellular

structures are essential for most, if not all, types of polarity. The actin cytoskeleton

and its associated adhesion structures are the primary drivers of polarization at the

cell’s level (see Figs. 3 and 4 for actin/adhesion complexes in epithelial cells and

fibroblasts). Below, we discuss the roles of the actin cytoskeleton and its adhesions

in cell and tissue polarity. Given that cellular and trans-cellular mechanical forces

are major regulators of both the actin cytoskeleton and its associated adhesions, we

will also briefly address here classical examples (Chapter 1) and novel mechanisms

that play a role in the bio-mechanical regulation of planar, and left-right polarities

(Chapters 2 and 3).

1.3 The Roles of the Actin Cytoskeleton in the Acquisition
and Maintenance of Cell Polarity

The cytoskeleton is made of three major types of filaments: actin filaments

(F-actin), microtubule, and intermediate filaments. The first two exhibit an intrinsic

asymmetry and play a major role in polarity (Li and Gundersen 2008; Mullins

2010). The actin filament is a polymer composed of globular subunits made of the

monomeric G-actin, which polymerizes in a uniform orientation, giving rise to a

polarized linear polymer with two distinct ends that exhibit different structural and

dynamic properties. The two ends of F-actin are the “barbed” (+) and “pointed” (�)

ends. At steady state, G-actin associates with the polymer primarily at the barbed

end and dissociates at the pointed end, a process that leads to a “treadmilling”

Fig. 2 Apico-basal and planar cell polarity in the skin epidermis. The apico-basal polarity protein

PAR3 (green) labels the apical domain of basal layer cells; the basement membrane protein

Nidogen (red) labels the dermal-epidermis boundary (a). The core PCP protein Celsr1 (green)
labels the anterior and posterior faces of basal layer cells (b). Scale bar¼ 10 μm
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process that is characteristic of the internal dynamics of the actin filament in cells.

These dynamic properties also involve chemical energy: new G-actin that

undergoes polymerization binds ATP (G-actin-ATP) that will be hydrolyzed soon

after polymerization (G-actin-ADP-Pi) followed by a slower dissociation of the

phosphate (G-actin-ADP) eventually leading to the dissociation of G-actin from the

pointed end of the filament. ATP hydrolysis alters the local conformation of the

polymer and therefore allows actin binding proteins such as cofilin to distinguish

between “new” and “old” parts of the actin filaments. Beyond cofilin, more than

100 different proteins bind actin filaments. Some of these can differentiate between

the barbed and the pointed ends (e.g., capZ and tropomodulin, respectively), others

can alter the stability of the filament and modify its dynamic properties (e.g.,

Fig. 3 Organization of inter-cellular tight junctions and cell–ECM adhesions formed by cultured

intestinal epithelial (CaCo2) cells. (a) A panel showing immunofluorescently labeled CaCo2 cells

visualizing cell adhesions formed at the apical (left) and basal (right) areas of the cells. The cells
were triple-labeled for the tight junction component cingulin (top, left), actin, which is associated

with both cell–cell adherens junctions and cell–ECM focal adhesions (middle) and paxillin (top,
right), associated with cell–ECM FAs. Two-color (pink-green) super-positions of cingulin/actin
and paxillin-actin are depicted in the images shown at the bottom (courtesy of Inna Grosheva). (b)
Transmission electron microscopy, showing (in a grazing section) the apical tight junction (TJ)
and the sub-apical adherens junction (AJ). (c) Transmission electron microscopy, showing (in a

cross section) a basal focal adhesion (marked by the two arrows); N nucleus (electron micrographs

were provided by Ilana Sabanay)
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tropomyosins), create bundles with different orientation/polarity (e.g., fimbrin that

forms parallel bundles, α-actinin that is associated with anti-parallel bundles, and

filamins that support the formation of F-actin networks). This extraordinary variety

of actin modulators allows the actin cytoskeleton to function as a highly versatile

platform that regulates many processes including cell polarity (Pollard 2007;

Pollard and Cooper 2009; De La Cruz and Gardel 2015).

Fig. 4 Effect of matrix rigidity on cell polarization, focal adhesion formation, and actin organi-

zation. Fibroblasts, stably expressing YFP-paxillin (green), were plated on elastomeric PDMS

substrates with different stiffness (“rigid”¼ 2 MPa (A); “soft”¼ 5kPa (B)), incubated for 6 h, and
then fixed-permeabilized and labeled with phalloidin to visualize actin (red), and DAPI (blue), to
visualize the nucleus. Notice the polarization of the cell adhering to the rigid surface, and the radial

spreading of the cell adhering to compliant surface (courtesy of Alexandra Lichtenstein)
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Special players in actin-based mechanics are myosins that are actin binding

molecular motors that translate chemical energy (ATP) into mechanical work

(transport or contraction). Myosins’ ability to “walk” unidirectionally along actin

fibers and rotate the actin filament with constant handedness (Sase et al. 1997;

Beausang et al. 2008) renders them key players in the generation and maintenance

of cell polarity. The myosin superfamily is large and versatile; however, it can be

divided into two groups: conventional and unconventional myosins. Conventional

myosin, also known as myosin II, assembles into bipolar filaments that together

with actin filaments generate tension forces. Myosin II plays a key role in many

processes that require the generation of tension within and between cells, such as

muscle contraction, cell migration, cytokinesis, and cell shape regulation (Zaidel-

Bar et al. 2015). Unconventional myosins that do not form filaments play a role in

many processes including transport of cargo and functional assembly of actin-rich

structures such as stereocilia in the inner ear, epithelial microvilli, and filopodia

(Hartman and Spudich 2012; Vicente-Manzanares et al. 2009). Although the two

groups of myosins have distinct structures, enzymatic properties, and functions,

members of both groups play key roles in the establishment of polarity.

In the C. elegans zygote myosin II activity plays a key role in the polarization of

PAR (“partitioning defective”) proteins and the establishment of anterior/posterior

polarity (Munro et al. 2004). Sperm entry into C. elegans egg alters cortical

actomyosin activity (“actomyosin” refers to a contractile complex of F-actin and

myosin II). Specifically, it induces flow of actin and myosin II from the sperm entry

site that will become the posterior of the embryo, to the opposite pole, that will

become the embryo’s head.

A role for non-conventional myosin was demonstrated in the budding yeast

S. cerevisiae. Polarization of non-polar yeast (G1 arrested) can be induced by

expressing of active Cdc42, a Rho family small GTPase, and a key regulator of

the actin cytoskeleton and polarity (Wedlich-Soldner et al. 2003). This process

involves amplification of stochastic Cdc42 activity to cross a certain threshold and

establish polarity. In this system Cdc42 mediates the polymerization of actin cables

on which the unconventional myosin V transports more Cdc42 towards the mem-

brane and amplifies random signals into a stable site of active Cdc42 that interacts

with actin cables (Wedlich-Soldner et al. 2003; Li and Gundersen 2008).

1.4 Thoughts About the Roles of Actin Associated Adhesion
Structures in Acquisition of Polarity

How does the assembly of the actin cytoskeleton contribute to embryonic morpho-

genesis and acquisition of polarity? In multicellular organisms, cytoskeleton-

anchored adhesions of cells to the ECM or to their neighbors play a key morphoge-

netic role. Consequently, the characterization of cell adhesions, and their structural

and functional diversity was extensively pursued in recent years (Wolfenson

et al. 2013; Winograd-Katz et al. 2014; Lecuit and Yap 2015; Priya and Yap 2015).
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Adhesive interactions, as part of the cells’ communication and interactions

network, are highly complex processes that enable the sensing of the chemical

and physical properties of external surfaces. These environmental cues can be

further integrated by the cells, and activate signaling processes that regulate cell

proliferation, survival, differentiation, and migration. Furthermore, specific classes

of cell adhesions, mainly integrin mediated cell–ECM adhesions (Meldolesi 2016),

and cadherin-mediated cell–cell adherens junctions (AJ) (Harris and Tepass 2010)

have an inherent association with the actin cytoskeleton, and consequently, play a

key role in cellular mechanics, including cell polarization processes.

It is noteworthy that in addition to integrin- and cadherin-mediated adhesions,

discussed here, cells contain a wide variety of additional adhesive mechanisms,

which affect cell behavior and fate. To mention just a few – cells can bind to the

connective tissue and basement membrane via a variety of lectins and proteoglycan

receptors, as well as intermediate filament-anchored hemidesmosomes (McDonald

and Mecham 1991). Similarly, the canonical inter-cellular junctional complex of

epithelial cells consists of apical tight junctions, which seal epithelial sheets, and

sets the apical-basolateral polarity. Along their lateral membranes, epithelial cells

communicate via gap junctions and form robust cytokeratin adhesions, namely

desmosomes (Alberts 2015). In this article we will focus only on the actin-

associated, integrin- and cadherin-mediated junctions.

Cellular characterization of integrin-mediated ECM adhesion was (and still is)

strongly based on the investigation of focal adhesions (FA) and related structures.

FAs are specialized and defined regions (commonly measuring 0.25–2 by 2–10 μm)

along the ventral plasma membrane, which are directly interacting with the sub-

strate. Moreover, FAs are associated via their cytoplasmic faces with the termini of

bundles of actin filaments, known as stress fibers. The molecular composition of

FAs was addressed by a wide variety of experimental approaches, ranging from

immunofluorescence microscopy to biochemistry to advanced genomics and prote-

omics, yielding a long list of proteins that belong to the so-called integrin adhesome

(Table 1; Zaidel-Bar et al. 2007; Zaidel-Bar and Geiger 2010; Horton et al. 2016).

Among them are “scaffolding proteins” (e.g., talin, vinculin, paxillin, and zyxin)

that physically bridge, directly or indirectly, between the cytoplasmic domains of

integrins and the actin cytoskeleton, and “signaling proteins” (e.g., a variety of

kinases, phosphatases, and regulators of GTPases), which can affect cell behavior,

as well as the fate of the adhesion site itself (Zaidel-Bar and Geiger 2010). In recent

years much information has accumulated not only on the physiological roles of the

integrin adhesome, but also on its involvement in human diseases (Winograd-Katz

et al. 2014).

FAs, and additional forms of integrin-mediated contacts with the ECM such as

focal complexes, fibrillar adhesions, podosomes, and invadopodia (Geiger and

Yamada 2011), play key roles in the induction of cell spreading in a wide variety

of tissue cells (e.g., mesenchyme-derived fibroblasts, epithelial cells, and endothe-

lial cells), followed by anterior–posterior polarization. The mechanism underlying

this process involves a combination of integrin-mediated signaling and scaffolding.

Interaction with the ECM was shown to activate the small GTPases Rac1 and
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CDC42, which trigger cell spreading by activating lamellipodial and filopodial

protrusion (Price et al. 1998; Lawson and Burridge 2014). Nascent adhesions,

which form under the expanding lamellae, are consequently exposed to mechanical

stress, which promotes their growth and maturation. This is followed by the

nucleation and assembly of stress fibers that run between FAs, and apply contractile

forces to the two FAs associated with its ends. This Rho A-activated actomyosin

contractility applies a stable tension, via the stress fibers to FAs (~5.5 nN/μm2; see

Balaban et al. 2001), which was shown to be crucial for maintaining the integrity of

the FA-stress fiber complex.

How are integrin-mediated FAs involved in regulating cell polarization? Exam-

ination of cells, plated on a rigid surface, indicated that cell spreading on the

substrate is, initially, a radial process, leading to the development of circular

(“fried-egg”) morphology, with peripheral, mostly radially oriented FAs. The rate

Table 1 The molecular

architecture of integrin-

and cadherin-mediated

adhesions

Major protein Cadherin Integrin Both All

Actin and regulators 19 10 7 36

Adaptors 29 47 18 94

Adhesion receptor 22 40 2 64

Cytoskeletal – – 3 3

GAPs 6 10 3 19

GEFs 2 14 3 19

GTPases 4 4 2 10

Lipid kinases – – 2 2

Lipid phosphatases – 4 1 5

S/T kinases 4 1 4 9

S/T phosphatases – 3 1 4

Y kinases 3 4 6 13

Y phosphatases 7 4 5 16

Motor proteins 4 – 1 5

Proteases 4 2 1 7

Channels 2 4 – 6

Ub ligases 1 3 – 4

Chaperones – 3 – 3

All 107 153 59 319

The major families of molecular components, associated with the

cadherin and integrin adhesomes, are presented. This table shows

that both types of adhesions are highly enriched with actin, actin

regulators, and adaptor proteins that link the adhesion receptors to

the actin cytoskeleton. Moreover, many of the actin regulators and

adaptors are associated with both integrin and cadherin adhesions.

The two adhesion types contain, in addition, multiple signaling

molecules, most prominently small GTPases and their regulators,

as well as kinases and phosphatases (mainly tyrosine specific).

These signaling molecules are believed to play an important role

in regulating cell behavior and fate, as well as the assembly and

stability of the adhesion site
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and extent of spreading and FA formation vary between cells, and are usually

affected by ligand density and other surface features (e.g., Reinhart-King

et al. 2005). Upon longer incubation, the radial symmetry is usually broken (most

prominently in fibroblasts), and the cells tend to polarize, and assume an elongated

morphology. In cells with migratory properties, the two ends of the major axis of

the cells are distinct; one end developing a protrusive lamellipodium (“leading

edge”), while the opposite end is dominated by focal adhesions (“trailing edge”).

The acquisition of such anterior–posterior polarity plays a crucial role in physio-

logical processes such as embryonic development and wound healing, as well as

pathological states like invasive and metastatic migration of cancer cells. This

transition from radial to axial symmetry is regulated by both the rigidity of the

underlying substrate and the cell’s adhesion-signaling system. Specifically, it was

shown that cell polarization/ elongation depends on substrate rigidity, and is usually

preceded by polarization of the peripheral FAs (Fig. 4). Furthermore, it was shown,

by siRNA screening, that the polarization process is tightly regulated by tyrosine

kinases within the adhering cells (for details, see: Prager-Khoutorsky et al. 2011).

Actin associated cell–cell AJs also play key roles in tissue coherence, primarily

in epithelial, endothelial, and cardiac muscle cells (Geiger et al. 1983; Volberg

et al. 1986). In simple epithelial cells (e.g., intestinal or renal epithelia) they are

usually organized as sub-apical rings, located just below the apical tight junctions

(Farquhar and Palade 1963), while in other cell types they form patchy adhesions of

variable sizes and distributions (Fig. 3). The adhesion receptors of AJs are different

cadherins, which commonly mediate calcium-dependent homotypic interactions

(between similar cells) and act in a homophilic manner (interacting with the same

cadherin type on the neighboring cell). Just like integrins, in ECM adhesions,

cadherins interact with actin via a network of scaffolding and signaling molecules,

referred to, collectively, as the “cadherin adhesome” or “cadhesome” (Table 1; Guo

et al. 2014; Zaidel-Bar et al. 2015). These components, collectively, contribute to

the mechanical stability of the inter-cellular junction, and to its capacity to generate

and transmit adhesion signals. Moreover, some of these molecules (e.g., vinculin,

α-actinin, and VASP) are present in both types of adhesions, while others are

associated only with focal adhesions (e.g., paxillin, ILK) or only with AJs (e.g., α
and β catenin).

The regulation of AJ formation and stability is based on the same general

principles which operate in integrin adhesions, including mechanical stimulation

and integration (Lecuit and Yap 2015), coordinated activation of stimulatory GEFs

and inhibitory GAPs (Braga and Yap 2005), and the recruitment of different kinases

and phosphatases (Bertocchi et al. 2012). While the regulatory mechanisms under-

lying cell–cell and cell–ECM adhesion appear to be quite similar (Table 1), the two

types of adhesions are far from being up- and down-regulated simultaneously. On

the contrary; commonly, the state of organization of the two types of adhesions is

reciprocally related. Whether the mechanism whereby these adhesion systems are

coordinated and/or differentially regulated is not clear. Different possibilities are

considered, including the activation of specific signaling pathways, stimulation of a

mesenchymal-epithelial transition-like process, and direct mechanical cross-talk
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between the two structures. Whichever the underlying mechanism is, the transition

from epithelial to mesenchymal characteristics leads to the loss of apical-basal

polarity and (in some cases), to acquisition of a “migratory” phenotype, based on

anterior–posterior polarity.

1.5 The Roles of Mechanical Forces in Acquisition of Polarity

Mechanical forces are major regulators of biological processes. These forces can be

divided into two types according to their source: intrinsic forces, developed inside

the cell, and extrinsic, “environmental” forces, generated by whole body

movements, muscle activity, blood flow, and the like. Mechanical forces affect

multiple cellular processes, ranging from cell architecture to signal transduction to

cell fate determination (Iskratsch et al. 2014; Zaidel-Bar et al. 2015).

The actin cytoskeleton is not only force generator, but is also sensitive to

mechanical perturbations, which affect its polymerization (Goeckeler and

Wysolmerski 1995; Hirata et al. 2008; Jegou et al. 2013), turnover (Wilson

et al. 2010), and the assembly of actin-rich structures such as stress fibers and

lamellipodia (Giuliano et al. 1992; Svitkina et al. 1997; Hotulainen and

Lappalainen 2006; Goeckeler et al. 2008; Naumanen et al. 2008; Senju and Miyata

2009). As mentioned above, actin associated adhesion structures, both cell–cell and

cell–ECM, are also sensitive to mechanical cues that alter their adhesive properties,

their molecular composition, and signal transduction (reviewed in Geiger

et al. 2001; Schiller and Fassler 2013; Wolfenson et al. 2013; Ladoux et al. 2010;

Sumida et al. 2011; Priya and Yap 2015).

With such profound impact of cellular mechanics on the cytoskeleton and

associated adhesion structures, it is not surprising that mechanical forces are

major regulators of polarity, including front-back polarity (Vicente-Manzanares

et al. 2009), apical-basal polarity (Yu et al. 2008), PCP (Lee et al. 2012; Walters

et al. 2006), and left-right polarity (Naganathan et al. 2014; Tee et al. 2015).

To illustrate the mechanisms, we would like to describe here the “nodal model.”

Ciliated cells at the node of the mouse embryo (the node is a transient structure, a

cavity at the posterior part of the notochord) rotate clockwise and generate a

directional flow that can be detected by sensory structures and translated into

expression of specific genes and establishment of left-right polarity. Defects in

the assembly (Nonaka et al. 1998; Takeda et al. 1999) or motility (Supp et al. 1997)

of cilia give rise to left-right polarity defects. Moreover, an artificial flow system

was able to rescue motile cilia mutants and flip left-right polarity, providing direct

evidence for the role of mechanical forces in the establishment of left-right sym-

metry (Nonaka et al. 2002).
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2 Novel Mechanisms in the Establishment of Planar Cell
Polarity

2.1 Some Basic Facts

PCP is a tissue-level phenomenon, which plays a fundamental role in tissue

morphogenesis. For instance, PCP regulates collective cell migration and conver-

gent extension (a process whereby tissue extends on one axis and narrows down in

the orthogonal direction) (Wallingford et al. 2000; Darken et al. 2002; Goto and

Keller 2002), as well as mitotic spindle orientation (Lake and Sokol 2009; Segalen

and Bellaiche 2009) and cilia positioning and function (Park et al. 2006; Park

et al. 2008; Tarchini et al. 2013). Studies in vertebrate model organisms showed

that mutations in PCP genes may give rise to many developmental defects and

diseases including neural tube closure defects, inner ear and heart development

defects, wound healing defects, kidney disease, and cancer (Munoz-Soriano

et al. 2012). In humans PCP defects are associated with neural tube closure defects

such as spina bifida and craniorachischisis (Lei et al. 2010; Seo et al. 2011;

Robinson et al. 2012), and were also reported in several models of human cancers

(Hatakeyama et al. 2014).

At the molecular level, two groups of genes control PCP: the “core-PCP” and the

“Fat-Dachsaus” groups, yet the mode of molecular interaction between the two

pathways is not well understood. Frizzled and disheveled are core-PCP proteins;

however, they are also important regulators of the Wnt signaling pathway. There-

fore the core-PCP pathway is often referred to as non-canonical Wnt pathway. An
important hallmark of these proteins is their asymmetric localization within the

cells. Only Celsr (also known as flamingo), a transmembranal atypical cadherin

core-PCP protein, is localized on both the anterior and posterior sides of the cell

where it creates homodimers that connect neighboring cells (Fig. 2b), all the other

PCP proteins in the two groups exhibit asymmetric distribution (reviewed in

McNeill 2010; Devenport 2014; Sebbagh and Borg 2014; Sokol 2015).

2.2 Involvement of External Mechanical Forces in Planar Cell
Polarity

One of the major challenges in the PCP studies is to identify the upstream cue(s)

that provide directionality and determine the global axis of PCP. Recently it was

shown that wingless (Wg) and Wnt4 function redundantly to orient PCP in the

Drosophila wing disc and affect the axis of polarity by regulating the interaction

between two core-PCP proteins [frizzeled and Vangl (Van Gogh)] (Wu et al. 2013).

An important work on the same tissue suggested that mechanical forces also affect

the orientation of the PCP axis and couple PCP establishment with wing morpho-

genesis (Aigouy et al. 2010).

During the development of the drosophila wing, the tissue PCP changes its

orientation. In early stage PCP is oriented towards the edge of the wing, later on

it reorients along the proximal-distal axis (Classen et al. 2005). Live imaging
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experiments conducted by Aigout and coworkers (Aigouy et al. 2010) demonstrated

that the PCP reorientation is temporally correlated with cell and tissue shape

changes. At the tissue level the shape dynamics involve the contraction of the

wing hinge that loses health of its size while the blade becomes more elongated and

narrows down. At the cellular level, oriented cell divisions, changes in cell shape,

and establishment of new contacts can be detected. By severing the contracting

hinge the authors demonstrated that PCP reorientation and tissue/cell dynamics are

coupled. Laser ablation experiments showed that hinge contraction alters force

distribution in the tissue from isotropic to anisotropic (Aigouy et al. 2010).

Together, these data suggest a key role for mechanical forces in PCP orientation

in the fly.

During gastrulation mechanical forces strain the developing skin in Xenopus. At
the same time skin planar axis is established. These PCP cues will then guide the

development and coherent function of multiciliated epithelial cells at the surface of

the tadpole. Chien et al. (2015) noted that ventralized Xenopus embryos that exhibit

many patterning defects manage to establish PCP. Since these abnormal embryos

do undergo gastrulation that strains the developing skin, the authors asked whether

PCP establishment is regulated by mechanical cues. To check this hypothesis, the

authors exposed isolated ectoderm that normally does not establish PCP to external

forces. By doing so Chien et al. nicely demonstrated that mechanical forces are very

effective in establishing the axis of PCP in the developing Xenopus skin (Chien

et al. 2015).

2.3 Involvement of Internal Mechanical Forces in Planar Cell
Polarity

While external forces (hinge contraction) play a key role in wing development,

wing cells are not indifferent bystanders in the process. Wing cells actively generate

internal forces that respond to the external forces and together affect wing morpho-

genesis (Etournay et al. 2015). Moreover, recently, a tissue-specific knockdown of

Wdr1 (restricted to the mouse epidermis) demonstrated a key role for internal,

actomyosin-generated forces in PCP establishment in a mammalian system

(Luxenburg et al. 2015).

During the development of the mouse skin, epidermal cells of the basal layer

establish PCP that orients the growth of hair follicles towards the anterior of the

embryo (Fig. 2). This process results in a highly ordered pattern of hairs throughout

the mouse fur. Defects in the core PCP gene Frizzled6 give rise to an abnormal hair

pattern (Guo et al. 2004; Wang et al. 2006). Early in epidermal development

[embryonic day (E)12.5] core PCP proteins can be detected throughout the cortex

of the cell, a day later early signs of anterior–posterior enrichment can be detected

and 2 days later (E14.5) a polarized pattern is readily evident (Devenport and Fuchs

2008). E14.5 is also the first time point in development in which hair follicles begin

their development.

The differentiation of keratinocytes involves dramatic changes in cell shape as

cells of the basal layer alter their cuboidal architecture and turn flat. Recently,
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Luxenburg et al. (2015) demonstrated that cytoskeleton-driven cell shape changes

take place within the basal layer at the same time that the tissue establishes PCP.

During this process the basal layer of epidermal cells becomes more compact and

changes their orientation in the tissue. The knockdown of Wdr1, a scaffolding

protein that enhances cofilin mediated actin severing activity, negatively affects

both cell shape dynamics and the establishment of PCP. In line with these PCP

defects, hair follicle orientation and molecular asymmetry are abnormal without

Wdr1. Laser ablation experiments showed that boundary tension is significantly

reduced without Wdr1, highlighting the involvement of this gene in the ability to

generate and maintain cytoskeleton-derived forces and cortical tension in the cell.

In the mouse epidermis core PCP proteins undergo endocytosis on mitosis and

will be recycled to the cell surface of the daughter cells (Devenport et al. 2011).

When core-PCP mitotic internalization is blocked, cell shape changes that normally

accompany mitosis (e.g., mitotic rounding (Luxenburg et al. 2011) abolish the

localization of core PCP proteins and planar polarity (Shrestha et al. 2015). This

observation further supports a key role for cell shape dynamics in the PCP.

3 Cytoskeletal Involvement in the Acquisition of Left-Right
Polarity

3.1 Some Basic Facts

The establishment of left-right symmetry takes place early in development. In

C. elegans and Xenopus left-right cues are generated by the actin cytoskeleton

and can be detected at the single cell embryo stage (Danilchik et al. 2006;

Naganathan et al. 2014). In most vertebrates left-right polarity cues affect the

development of many organs, including the heart, lungs, stomach, liver, gallblad-

der, pancreas, spleen, and the brain. Moreover, many of the large arteries and veins

also establish left-right asymmetry during development (Casey and Hackett 2000;

Levin 2005). In cultured cells left-right polarity is evident by consistent handedness

of cytoskeletal structures (Tee et al. 2015) and consistent directional migration

under both confined and isotropic conditions (Nonaka et al. 2002; Xu et al. 2007;

Tamada et al. 2010; Yamanaka and Kondo 2015).

A range of left-right polarity defects was described in humans, from complete

reversal of all organs known as “situs inversus” to a range of partial defects known

as “partial situs inversus,” “situs ambiguus,” “heterotaxy,” or “heterotaxia.” Some

of these conditions may be fetal or negatively affect the health of the affected

individual (Casey and Hackett 2000).

While defects in left-right polarity were described in snails more than a century

ago, the first molecular components that mediate it were described only 20 years

ago (Levin et al. 1995). Since then studies in several model organisms and in

cultured cells identified a variety of molecular mechanisms that establish, maintain,

and amplify left-right polarity. These mechanisms involve both the actin and the

microtubule cytoskeleton and their motor proteins, as well as external forces and
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ion fluxes (for recent reviews, see Coutelis et al. 2014; Hamada and Tam 2014;

Yoshiba and Hamada 2014).

3.2 Key Roles for the Actin Cytoskeleton in Left-Right Polarity:
Insights from Cultured Cells

The notion that the actin cytoskeleton plays a role in left-right polarity is well

established. Wan et al. (2011) demonstrated this phenomenon in many different cell

types. In this experimental system cells were cultured in a confined environment

and cell alignment and migration were analyzed to determine left-right polarity.

Strikingly, all types of cells exhibit handedness. Interestingly, normal and

transformed skin fibroblasts exhibit opposite handedness, suggesting that chirality

might be altered in specific pathological states, such as cancer. Treatment with

drugs that modulate actin dynamics alters handedness, emphasizing the key role of

the actin cytoskeleton in this type of polarity (Wan et al. 2011).

Recently Tee and coworkers (2015) provided intriguing insights into the roles of

the actin cytoskeleton in left-right polarity. These authors cultured fibroblasts on

circular adhesive islands and tracked the actin cytoskeleton by video microscopy. A

sequence of five distinct patterns was detected that included a shift from isotropic to

chiral pattern with defined handedness. The isotropic pattern was made of radial

actin fibers growing from peripheral focal adhesions towards the cell center and

transverse fibers that move centripetally. The shift to a chiral pattern takes place at

the level of the radial fibers, which uniformly tilt to the same direction, inducing the

swirling of the transverse fibers.

To gain mechanistic insights into the establishment of left-right polarity in this

system the authors studied the structural, molecular, and dynamic properties of the

chiral actin pattern. They demonstrated that while the radial and traverse actin fibers

interact physically, their molecular composition is different: the actin bundling

protein α-actenin is enriched in the radial fibers while the traverse fibers are

enriched in myosin II. Moreover, myosin II motor activity is essential for the

assembly of both radial and traverse fibers and its activity within the traverse fibers

propel their movement along the radial fibers that rely on formin-mediated actin

polymerization for their assembly. Overexpressing of α-actinin flips the handedness
of the actin network, suggesting a key role for actin bundling in the development of

cell chirality.

3.3 Key Roles for the Actin Cytoskeleton in Left-Right Polarity:
Physiological insights

The aforementioned studies demonstrate that the actin cytoskeleton has an intrinsic

ability to establish handedness under experimental conditions. A recent study by

Naganathan et al. (2014) demonstrated that the actin cytoskeleton plays a key role

in establishing left-right polarity also in a physiologically relevant system, the
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C. elegans embryo. More than a decade ago Munro et al. (2004) showed that sperm

entry into C. elegans egg induces flow of actin and myosin that polarizes PAR

proteins and establishes anterior–posterior polarity. More recently Naganathan

et al. (2014) revisited these early events in C. elegans development, and found

that while cortical flow is readily detectable along the anterior–posterior axis, an

orthogonal flow can also be detected, leading the anterior and posterior parts of the

embryo to counter-rotate, relative to each other. Apparently a significant portion of

myosin II activity is dedicated to the generation of torque that propels both the

establishment of chirality and anterior–posterior flow. This process is regulated by

Rho signaling, and subtle changes in this pathway can alter torque without affecting

tension, affecting left-right but not anterior–posterior polarity. This mechanism is

relevant also at the 4-cell stage at which C. elegans handedness is established.

Interestingly, manipulating Wnt signaling genes that are known to play a role in

left-right symmetry altered chiral actin flow. This observation further emphasizes

the link between left-right polarity and actomyosin activity.

4 Conclusion

Cells rely on internal and/or external cues to establish asymmetry. In recent years it

became evident that mechanical forces applied by the pericellular environment or

generated inside cells, by the cytoskeleton, function as important upstream signals

that trigger the establishment of cell and tissue polarity.

In the last decade advances in high-resolution microscopy, ECM nano- and

micro-fabrication, as well as computational analysis shed new light on the molecu-

lar mechanisms underlying the mechanobiology of cell polarity. That said, many

key questions are still poorly understood. For instance, it will be important to

understand the cross-talk between chemical and mechanical cues in these processes

and the identity of the diverse proteins that mediate the acquisition of polarity.

These studies will, hopefully, advance our knowledge of cell polarity, with rele-

vance to diverse physiological and pathological processes, including embryonic

development, stem cell differentiation, and cancer biology.
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