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Abstract

Recently, in a poll by Research America, a significant number of individuals

placed losing their eyesight as having the greatest impact on their lives more so

than other conditions, such as limb loss or memory loss. When they were also
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asked to rank which is the worst disease that could happen to them, blindness

was ranked first by African-Americans and second by Caucasians, Hispanics,

and Asians. Therefore, understanding the mechanisms of disease progression in

the eye is extremely important if we want to make a difference in people’s lives.

In addition, developing treatment programs for these various diseases that could

affect our eyesight is also critical. One of the most effective treatments we have

is in the development of specific drugs that can be used to target various

components of the mechanisms that lead to ocular disease. Understanding

basic principles of the pharmacology of the eye is important if one seeks to

develop effective treatments. As our population ages, the incidence of

devastating eye diseases increases. It has been estimated that more than 65 mil-

lion people suffer from glaucoma worldwide (Quigley and Broman. Br J

Ophthalmol 90:262–267, 2006). Add to this the debilitating eye diseases of

age-related macular degeneration, diabetic retinopathy, and cataract, the number

of people effected exceeds 100 million. This chapter focuses on ocular pharma-

cology with specific emphasis on basic principles and outlining where in the

various ocular sites are drug targets currently in use with effective drugs but also

on future drug targets.
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1 Introduction

We will discuss the pharmacodynamics and the pharmacokinetic properties of

ocular therapeutic agents. Pharmacokinetics is the study of drug absorption, distri-

bution, metabolism, and excretion of drugs. Clinical pharmacokinetics applies the

data gathered in these studies to design optimal dosing and minimize adverse

reactions for optimal therapeutic outcomes. In general, for drugs to reach their

target organs (distribution), they first need to enter into the system circulation.

Drugs given orally, intramuscularly, or by transdermal patch need to be absorbed

through several physiological barriers before reaching the systemic circulation.

Drugs are metabolized by specific enzymes (many by the cytochrome P450

oxidases in the liver) into other metabolites that may or may not have the same

pharmacological effect as the parent drug.

The eye is unique in that many of the drugs for ocular therapy, particularly those

designed to lower intraocular pressure, are formulated to be absorbed through the

cornea and into other tissues of the eye, including the aqueous humor. The aqueous

humor is a clear fluid that flows through the anterior segment of the eye that

provides nutrients and drugs to other nonvascular eye tissues. After use, many

eye drugs exit the eye, enter the blood stream, and are transported to the liver where

they are metabolized. The drug metabolites or the drugs themselves are then

excreted from the body either through urine or feces. However, it is important to
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note that pathological conditions, genetic polymorphism, and drug–drug interaction

may influence the pharmacokinetics of drugs.

Pharmacodynamics is the study of the biological effects of drugs and their

mechanisms of action. Clinically, pharmacodynamics is the correlation between

the dosage of a drug that is administered to a patient and the pharmacological

response of the drug. It is important to note that there may not be a correlation

between increases in dosages and pharmacological effects. One important reason is

that the pharmacological effects of drugs are achieved through drug/receptor

interactions. Drugs bind to their respective receptors, form a complex, and elicit

their physiological effects. At base level, almost all receptors are available for the

drugs to bind. As concentrations of drugs are increased, there are less available

receptors with which to bind; therefore, the effects of the drugs may not change as

drug/receptors reach saturation.

These receptor proteins can be located either on the plasma membrane, within

the cytoplasm, or in the nucleus of a cell. The ability of a drug to bind to a receptor

is governed by chemical/physical forces. Receptors can be classified as kinase

receptors, ion channels, G protein-coupled receptors (those proteins coupled to G

proteins), and intracellular receptors.

Two main terms used to describe the properties of drugs to receptors are potency

and efficacy. Potency is related to dosage and efficacy is the ability of the drug to

activate a receptor. As the potency of a drug decreases, the dose–response curve

shifts to the right. An example is shown in Fig. 1 where drug A is more potent than

drug B or C. Efficacy is a measure of the response of the drug and determined by a

dose–response curve. For example, in Fig. 1, drug A and drug B have the same

efficacy, but greater than drug C. ED50 is the concentration of drug where there is a

half-maximal effect in vivo, EC50 is the concentration of drug where there is half-

Fig. 1 Dose response curve of three different agonists visualizing drug potency and efficacy.

Drug A and Drug B has the same efficacy but are more efficacious than Drug C. Drug A is more

potent than Drug B and Drug C

Principles of Ocular Pharmacology 5



maximal effect in vitro, and Kd is the concentration at which half-maximal binding

of drugs to receptors occurs. In addition, depending on if studies for drugs and

receptors are carried out in vitro or in vivo, the curves are called concentration–

response curves or dose–response curves, respectively.

Drugs that produce a response (or have efficacy) can be broken down into

4 major categories: full agonist, partial agonist, antagonist, and inverse agonist. A

full agonist will have a maximal response (drug A on Fig. 2), where as a partial

agonist will have a less than maximal response (drug B on Fig. 2). A partial agonist

in the presence of a full agonist can also be considered an antagonist. An inverse

agonist is a phenomenon where a drug produces an opposite effect of that produced

by an agonist (drug D on Fig. 2). Antagonist have no efficacy (drug C on Fig. 2) on a

receptor and act either by blocking the direct binding site of an agonist (direct

antagonist) or by binding to an indirect binding site, and changing the conformation

of the receptor into its inactive state so that an agonist cannot bind to the receptor

(Fig. 3). A direct antagonist can be overpowered by increasing the concentration of

an agonist and would cause a shift of the dose–response curve to the right; on the

other hand, an indirect antagonist in the presence of an agonist cannot be overcome

by increasing the concentration of the agonist.

In terms of ophthalmology, one of the best examples to compare the potency of

different drug classes to a particular pharmacological effect is the intraocular

pressure (IOP)-lowering agents used to treat glaucoma. These agents include the

first-line agent prostaglandins, beta-blockers (timolol), selective alpha-adrenergic

agonist (brimonidine), and carbonic anhydrase inhibitors, like brinzolamide.

Prostaglandins are considered first line for the treatment of glaucoma because

they are the most potent topical agent that can be used to lower IOP, meaning

that it takes less drug to get a desired therapeutic effect. If looking at the dose–

response curves in Fig. 1, the prostaglandin agents would be drug A, while the other

IOP lowering drugs would have their dose–response curves shifted to the right.

Fig. 2 Dose response curves

of drug categorized into 4

groups by their response.

Drug A is a full agonist which

elicit a maximal response. A

drug that does not give a full

measured response is known

as a partial agonist, which is

depicted as Drug B. Drug C

does not evoke a response and

is an antagonist. Drug D

produces a opposite response

of Drug A and is categorized

as an inverse agonist
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2 Receptor Profile

The eye is a complex sense organ that is composed of many unique types of tissues

involved in light sensing and the visual transduction cascade. Within these tissues

are cells that contain various classes of proteins that can act as receptors for

pharmacological drugs to interact with and produce a measurable cellular/signaling

response. Of the many families of receptors, there are four major receptor protein

families that are able to transduce extracellular signals to intracellular responses,

thus allowing these receptor families to be major drug targets for ocular therapeu-

tics. In this section we will present an overview of these four receptor families:

ligand-gated ion channels, G protein-coupled receptors, kinase-linked receptors,

and nuclear receptors (Fig. 4).

2.1 Ligand-Gated Ion Channels

Ligand-gated ion channels (LGICs) (i.e., ionotropic receptors) are receptor protein

channels embedded within the plasma membrane of neuronal cells. Following the

binding of a neurotransmitter, these LGICs undergo a change in conformation and

allow the influx of different ions such as Na+, K+, Ca2+, or Cl�, resulting in

depolarization or hyperpolarization of the neuronal cell. The fast transmission of

ions following the opening of LGICs allows these channels to be involved in fast

synaptic transmission between cells in the neurons of the retina (Le Novere and

Changeux 2001).

There are three superfamily classes of LGICs: pentameric, tetrameric, and

trimeric receptors (Lemoine et al. 2012). The pentameric LGICs are named after

Fig. 3 Drug binding site of a receptor can cause conformational changes mediating receptor

activity. When an endogenous ligand (A) or an agonist (B) binds to a receptor it produces a

conformational change in the receptor opening up the receptor pore allowing the receptor to be in

its active state. Ions are allowed to pass through the pore freely during the active state. A direct

antagonist (C) can have affinity to the same binding site of endogenous ligands or agonists and thus

competing against these ligands and agonists and preventing receptor activation. Indirect antago-

nist (D), bind to receptors in regions where ligands or agonist do not bind to. However, even

though a ligand or agonist can bind, the receptor is inactive due to the indirect antagonist causing

conformational changes inhibiting the receptor to open its pore channel

Principles of Ocular Pharmacology 7



five subunits that form homo- or heteromeric receptors. They are also known as

Cys-loop receptors for the homologous extracellular loop that is flanked by two

cysteine residues connected by a disulfide bridge. These receptors allow the move-

ment of both cations and anions, which determines if the receptors are excitatory or

inhibitory, respectively (Calimet et al. 2013). The excitatory LGICs consist of the

serotonin, nicotinic acetylcholine, and zinc-activated ion channel, while the inhibi-

tory receptors are the GABA and glycine receptors (daCosta and Baenziger 2013;

Lemoine et al. 2012). The pentameric receptor’s subunits have both the amino- and

carboxyl-terminus on the extracellular region. These receptors include four trans-

membrane segments where the second membrane segment of each subunit

associates with all five subunit second membranes to form a pore (Lemoine

et al. 2012).

The second class of LGICs is the tetrameric receptors in which four homo or

hetero subunits form the receptors. They are also known as the ionotropic glutamate

receptors, which are comprised of the excitatory, nonselective cation permeable

NMDA (N-methyl-D-aspartate), AMPA (α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid), and kainate receptors (Mayer 2005). These receptor

subunits contain an extracellular amino-terminal domain, an extracellular domain

ligand-binding domain, a transmembrane domain (M1, M2, and M3 segment), and

an intracellular carboxyl-terminal domain. Between M1 and M2 segment contains a

loop that is partially reentrant to the plasma membrane, called the “p-loop” forming

Fig. 4 A diagram of the four major receptor families, demonstrating their intracellular mecha-

nism and the durations of their responses
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an ion channel when other subunits are associated (Bruening-Wright et al. 2002;

Traynelis et al. 2010).

The trimeric receptors are the third class of LGIC receptors where composed of

the P2X receptors which is activated by ATP (Sanderson et al. 2014). These

receptors are formed by three homo or hetero subunits having two transmembrane

segments (M1 and M2). Both the amino and carboxyl-terminal domains of the

subunits are located in the cytosol where there is an extracellular loop, rich in

cysteine residues. These receptors are mainly permeable to cations but one type is

permeable to chloride anions (Lemoine et al. 2012).

Cellular signal transduction through LGICs occurs when a specific extracellular

ligand binds to the N-terminus of the receptor subunits. In the case of pentameric

and trimeric receptors, the ligand-binding domain is between subunits, while in

tetrameric receptors, the ligand-binding domain is within the core of each subunit

(Connolly and Wafford 2004; Lemoine et al. 2012). The result of the ligand binding

to the receptor causes a receptor conformational change therefore opening up the

channel to allow ions to flow through. The speed of the cellular signal transduction

occurs within milliseconds. There are no secondary messenger biochemical

systems involved with LGICs. However, the influx of Ca2+ is important where it

can act as a secondary messenger, activating many calcium-binding proteins, thus

further amplifying intracellular signals and producing a signal transduction cascade

which could influence gene expression and changes in cell physiology (Akopian

and Witkovsky 2002; Pankratov and Lalo 2014).

2.2 G Protein-Coupled Receptors

G protein-coupled receptors (GPCRs) modulate, dampen, or enhance intracellular

signals through the coupling of intracellular secondary messengers with members

of the guanosine nucleotide-binding proteins called G proteins. These receptors are

also known as metabotropic receptors or 7-transmembrane receptors (7TM

receptors), and they are the largest group of the receptor families. Over

800 receptors belong to this family where they encode roughly 4% of the human

genome (Katritch et al. 2013; Kobilka 2007). The large number of GPCRs makes

them the biggest target for pharmaceutical therapeutics of the eye and nearly 50%

of all drugs in the market target GPCRs (Xu and Xiao 2012).

There are five classes of GPCRs: rhodopsin family (710 members), adhesion

family (24 members), frizzled/taste family (24 members), secretin family

(15 members), and the glutamate family (15 members) (Katritch et al. 2013).

Although being diverse, GPCRs generally are similar in structure where there are

three main domains: an extracellular amino-terminal domain, seven alpha-helical

(hydrophobic) transmembrane protein domain, and intracellular carboxyl-terminal

domain. The transmembrane protein segments are the most conserved structure

between the GPCRs, whereas the amino-terminus is the least conserved (Kobilka

2007).

Principles of Ocular Pharmacology 9



Many different types of peptides/pharmacological agents can bind and act as

ligands to GPCRs, ranging from photon-stimulating rhodopsin receptors in photo-

receptor cells to the epinephrine-stimulating β2-adrenergic receptors in the

nonpigmented ciliary epithelium (Crider and Sharif 2002; Okada et al. 2001;

Orban et al. 2014). Many small organic molecules are able to bind to within the

transmembrane segments; however, larger ligands such as protein normally bind to

the extracellular amino-terminus or the extracellular loops between the transmem-

brane segments (Kobilka 2007). Binding of a ligand to the receptor results in a

conformational change; this causes the receptor to act as guanine nucleotide

exchange factor. The plasma membrane resident heterotrimeric G proteins (Gα,
Gβ, Gγ) are recruited then to the GPCR, promoting an exchange of a GDP for a

GTP on the alpha subunit resulting in the dissociation of the Gα subunit from the

Gβγ subunit protein. The α subunit and the Gβγ subunit mediate other proteins as

second messengers of GPCRs to transduce cellular signaling further downstream.

The inherent GTPase activity of the Gα subunit causes hydrolysis of GTP to GDP,

resulting in the termination of the G protein and reuniting of the α subunit to the

Gβγ subunit (Johnston and Siderovski 2007).

GPCR cellular signaling is complex and widespread which occurs in a timescale

of seconds to minutes. Activation of one ligand type can induce a multitude of

effector systems. GPCRs can form homo- or hetero-oligomers causing activation of

multiple effector systems simultaneously (Kobilka 2007). Additionally, G proteins

are very diverse in which there are 21 different Gα subunits, at least 6 different Gβ
subunits, and 12 Gγ subunits (Oldham and Hamm 2008; Smrcka 2008). Gα subunits
are categorized in four major groups in which effector system they mediate (Simon

et al. 1991).

1. Gs – Stimulates adenylyl cyclase and open Ca2+ channels and therefore increases

cAMP

2. Gi – Opens K+ channels and inhibits Ca2+ channels and adenylyl cyclase

3. Gq – Activates phospholipase C and regulates the inositol phosphate system;

release of internal calcium store

4. G12/13 – Activates Rho family GTPase signaling

The Gβγ subunit was believed to be a negative regulator of the Gα subunit;

however, recently the Gβγ subunit was discovered to regulate other proteins such as
ion channels, therefore increasing the complexity of GPCR cell signaling (Smrcka

2008).

2.3 Kinase-Linked Receptors

Kinase-linked receptors are large transmembrane receptors, containing a large

amino terminal ligand-binding domain, an α-helical transmembrane segment, and

a carboxyl catalytic domain. The effectors for these receptors range from wide

variety of ligands such as growth factors, cytokines, insulin, and leptin. The binding

10 Y. Park et al.



of a ligand triggers receptor dimerization, followed by the autophosphorylation of

the catalytic carboxyl domain. This phosphorylation of the catalytic domains

induces the recruitment of other second messenger proteins to associate to the

kinase-linked receptor’s catalytic domain to be phosphorylated and induce an

amplified signaling cascade. Activation of kinase-linked receptor elicits signaling

for gene transcription to facilitate synthesize of protein required for cell growth,

proliferation, differentiation, and survival of the cell in a time period of hours

(Hinck 2012; Lemmon and Schlessinger 2010; Wilks 1989).

There are four main classes of kinase-linked receptors bases on their phosphor-

ylation moiety. There are the receptor tyrosine kinases (RTKs), the serine/threonine

kinases (RSTKs), the cytokine receptors, and the guanylyl cyclase (GC)-linked

enzyme. RTKs contains tyrosine kinase moiety, while RSTKs are a smaller class

than RTKs with a serine/threonine kinase moiety. An example of RTKs being a

target for ocular pharmacology are the vascular endothelin growth factor (VEGF)

receptor, where overstimulation of the receptor signals for the formation of abnor-

mal blood vessel growth observed in wet age-related macular degeneration (AMD)

or diabetic macular edema (Davuluri et al. 2009; Triantafylla et al. 2014; Witmer

et al. 2002). Cytokine receptors do not have kinase enzymatic activity itself and

therefore need the use of intracellular tyrosine kinases such as JAK to phosphory-

late the receptor itself as well as other proteins (Patel et al. 2013). GCs are similar to

RTKs and are part of the G protein-signaling cascade where they synthesize cyclic

GMP from GTP (Gileadi 2014). In the disease cone dystrophy, genetic mutations in

guanylate cyclase 2D result in death of cone photoreceptor cells (Garcia-Hoyos

et al. 2011).

2.4 Nuclear Receptors

Nuclear receptors (i.e., intracellular receptors or ligand-activated transcription

factors) are important drug targets for their ability to recognize many gene regu-

latory sequences and regulate gene expression (Aranda and Pascual 2001). These

receptors are not embedded in the plasma membrane of cells but found in the

cytoplasm or within the nucleus. Ligands for nuclear receptors need to be lipid

soluble to allow the ligands to pass through the plasma membrane freely where it

binds to the receptor. The receptor then translocates to DNA, binding to a regu-

latory region near the promoter called a hormone response element, acting as a

transcription factor. Co-activator and corepressor factors are then recruited

mediating gene transcription. The activation of nuclear receptors is important for

the regulation of metabolism, development, and homeostasis (Bain et al. 2007).

These receptors can regulate many genes at once, for instance, glucocorticoid

receptor has over 1000 genomic binding sites regulating the transcription of

numerous genes (Polman et al. 2012). The timescale for gene transcription and

protein synthesis mediated by nuclear receptors occurs between hours to days

(Losel et al. 2003).
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Nuclear receptors contain five regions: an amino terminal domain, a

DNA-binding domain, a hinge region, a ligand-binding domain, and a carboxyl-

terminal domain. The amino-terminal domain contains the activation function

1 (AF1) which regulates the binding and activity of the nuclear receptors to other

transcription factors independently of a ligand. This region is the least conserved

between different nuclear receptors. The DNA-binding domain contains a highly

conserved DNA-binding domain containing two zinc fingers, which allow the

receptor to recognized and bind to the hormone response element. The hinge region

allows for dimerization of other nuclear receptors and transport of the nucleus. The

ligand-binding domain contains activation function 2 (AF2) whose action is depen-

dent on a bound ligand. Lastly, the carboxyl-terminal domain’s function is the least

understood where the domain is usually adjacent to the ligand-binding domain.

(Aranda and Pascual 2001; Germain et al. 2006). Examples of nuclear receptors are

glucocorticoid receptor, prostaglandin receptor (also GPCRs), retinoic acid recep-

tor, and estrogen receptor.

3 Drug Receptor Targets as Modulators of Ocular Function

3.1 Ion Channel

An example of an ion channel as a target for therapy is the heteromultimeric

epithelial sodium channel (ENaC), comprising of α β and γ subunits that form the

functional channel. ENaC is a selective cation channel that is involved in the

reabsorption of sodium ions in a variety of epithelial tissues including the lumen

of the gut, lung airway epithelial cells, distal nephron, and the renal collecting duct

and the plasma membrane of corneal epithelial cells and the conjunctiva, as well as

sodium sensor in taste bud cells. ENaC is characterized by a conductance of 5 pS at

physiological sodium concentrations and a half-saturation of ion conductance at

70 mM sodium and is selective for sodium over potassium. ENaC is constitutively

active at the plasma membrane and changes between open and closed

conformations with an average open probability of ~0.5.

ENaC is subjected to regulation by different factors including intracellular and

extracellular sodium concentrations, serine proteases, and hormonal regulation and

including the activation of second messenger systems.

Hormones control the expression of active ENaC at the plasma membrane by

regulating the different steps of the biosynthetic pathway such as transcription,

translation, or membrane trafficking.

In the eye ENaC contributes to the sodium homeostasis and maintenance of tear

volume and ocular surface hydration (Krueger et al. 2012), making it an interesting

drug target. Currently, a compound that inhibits ENaC, P-321, is in clinical trials for

the treatment of dry eye (discussed in more detail below).

GPCRs currently targeted for therapies are the histamine receptors that are

activated by histamine and alpha (α)- and beta (β)-adrenergic receptors, also called
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adrenoceptors, that are activated by small-molecule catecholamines and prostaglan-

din receptors that are activated by the lipid-derived prostaglandins.

3.2 Alpha-Adrenergic Receptors

In the eye, studies of α-adrenergic receptor inhibition suggest that the α2-adrenergic
receptor regulates IOP (Mittag et al. 1985). Currently, there are three identified α2-
adrenergic receptor subunits expressed in ocular tissues as determined in studies in

human eye using immunohistochemical, polymerase chain reaction, and dot-blot

hybridization (Huang et al. 1995; Woldemussie et al. 2007). The α2A-adrenergic
receptor is localized in the anterior segment of the eye; in the nonpigmented ciliary

epithelium, cornea, and conjunctival epithelia; and in the retina, including the

somata of ganglion cell layer and inner nuclear layer somas. The α2B-adrenergic
receptor is located in the dendrites, axons, neurons, and glia. The α2C
immunostaining is present in pigmented ciliary epithelium, in corneal and conjunc-

tival epithelial cells, and in the somata and inner segment of the photoreceptors.

The α-adrenergic receptors are G protein-coupled receptors; activation of these

receptors results in inhibition of adenylate cyclase and decreases in cAMP. Activa-

tion of α2A-adrenergic receptors in the aqueous humor-secreting ciliary processes

results in decreased aqueous humor secretion via cAMP-mediated mechanisms (Jin

et al. 1994; Ogidigben et al. 1994; Wang et al. 1993) and subsequent decreases

in IOP.

3.3 Beta-Adrenergic Receptors

The β-adrenergic receptors are divided into three subtypes based on pharmacology

and molecular cloning: β1-, β2-, and β3-adrenoceptors. Studies using fluorescent

probes, autoradiography, and pharmacological tools have determined that the

anterior eye segment is enriched with β-adrenergic receptors, particularly the

β2 receptors (Elena et al. 1987; Jampel et al. 1987; Lahav et al. 1978; Nathanson

1980; Neufeld et al. 1978; van Alphen 1976; Waitzman and Woods 1971). The

β-adrenergic receptors have been localized to the ciliary process epithelium,

isolated ciliary process epithelial cells, blood vessel walls in the ciliary processes,

episclera at the limbus, the iris in the region of the sphincter muscle, the trabecular

meshwork, and the ciliary muscles. In fact, sympathetic nerve fibers innervate the

ciliary processes (Ehinger 1964; ten Tusscher et al. 1989) and trabecular meshwork

(Sears and Sherk 1963) suggesting endogenous regulation of aqueous humor

dynamics by β-adrenergic stimulation.

Sympathetic stimulation and topically applied β-adrenergic agonist, epineph-

rine, decrease IOP, and paradoxically, β-adrenergic antagonist, timolol (which is

effective clinically in treating glaucoma), also decreases IOP. Previously, it has

been suggested that differences in sites of action of β-adrenergic agonists and
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β-adrenergic antagonists might explain this complex action of adrenergic agents

on IOP.

However, the regulation of and by the β-adrenergic receptors is complex.

Traditionally, it is thought that binding of agonists to the receptors results in

activation of adenylate cyclase, increased cAMP levels (Coca-Prados and Wax

1986), and activation of protein kinase A: activities thought to be short and

transient. This may be because many GPCRs are desensitized through rapid phos-

phorylation by G protein-coupled receptor kinases within a period of less than

1 minute. These phosphorylation events may be more complex than previously

thought, as phosphorylation by these kinases may result in switching of the cou-

pling of the β2-adrenergic receptors to different G proteins to initiate different

signaling outcomes (Daaka et al. 1997).

However, recent studies have demonstrated activation of β-adrenergic receptors,
which resulted in elevated cAMP levels over 8 hours post agonist binding. These

increases in cAMP levels are associated with extended physiological consequences.

For example, activation of cardiac and neuronal β-adrenergic receptors via the

sympathetic nerve fibers results in persistent contractile response in the heart during

long periods of exercise and promotes long-term potentiation, necessary for

learning and memory, respectively. These prolonged responses may be related to

associations of the β-adrenergic receptors with scaffolding proteins, which may

allow for complex interactions with the cAMP hydrolyzing enzyme, phosphodies-

terase, that result in persistent β-adrenergic receptor signals (Fu et al. 2014).

3.4 Histamine Receptors

Histamine is a monoamine molecule synthesized from the amino acid L-histidine by

histidine decarboxylase in certain cells, such as mast cells, basophils,

enterochromaffin-like cells, and neurons. Histamine is ubiquitous and mediates

inflammatory reactions via binding to histamine receptors. Currently, there are

four identified histamine receptor subtypes: H1, H2, H3, and H4 receptors.

H1 receptors are Gαq protein-coupled receptors that are expressed in many

tissues in the body, including the eye, gastrointestinal tract, central nervous system,

lungs, vascular smooth muscle cells, and endothelial cells. H2 receptors are Gαs
protein-coupled receptors expressed in the gastrointestinal tract, the central nervous

system, smooth muscles, and endothelial cells. H3 and H4 receptors are Gαi protein-

coupled receptors that are highly expressed in the central nervous system and blood

cells, respectively. Of the four receptors, H1 and H2 are important drug targets with

clinical therapeutic agents designed to block the effects mediated by these

receptors; H1 receptor blockers (ketotifen (pKi 8.6), chlorpheniramine (pKi 8.15),

fexofenadine (pKi 7.57), and desloratadine (pKi 9.01)) are used as antihistamines to

treat allergic reactions mediated by histamine, and H2 receptor blockers (ranitidine

and cimetidine) to treat gastric ulcers.

The H1 receptors play a wide role in the pathological processes of allergy,

including anaphylaxis, asthma, allergic rhinitis, atopic dermatitis, and
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conjunctivitis. In addition to inflammatory allergenic effects of activation of H1

receptors, it also triggers maturation of dendritic cells and modulates type 1 and

type 2 T helper cells. Immunostaining, Western blots, and RT-PCR demonstrate H1,

H2, and H4 subtypes in mucosal biopsies from the human conjunctiva (Leonardi

et al. 2011) and H1 receptors in corneal endothelial cells (Srinivas et al. 2006).

Pharmacological studies (Kirkegaard et al. 1982; Umemoto et al. 1987; Woodward

et al. 1986), H1 receptor knockout animals (Izushi et al. 2002), and RT-PCR

(Leonardi et al. 2011) confirmed the involvement of the H1 receptor in allergic

inflammation associated with conjunctivitis.

Allergic conjunctivitis occurs when allergens enter the conjunctival stroma and

bind to IgE on mast cells or basophils. The cross-linking of allergens and IgE on

mass cells induces release of histamine from the mast cells and release of other

allergic mediators including cytokines. In response to histamine release, blood

vessels dilate and become permeable. Histamine binding to its receptors in the

conjunctiva results in clinical manifestations of itching, swelling, and redness,

which allow for several targets for drug intervention: mast cell stabilization,

inhibition of histamine release, or inhibition of histamine receptors. Antagonism

of the H1 receptor is a targeted therapeutic approach for the treatment of these

conditions.

3.5 Prostaglandin Receptors

The role of prostaglandins in regulating IOP was studied several years prior to

identifying prostaglandin receptors in the eye. The effects of prostaglandin are

biphasic: an initial short-term increase in IOP followed by a sustained decrease in

IOP (Camras et al. 1977; Starr 1971).

The synthesis of prostaglandins from arachidonic acid is catalyzed by the

enzymes cyclooxygenase (COX) and prostaglandin synthase. Prostaglandins are

ubiquitous, and the types produced in a given cell are dependent on the expression

profile of the prostaglandin synthetic enzymes in that particular cell. Prostaglandins

are autocrine or juxtacrine modulators that have diverse pharmacological effects on

the central nervous system and the cardiovascular, gastrointestinal, and visual

systems. Additionally, prostaglandins have been associated with diseases such as

cancer, inflammation, cardiovascular diseases, and hypertension. The use of non-

steroidal anti-inflammatory drugs (NSAIDs) as inhibitors of cyclooxygenase in the

clinical treatment of inflammatory diseases and the use of prostaglandin analogs in

the treatment of glaucoma underscore the physiological importance of

prostaglandins.

The biologically active prostaglandins (PG) are PGE2, PGF2α, PGD2, PGL2

(prostacyclin), and TXA2 (thromboxane) that interact with prostaglandin receptors

EPs (1–4), FP, DP, IP, and TP, respectively. Quantitative autoradiography, in situ

hybridization, immunohistochemistry, and RT-PCR confirmed EP and FP receptors

in the ciliary epithelium, cornea, conjunctiva, iris sphincter muscle, longitudinal

ciliary muscle, retinal ganglion cells, trabecular meshwork, sclera, Muller cells, and
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optic nerves (Anthony et al. 2001; Davis and Sharif 1999; Matsuo and Cynader

1992; Ocklind et al. 1996; Schlotzer-Schrehardt et al. 2002), with differential

distribution. The uveoscleral pathway through which aqueous humor exits the eye

consists of the iris, ciliary muscles, supraciliary and suprachoroidal spaces, and the

sclera, suggesting physiological regulation by endogenous prostaglandins. Clini-

cally relevant targeting to the FP receptors result in IOP lowering.

FP receptors are Gq protein-coupled receptors; PGF2α binding results in

increased IP3/DAG and phosphorylation of myosin light-chain kinase (MLCK).

In fact, the effects of latanoprost, a PGF2α analog, are mediated via IP3. Studies

have demonstrated that activation of the PGF2α/FP/IP3/MLCK system may result in

contraction–relaxation of the iris sphincter muscle in the anterior segment of the

eye that influences aqueous humor outflow and IOP lowering (Ansari et al. 2003).

3.6 Kinase-Linked Receptors

An example of a kinase-linked receptor that is clinically relevant as a therapeutic

target is the vascular endothelial growth factor (VEGF) family of protein tyrosine

kinase receptors; anti-VEGF therapy is currently used for the treatment of

age-related macular degeneration. While there are five identified members of the

VEGF family, VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth factor

(PlGF), alternative splicing of corresponding mRNAs results in many isoforms of

VEGF-A, VEGF-B, and PlGF. VEGF receptors include three protein tyrosine

kinases, VEGFR-1, VEGFR-2, and VEGFR-3, and two nonenzymatic receptors,

neuropilin-1 and neuropilin-2, localized to vascular endothelial cells. These

specialized localization and distribution of VEGFRs allow for the selectivity and

specificity of VEGF’s actions. VEGFR-1 binds to VEGF-A, VEGF-B, and PIGF

with high affinity, while VEGFR-2 binds with lower affinity to some isoforms of

VEGF-A and higher affinity to VEGF-C and VEGF-D; however, binding results in

different biological effects. VEGF plays a fundamental role in the process of

neovascularization in normal physiological processes as VEGFR-1, VEGFR-2,

and VEGFR-3 null mice failed to form organized blood vessels which resulted in

death between embryonic days 7–9 (Dumont et al. 1998; Fong et al. 1995;

Hiratsuka et al. 1998; Shalaby et al. 1995).

Studies in normal monkey eyes using RT-PCR and immunohistochemistry

detected constitutively expressed mRNA and proteins of VEGF-A, respectively,

particularly the VEGF121 and VEGF165 isoforms, in the conjunctiva, iris, retina,

and choroid–retinal pigment epithelial layers. Within the retina, VEGF was

expressed in the ganglion, inner nuclear layer (Stone et al. 1995), retinal pigment

epithelial layer, and cone photoreceptors (Kim et al. 1999). VEGF receptors,

VEGFR-1 and VEGFR-2 mRNA, were detected in the iris, the retina, and the

choroid–retinal pigment epithelial layers (Kim et al. 1999; Wen et al. 1998).

There are alterations in the VEGF system in pathological states.

Immunohistological studies in humans demonstrated increased VEGF expression

in the retinal pigment epithelium and the outer nuclear layer in the maculae of
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patients with age-related macular degeneration (Kliffen et al. 1997). Studies that

demonstrated sustained release of VEGF resulted in retinal neovascularization and

breakdown of the blood–retina barrier in rabbits and primates (Ozaki et al. 1997).

Retinal branch vein occlusion in cats and primates resulted in increases of VEGF

and activation of protein tyrosine phosphorylation and the tyrosine kinase pathway

proteins, phospholipase C gamma and MAPK (Hayashi et al. 1997; Miller

et al. 1994; Pierce et al. 1995).

4 Drug Interaction and Ocular Therapy

Of the many eye diseases and disorders, glaucoma, AMD, uveitis, and some corneal

disorders are treated with medication. We will discuss the types of drug and

receptor targets.

4.1 Cornea

The cornea is a clear, avascular structure that covers the front of the eye and serves

as a protective agent and focuses the light to the retina. There are as many identified

disorders and diseases that affect the cornea. Of these, we will briefly discuss the

conditions that utilize drugs as therapeutic strategies.

4.1.1 Dry Eye
In individuals with dry eye, there is an imbalance in tear production, drainage, and

absorption. This results in the eyes’ inability to produce enough or good quality

tears needed to keep the surface of the eye lubricated, help in wound healing, and

protect against infection.

Currently, this condition is treated with artificial tears (lubricating drops) or

compounds that allow the eye to produce tears, for example, cyclosporine (Kaswan

et al. 1989; Yoshida et al. 1999), which is an immunomodulator. A cyclosporine

ophthalmic emulsion (Restasis, www.restasis.com), the only FDA-approved drug

to treat dry eye, works by causing the eye to produce tears. While the mechanism

(s) of action is unknown, inhibition of calcineurin (a serene/threonine protein

phosphatase) and subsequent modulation of T-cell activity may play a role (Gilger

et al. 2013; Kapoor et al. 2010).

A novel ophthalmic solution called P-321 Ophthalmic Solution is in an

FDA-approved phase 1 clinical trial (ClinicalTrials.Gov). P-321 is a potent epithe-

lial sodium channel (ENaC) blocker (www.parion.com). Inhibition of ENaC

prevents the absorption of tears by the cornea and conjunctiva which results in

increased tear volume on the ocular surface (Hara et al. 2010).

P-321 was devised to be held on the cornea, with limited systemic distribution.

The pharmacokinetic studies for P-321 demonstrate an IC50 of 1.9� 0.75 nM in

human epithelial cells and a metabolic stability of P-321 in body blood products;

which the drug is rapidly cleared from plasma. The effects of P-321/ENaC
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modulation of tear volume are achieved within 30 min of drug administration and

are maintained for at least 6 h.

4.1.2 Allergies
Allergies that cause the eye to itch and produce excess tears and burn are common

in individuals particularly in warm, dry climates with high pollen count. Because

histamines are mediators in allergic reactions, itching due to allergies is usually

treated with antihistamines or histamine antagonists. Thus, blocking the actions of

histamines prevents the itching associated with the allergic reactions.

In the eye, histamine binds to the histamine-1 (H1) receptor, a member of the

GPCR family of receptors, and achieves its effects via activation of Gq and inositol

phosphate increases and/or calcium mobilization.

Ketotifen fumarate ophthalmic solution (Zaditor drops; www.zaditor.com) is a

noncompetitive histamine-1 (H1) receptor antagonist. Antihistamines block the

release of histamine from the histamine-producing mast cells (Okayama

et al. 1994) as well as block the binding of histamine to its receptors. Zaditor

works by blocking both the H1 receptor and the release of histamine from mast

cells.

Ketotifen fumarate pharmacokinetic profile was not obtained for topical use, but

was obtained for intravenous, intranasal, oral, and rectal administrations. Bioavail-

ability after oral administration was the lowest among the four routes, possibly due

to the first-pass metabolism by the liver. No systemic effects were observed with

topical application of the drug.

4.1.3 Conjunctivitis
Conjunctivitis or pink eye may occur because of bacteria or allergen. Bacterial

conjunctivitis is treated with antibiotics (Azari and Barney 2013; Sheikh and

Hurwitz 2001) such as azithromycin eye drops (www.azasite.com) (Cochereau

et al. 2007), gatifloxacin ophthalmic solution (www.allergan.com), and

levofloxacin. Allergic conjunctivitis is treated with bepotastine besilate ophthalmic

solution (Bepreve, www.bausch.com) which is a selective H1 receptor antagonist

(McCabe and McCabe 2012) and, like ketotifen fumarate, inhibits the release of

histamine from mast cell.

4.1.4 Bacterial Infections
Bacterial keratitis is a common bacterial infection of the cornea caused by Staphy-
lococcus aureus and Pseudomonas aeruginosa (O’Brien 2003; Willcox 2011)

which cause microbial contamination of contact lens. Activation of Toll-like

receptors on corneal epithelial cells by Pseudomonas aeruginosa (Zhang

et al. 2003) results in production of inflammatory mediators such as cytokines

and chemokines (Sadikot et al. 2005). Aminoglycoside antibiotic solution such as

gentamicin sulfate ophthalmic (www.bausch.com) is also used.
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4.1.5 Viral Infections
Viral infections such as herpes zoster (shingles) which is caused by the varicella-

zoster virus or ocular herpes caused by herpes simplex virus are treated with

antiviral eye drops (Castela et al. 1994). Antiviral agents include both topical and

oral medications. Examples of topical medications are idoxuridine ophthalmic

(no longer used in the United States), ganciclovir ophthalmic gel (Colin 2007)

(Zirgan, www.bausch.com), and trifluridine (Viroptic ophthalmic solutions). Gan-

ciclovir is a DNA polymerase inhibitor and prevents viral replication by protein

phosphorylation events (Littler et al. 1992). The mechanisms of action of

trifluridine are not completely understood; however, it interferes with viral replica-

tion by blocking DNA transcription (Carmine et al. 1982; Suzuki et al. 2011).

4.2 Uvea

4.2.1 Uveitis
The uvea comprises the ciliary processes, choroid, and iris, and inflammation of

these tissues is called uveitis. Uveitis can be secondary to other diseases including

AIDs, tuberculosis, and sarcoidosis. The target tissues are the ciliary processes,

choroid, and iris. To reduce the inflammation, corticosteroids, which may be anti-

inflammatory or immunosuppressive agents, are used. Examples of steroid anti-

inflammatory include prednisone and fluocinolone (Callanan et al. 2008; The

Multicenter Uveitis Steroid Treatment Trial Research et al. 2011), and immuno-

suppressive agents include methotrexate, mycophenolate, azathioprine, and cyclo-

sporine. In some cases, immune-specific biological response modifiers such as

rituximab, abatacept, daclizumab, and the TNF-α inhibitors, infliximab and

adalimumab, are also used (Larson et al. 2011; Nussenblatt et al. 1999; Smith

et al. 2001). Prednisone, a mixture of glucocorticoid and mineralocorticoid, would

likely bind to both intracellular glucocorticoid (GR) and mineralocorticoid receptor

(MR) complexes and control gene transcription via direct and indirect mechanisms.

4.3 Retina/Anterior Eye Segment

4.3.1 Age-Related Macular Degeneration (AMD)
AMD is a leading cause of irreversible vision loss worldwide. AMD involves losses

of cone photoreceptor cells in the macular region of the retina and results in blurred

vision and eventually loss of central vision. Two types of AMD have been

characterized, non-neovascular AMD (dry) and neovascular AMD (wet AMD).

Aberrant VEGF expression has been associated with the pathophysiology of

neovascular AMD (Kvanta et al. 1996) and results in abnormal growth of new

blood vessels with structural defects that may lead to seepage of vascular contents

and bleeding, thus leading to damages to the delicate macula. Of the two types of

AMD, drug treatment options for neovascular AMD involve antivascular
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endothelial growth factor (VEGF) therapy. This therapy is aimed at reducing the

amounts of VEGF that is secreted in the eye, particularly the choroid layer of

the eye.

The target tissues for anti-VEGF therapy are vascular endothelial cells.

Examples of existing therapies include monoclonal antibody to VEGF (Krzystolik

et al. 2002), such as bevacizumab (Avastin) and ranibizumab (Lucentis) (Avery

et al. 2006; Rosenfeld et al. 2005, 2006); aptamers (small oligonucleotides that bind

to VEGF), such as pegaptanib (Chakravarthy et al. 2006) (Macugen) that binds to

and inhibits extracellular VEGF; and VEGF receptor proteins 1 and 2 that are fused

to the Fc portion of IgG (Nguyen et al. 2006); this acts as a competitive receptor for

endogenous VEGF and an example is aflibercept (Heier et al. 2012) (Eylea).

Binding of these agents to VEGF decreases functional VEGF in the vascular tissues

and halts the choroidal neovascularization and leakage from these immature blood

vessels that cause damage to the retinal layers.

4.3.2 Glaucoma
While glaucoma is characterized as an optic neuropathy, current treatments avail-

able are aimed at decreasing IOP that is produced in the anterior segment of the eye.

Maintenance of proper IOP depends on a unique balance between aqueous humor

secretion by the ciliary processes and outflow through the trabecular meshwork and

Schlemm’s canal (pressure-dependent pathway) and the uveoscleral pathway

(pressure-independent pathway). While some drugs have shown neuroprotective

properties, no neuroprotective agent has gone past stage III clinical trials for the

treatment of glaucoma. Studies involving human subjects (reviewed in van der Valk

et al., 2009) demonstrated the efficacies of alpha-adrenergic agonists (alpha (α)
agonist), beta-adrenergic antagonist (beta-blockers), carbonic anhydrase inhibitors,

cholinergics (miotic), prostaglandin analogs, and combination therapies which are

currently used in the treatment of ocular hypertension and glaucoma. Other IOP

regulators and neuroprotective agents include the cannabinoids, Latrunculin A

and B, rho kinase (ROCK) inhibitors, adenosine, nitric oxide, sigma-1 receptor

agonists, and endothelin antagonists.

Examples of alpha (α)-adrenergic agonists are apraclonidine (Iopidine) which is

only marketed in some countries and brimonidine tartrate (Alphagan P) and cloni-

dine. Target tissues include the ciliary processes, the uveoscleral outflow pathway,

and the retina (Toris et al. 1995; Wheeler et al. 2001). Activation of α2A-adrenergic
receptors in ciliary processes decreases aqueous humor secretion (Jin et al. 1994;

Ogidigben et al. 1994; Wang et al. 1993). Although α-adrenergic receptors are

localized in TM, studies fail to show regulation of conventional outflow facility.

The retina contains the α2A-adrenergic receptors (Wheeler et al. 2001), and

brimonidine has been shown to be neuroprotective in glaucoma animal models

(WoldeMussie et al. 2001) possibly by modulation of brain-derived neurotrophic

factor (BDNF) (Gao et al. 2002).

Examples of beta (β)-adrenergic antagonists (β-blockers) are betaxolol HCl

(a selective β1 antagonist) and timolol (nonselective β1- and β2-adrenergic receptor
antagonists), carteolol, metipranolol, and levobetaxolol. Target tissues are the
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ciliary processes (Potter and Rowland 1978) which contain β1- and β2-adrenergic
receptors and the retina (Elena et al. 1987; Ferrari-Dileo 1988). Activation of

β-adrenergic antagonist decreases IOP by decreasing aqueous humor secretion in

ciliary processes and decreasing the flow of aqueous humor. Both betaxolol HCl

and timolol are neuroprotective in glaucoma animal models. While β-adrenergic
antagonist is also involved in blood flow to the optic nerve head, it is not clear if its

regulation of vascular tone is protective. Timolol, nonselective β1- and β2-adrener-
gic receptor antagonists, protects RGCs in rat glaucoma model. The signaling

pathways by which β-blockers achieve their effects involve inhibition of adenylate

cyclase and decreased cAMP in ciliary processes (Crider and Sharif 2002). In the

retina inhibition of β-adrenergic receptors may involve regulation of calcium and

sodium channels, NMDA receptors, and BDNF regulation.

Carbonic anhydrase inhibitors are brinzolamide (Azopt) and dorzolamide

(Trusopt) and are used as eye drops. Methazolamide (Neptazane) and acetazol-

amide (Diamox) are used as oral medications (pills). Carbonic anhydrase inhibitors

target the ciliary processes (Maren and Conroy 1993; Wistrand 1959) where they

inhibit the enzyme carbonic anhydrase II, a major regulator of aqueous humor

secretion.

The cholinergics (miotic), including pilocarpine and carbachol, target the ciliary

muscles in the ciliary body. IOP is decreased by constriction of the ciliary muscles

by the cholinergics. Ciliary muscle constrictions result in regulation of the

trabecular meshwork and Schlemm’s canal to increase outflow of aqueous humor.

Synthetic prostaglandin analogs include travoprost (Travatan), bimatoprost

(Lumigan), tafluprost (Zioptan), and latanoprost (Xalatan) (reviewed in Toris

et al., 2008). Like latanoprost, the others are PGF2α analogs and bind with high

affinity to the FP receptor. Prostaglandins target the uveoscleral outflow pathway

primarily to allow for increased pressure-independent outflow of aqueous humor. In

some cases the trabecular meshwork and Schlemm’s canal are regulated by

prostaglandins. In experimental animal models, latanoprost has been shown to

protect RGCs from death by antagonizing glutamate toxicity and inhibiting caspase

3 (Kanamori et al. 2009).

Combined therapies include brimonidine tartrate and timolol maleate, α agonist,

and β-blocker; dorzolamide HCI and timolol maleate, carbonic anhydrase inhibitor,

and β-blocker; and brinzolamide/brimonidine tartrate, carbonic anhydrase inhibi-

tor, and α agonist.

4.4 Other Regulators of IOP

Cannabinoid CB1 receptors are localized in the trabecular meshwork and ciliary

processes, while CB1 and CB2 mRNA are expressed in the retina. The cannabinoid

receptors are G protein-coupled receptors and cannabinoids binding to its receptor

decrease IOP by increasing aqueous humor outflow facility. In β-adrenergic knock-
out mice and CB(1)(-/-) mice, CB receptor agonist could not decrease IOP

suggesting that CB1 receptor involvement in IOP regulation may be mediated by
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β-adrenergics. In a rat model of glaucoma, cannabinoids have been shown to be

protective.

Latrunculins A and B decrease IOP by increasing aqueous humor outflow

facility by disrupting actin filaments in the trabecular meshwork and altering the

cell’s stiffness. Many of latrunculin’s effects also involve the regulation of extra-

cellular matrix proteins.

Rho kinase (ROCK) inhibitors target several tissues involved in IOP regulation

and proper maintenance of vision, including the trabecular meshwork, the ciliary

muscle, RGCs, and optic nerve head. ROCK decreases IOP by increasing aqueous

humor outflow facility. In experimental animals, ROCK is also neuroprotective.

Adenosine receptors are expressed in the ciliary processes, trabecular mesh-

work, retina including Muller cells and RGCs, and the optic nerve head. Activation

of adenosine receptors has been shown to lower IOP and, in experimental glau-

coma, is involved in neuroprotection.

Studies have confirmed the involvement of renin–angiotensin system (RAS) in

regulating IOP (reviewed in Vaajanen and Vapaatalo, 2011). Captopril, an

angiotensin-converting enzyme (ACE) inhibitor used for the treatment of systemic

hypertension, reduced IOP in normal and glaucomatous individuals. Additionally,

other hypertension-reducing agents, enalapril, ramipril, and fosinopril, reduced IOP

in glaucoma animal models. More recent studies suggest that activation of the

endogenous angiotensin-converting enzyme 2 (ACE2) and the Mas receptor

decreased IOP in experimental model of glaucoma without changing systemic

blood pressure (Foureaux et al. 2013).

Nitric oxide synthase, the synthetic enzyme of nitric oxide (NO), is expressed in

the ciliary processes, trabecular meshwork, Schlemm’s canal, retina, and optic

nerve head. NO regulation of IOP is multifactorial. It decreases IOP by decreasing

aqueous humor secretion, increasing aqueous humor outflow, and regulating vas-

cular tone. NO could be neuroprotective or degenerative, depending on the

concentrations in the tissue. In ciliary processes cholinergic stimulation regulates

nitric oxide synthase activity (Ellis et al. 2001). In Schlemm’s canal, shear stress

causes increases in NO (Ashpole et al. 2014) which binds to soluble guanylate

cyclase and activates the enzyme. In trabecular meshwork and Schlemm’s canal,

activation of soluble guanylate cyclase results in increased cGMP levels and

activation of protein kinase G. The high conductance calcium-activated potassium

channel is regulated by protein kinase G, and this regulation results in changes in

cell volume and or cell contractility (Dismuke et al. 2008).

The sigma-1 receptor (σ-1r) is a 26kD transmembrane, non-opioid receptor that

has been localized to the ciliary processes, retina, RGCs, and Muller cells. The σ-1r
has been shown to be neuroprotective in RGCs both in vivo and in vitro (Mueller

et al. 2014; Smith et al. 2008), by inhibiting overexpression of the apoptotic protein,

Bax, and TNF-related apoptosis inducing ligand (TRAIL) and phosphorylation of

JNK (Cantarella et al. 2007). The σ-1r regulation of IOP is dependent on the

species; activation of the σ-1r results in decrease IOP in rabbits, although in σ-1r
knockout mice there were no changes in IOP when compared to wild-type mice.

The σ-1r is found on the endoplasmic reticulum (ER) and has the ability to form
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complexes with the mitochondrion-associated ER membrane and/or translocate to

interact with ionotropic channels located at the plasma membrane and appear to be

involved in regulating the cells’ ion channels (Mueller et al. 2013). In fact, many of

the actions of σ-1r involve inhibition of voltage-gated channels or potentiation of

ligand-gated channels.

Endothelin-1 is expressed in the iris, ciliary body, and retina. In pathological

conditions there are increased levels of endothelin which are detrimental to the

health of the tissue (Tezel et al. 1997). Endothelin receptors ETA and ETB are G

protein-coupled receptors including Gαs, Gαi, and Gαq suggesting many different

signaling pathways and multiple biological actions, whose actions are mediated by

phospholipase C/inositol triphosphate and intracellular calcium. Above-normal

endothelin levels result in an imbalance in the system resulting in sustained calcium

influx, membrane depolarization, and eventual cell death. Inhibition of this system

results in restoration of the tissues health (reviewed in Krishnamoorthy et al., 2008,

and Prasanna et al., 2011).

References

Akopian A, Witkovsky P (2002) Calcium and retinal function. Mol Neurobiol 25(2):113–132

Ansari HR, Davis AM, Kaddour-Djebbar I, Abdel-Latif AA (2003) Effects of prostaglandin

F2alpha and latanoprost on phosphoinositide turnover, myosin light chain phosphorylation

and contraction in cat iris sphincter. J Ocul Pharmacol Ther 19(3):217–231

Anthony TL, Lindsey JD, Aihara M, Weinreb RN (2001) Detection of prostaglandin EP(1), EP(2),

and FP receptor subtypes in human sclera. Invest Ophthalmol Vis Sci 42(13):3182–3186

Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81

(3):1269–1304

Ashpole NE, Overby DR, Ethier CR, Stamer WD (2014) Shear stress-triggered nitric oxide release

from Schlemm’s canal cells. Invest Ophthalmol Vis Sci 55(12):8067–8076

Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ (2006) Intravitreal

bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113

(3):363-372.e365.

Azari AA, Barney NP (2013) Conjunctivitis: a systematic review of diagnosis and treatment.

JAMA 310(16):1721–1730

Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT (2007) Nuclear receptor structure:

implications for function. Annu Rev Physiol 69:201–220

Bruening-Wright A, Schumacher MA, Adelman JP, Maylie J (2002) Localization of the activation

gate for small conductance Ca2+-activated K+ channels. J Neurosci 22(15):6499–6506

Calimet N, Simoes M, Changeux JP, Karplus M, Taly A, Cecchini M (2013) A gating mechanism

of pentameric ligand-gated ion channels. Proc Natl Acad Sci U S A 110(42):E3987–E3996

Callanan DG, Jaffe GJ, Martin DF, Pearson PA, Comstock TL (2008) Treatment of posterior

uveitis with a fluocinolone acetonide implant: three-year clinical trial results. Arch Ophthalmol

126(9):1191–1201

Camras CB, Bito LZ, Eakins KE (1977) Reduction of intraocular pressure by prostaglandins

applied topically to the eyes of conscious rabbits. Invest Ophthalmol Vis Sci 16

(12):1125–1134

Principles of Ocular Pharmacology 23



Cantarella G, Bucolo C, Di Benedetto G, Pezzino S, Lempereur L, Calvagna R, Clementi S,

Pavone P, Fiore L, Bernardini R (2007) Protective effects of the sigma agonist Pre-084 in the

rat retina. Br J Ophthalmol 91(10):1382–1384

Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS (1982) Trifluridine: a review of its

antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs 23

(5):329–353

Castela N, Vermerie N, Chast F, Sauvageon-Martre H, Denis J, Godard V, Goldschmidt P,

Pouliquen Y (1994) Ganciclovir ophthalmic gel in herpes simplex virus rabbit keratitis:

intraocular penetration and efficacy. J Ocul Pharmacol 10(2):439–451

Chakravarthy U, Adamis AP, Cunningham ET Jr, Goldbaum M, Guyer DR, Katz B, Patel M

(2006) Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for

neovascular age-related macular degeneration. Ophthalmology 113(9):1508 e1501–e1525

Coca-Prados M, Wax MB (1986) Transformation of human ciliary epithelial cells by simian virus

40: induction of cell proliferation and retention of beta 2-adrenergic receptors. Proc Natl Acad

Sci U S A 83(22):8754–8758

Cochereau I, Meddeb-Ouertani A, Khairallah M, Amraoui A, Zaghloul K, Pop M, Delval L,

Pouliquen P, Tandon R, Garg P et al (2007) 3-day treatment with azithromycin 1.5% eye drops

versus 7-day treatment with tobramycin 0.3% for purulent bacterial conjunctivitis: multicentre,

randomised and controlled trial in adults and children. Br J Ophthalmol 91(4):465–469

Colin J (2007) Ganciclovir ophthalmic gel, 0.15%: a valuable tool for treating ocular herpes. Clin

Ophthalmol (Auckland, NZ) 1(4):441–453

Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the

impact of receptor structure on function. Biochem Soc Trans 32(Pt3):529–534

Crider JY, Sharif NA (2002) Adenylyl cyclase activity mediated by beta-adrenoceptors in

immortalized human trabecular meshwork and non-pigmented ciliary epithelial cells. J Ocular

Pharmacol Therapeut 18(3):221–230

Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the [beta]2-adrenergic

receptor to different G proteins by protein kinase A. Nature 390(6655):88–91

daCosta CJ, Baenziger JE (2013) Gating of pentameric ligand-gated ion channels: structural

insights and ambiguities. Structure 21(8):1271–1283

Davis TL, Sharif NA (1999) Quantitative autoradiographic visualization and pharmacology of

FP-prostaglandin receptors in human eyes using the novel phosphor-imaging technology. J

Ocul Pharmacol Ther 15(4):323–336

Davuluri G, Espina V, Petricoin EF 3rd, Ross M, Deng J, Liotta LA, Glaser BM (2009) Activated

VEGF receptor shed into the vitreous in eyes with wet AMD: a new class of biomarkers in the

vitreous with potential for predicting the treatment timing and monitoring response. Arch

Ophthalmol 127(5):613–621

Dismuke WM, Mbadugha CC, Ellis DZ (2008) NO-induced regulation of human trabecular

meshwork cell volume and aqueous humor outflow facility involve the BKCa ion channel.

Am J Physiol Cell Physiol 294(6):C1378–C1386

Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K

(1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282

(5390):946–949

Ehinger B (1964) Distribution of adrenergic nerves to orbital structures. Acta Physiol Scand

62:291–292

Elena PP, Kosina-Boix M, Moulin G, Lapalus P (1987) Autoradiographic localization of beta-

adrenergic receptors in rabbit eye. Invest Ophthalmol Vis Sci 28(8):1436–1441

Ellis DZ, Nathanson JA, Rabe J, Sweadner KJ (2001) Carbachol and nitric oxide inhibition of Na,

K-ATPase activity in bovine ciliary processes. Invest Ophthalmol Vis Sci 42(11):2625–2631

Ferrari-Dileo G (1988) Beta 1 and beta 2 adrenergic binding sites in bovine retina and retinal blood

vessels. Invest Ophthalmol Vis Sci 29(5):695–699

Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine

kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70

24 Y. Park et al.



Foureaux G, Nogueira JC, Nogueira BS, Fulgêncio GO, Menezes GB, Fernandes SOA, Cardoso
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