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Abstract

In response to stress, the central nervous system initiates a signaling cascade,

which leads to the production of glucocorticoids (GCs). GCs act through the

glucocorticoid receptor (GR) to coordinate the appropriate cellular response

with the primary goal of mobilizing the storage forms of carbon precursors to

generate a continuous glucose supply for the brain. Although GCs are critical for

maintaining energy homeostasis, excessive GC stimulation leads to a number of

undesirable side effects, including hyperglycemia, insulin resistance, fatty liver,

obesity, and muscle wasting leading to severe metabolic dysfunction.

Summarized below are the diverse metabolic roles of glucocorticoids in energy
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homeostasis and dysregulation, focusing specifically on glucose, lipid, and

protein metabolism.
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1 Introduction

Glucocorticoids (GCs) are steroid hormones, essential for survival under stress. The

physiologic stress response is mediated by the release of ACTH from the pituitary

that acts on the adrenal gland to increase the production and release of cortisol

(in humans) or corticosterone (in rodents) into the circulation. The GC hormone

then acts through the GC receptor (GR) to coordinate the appropriate cellular

response to stress with the primary outcome of increasing blood glucose levels.

The mechanisms by which GCs achieve this effect involve the interplay primarily

between liver, muscle, and adipose tissue. This adaptive response to stress, how-

ever, is meant to be of short duration and is regulated by negative feedback at the

level of the hypothalamus and pituitary gland. Prolonged, elevated GC exposure, as

observed with therapeutic use of GCs or in Cushing’s syndrome, leads to increased

insulin secretion eventually resulting in severe metabolic dysfunction and insulin

resistance.

2 Glucose Metabolism

Under stressful stimuli, GCs coordinate a number of physiological processes with

the end goal of generating a sustained glucose supply for the brain. GCs affect

whole-body glucose metabolism by decreasing peripheral glucose uptake and

inducing hepatic gluconeogenesis by mechanisms described below (Fig. 1).

2.1 Liver

The most well-studied effects of GCs are by far those related to hepatic gluconeo-

genesis. Glucose is the primary energy source for the brain, renal medulla, and

erythrocytes, and the liver is the main organ responsible for de novo glucose

production under fasting conditions. Not surprisingly, therefore, hepatic gluconeo-

genesis is under very tight hormonal regulation. In the fed state, insulin facilitates

glucose uptake and utilization, whereas in the fasted state, glucagon,

catecholamines, and GCs stimulate glucose production and release. In fact, mice
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Fig. 1 Mechanisms by which GCs regulate whole-body glucose homeostasis. (a) Schematic

representation of the HPA axis and the effects of GCs/GR on glucose metabolism in the liver,

adipose tissue, muscle, and pancreas. Genes/proteins that are involved (either directly or indi-

rectly) in the mentioned events are in shaded boxes. (b) Representation of the PEPCK glucocorti-

coid response unit in the liver, together with the location of some of the accessory factors

necessary to initiate transcription. Depicted in the square boxes are some of the known positive
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lacking GR in the hepatocytes fail to appropriately respond to prolonged fasting,

resulting in severe hypoglycemia (Opherk et al. 2004).

Ligand-bound GR directly activates the transcription of two key enzymes

involved in gluconeogenesis: phosphoenolpyruvate carboxykinase (PEPCK) and

glucose-6-phosphatase (G6Pc). PEPCK is the rate-limiting enzyme required to

generate glucose-6-phosphate, whereas G6Pc is the enzyme that cleaves the phos-

phate allowing for glucose release into the circulation. PEPCK regulation is com-

plex and requires a myriad of accessory proteins and transcription factors to ensure

a maximal gluconeogenic response. Through extensive promoter mapping, it was

found that the Pepck promoter harbors a GR response unit (GRU), which has two

GR response elements (GREs) as well as binding sites for forkhead transcription

factor (FOXO1), retinoid X receptor (RXR), chicken ovalbumin upstream

promoter-transcription factor (COUP-TF), CCAAT/enhancer-binding protein β
(C/EBPβ), hepatocyte nuclear factors 3 and 4 (HNF-3 and HNF-4), peroxisome

proliferator-activated receptor γ (PPARγ2), and retinoic acid receptor (RAR)

[reviewed in Chakravarty et al. (2005)]. Similarly, three functional GREs have

been identified in the proximal G6Pc promoter, and similar to Pepck regulation,

GCs act in cooperation with HNF-1, HNF-4, and FOXO1 to fully induce G6Pc
transcription (Lin et al. 1998; Nakae et al. 2001; Vander Kooi et al. 2005).

Interestingly, cholesterol-sensing liver X receptors (LXRα and LXRβ) can also

influence the recruitment of GR to gluconeogenic gene promoters (Nader

et al. 2012; Patel et al. 2011). Specifically, rats treated with GW3965 (a dual

LXRα/β agonist) were found to be refractory to the GC-induced hyperglycemia

(Nader et al. 2012). This is believed to be due to direct competition for DNA

binding, where the LXRα/RXRα dimer was found to displace GR from its GRE on

the G6Pc promoter. Making matters more complex, it was found that LXR’s effects

on GC-mediated induction of gluconeogenesis are isoform specific. In fact, LXRβ
is necessary for GR binding to the Pepck promoter, and LXRβ knockout mice are

protected from dexamethasone (Dex)-induced hyperglycemia (Patel et al. 2011).

Adding another layer of control to the systemic regulation of energy homeosta-

sis, the transcriptional activity of GR can also be modified through the recruitment

of various coactivator and corepressor complexes. Coactivators including SRC1,

Fig. 1 (continued) (+) and negative (�) regulators of GC signaling. Also shown are the steps

leading to the release of glucose into circulation. ACTH adrenocorticotropin hormone, AMPK
AMP kinase, CBP CREB-binding protein, C/EBP CCAAT/enhancer-binding protein, COUP
chicken ovalbumin upstream promoter-transcription factor, CREB cAMP-response element bind-

ing protein, CRH corticotropin-releasing hormone, GLUT2 glucose transporter 2, GLUT4 glucose

transporter 4, FOXO1 foxhead box protein O1, G6Pc glucose-6-phosphatase, GR glucocorticoid

receptor, GRE glucocorticoid response element, GSK3 glycogen synthase kinase 3, HDAC6
histone deacetylase 6, HNF hepatic nuclear factor, LXR liver X receptor,MED1mediator complex

subunit 1, PDK4 pyruvate dehydrogenase kinase 4, PEPCK PEP carboxykinase, PGC1α PPAR-γ
coactivator-1, PPARγ peroxisome proliferator-activated receptor γ, RAR retinoic acid receptor,

RXR retinoid X receptor, SGK-1 serum- and glucocorticoid-regulated kinase 1, SMAD6 SMAD

family member 6, SRC-1 steroid receptor coactivator 1, TXNIP thioredoxin-interacting protein
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CBP/p300, and PGC1α have all been shown to be involved in Pepck transactivation
(Sommerfeld et al. 2011). Under fasting conditions, the expression of Pgc1α is

induced synergistically by glucagon and GCs (Yoon et al. 2001). PGC1α then binds

and coactivates GR as well as HNF-4 and FOXO1 to induce a coordinated

gluconeogenic response on both Pepck and G6pc promoters (Puigserver et al. 2003;

Rhee et al. 2003).

GCs also recruit chromatin-modifying enzymes, p300 and CBP, to the Pepck
promoter in order to maintain the surrounding chromatin in an open conformation,

whereas insulin opposes these actions partly by displacing p300/CBP, leading to

chromatin condensation (Hall et al. 2007; Wang et al. 2004). In addition, AMPK,

which acts as a “low-energy sensor” within the cells, also counteracts GC-induced

expression of Pepck by phosphorylating GR at serine 211 leading to the release of

p300 and the SWF/SNF chromatin remodeling complex from the promoters of

Pepck and G6pc (Nader et al. 2010). In fact, rats treated with the AMPK activator,

AICAR, were refractory to Dex-induced hepatic gluconeogenesis. Moreover,

SMAD6, a member of the transforming growth factor β family, was identified as

a GR corepressor protein, which recruits histone deacetylase 3 (HDAC3) and

opposes histone H3 and H4 acetylation mediated by the coactivator SRC1 (Ichijo

et al. 2005). Finally, HDAC6 was found to affect GC signaling by deacetylating the

heat shock protein 90 (HSP90) (Kovacs et al. 2005). Inhibition of HDAC6 activity

results in hyper-acetylation of HSP90 leading to an impaired GR nuclear transloca-

tion and activation (Kovacs et al. 2005). In agreement, HDAC6 knockout animals

were protected from GC-induced hyperglycemia and insulin intolerance (Rhee

et al. 2003).

Another mechanism by which GCs can affect liver glucose homeostasis is by

directly antagonizing the actions of insulin. For example, the expression of a pseudo

kinase, Trb3, is increased by GC treatment leading to the inhibition of AKT

phosphorylation and development of hyperglycemia and insulin resistance

(Du et al. 2003). Similarly, ceramides, which are lipid-derived signaling molecules,

can also mediate GC-induced hepatic insulin resistance by blocking AKT activation

(Holland et al. 2007). This mechanism will be discussed in further detail below

(see: lipid metabolism/liver).

Paradoxically, GC-treatment results in an increase in glycogen synthesis. This

represents one of the few anabolic actions of this otherwise catabolic hormone. Our

understanding of the mechanism by which GCs increase glycogen synthesis is

derived largely from long-standing biochemical studies. Regulation of glycogen

synthesis requires the reciprocal action of two key enzymes: glycogen synthase and

glycogen phosphorylase. Both enzymes exist in active and inactive states regulated

by phosphorylation and dephosphorylation events. Interestingly, studies found that

GCs lead to inactivation of glycogen phosphorylase (glycogen-mobilizing enzyme)

and a concomitant activation of glycogen synthase, resulting in an overall increase

in hepatic glycogen content (de Wulf and Hers 1968; Laloux et al. 1983).
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2.2 Muscle and Adipose Tissue

Muscle is the organ that makes the largest contribution to glucose utilization in the

body, with more than 80% of circulating glucose being taken up by muscle in an

insulin-dependent fashion. Insulin is an anabolic hormone, whose actions in the

muscle are to stimulate glucose uptake, utilization, and storage. Most of the

catabolic actions of GCs in muscle arise through antagonizing the actions of insulin.

The main mechanism by which GCs decrease muscle glucose uptake is by

inhibiting the translocation of the glucose transporter, GLUT4, to the plasma

membrane (Haber and Weinstein 1992; Weinstein et al. 1995, 1998). Suppression

of insulin-stimulated glycogen synthesis by GCs is mediated by decreasing the

phosphorylation of GSK3, leading to the repression of glycogen synthase (Ruzzin

et al. 2005). Both GLUT4 and GSK3 are downstream targets of AKT in the insulin-

signaling cascade, highlighting the antagonistic interaction between insulin and

GCs. The mechanism of this crosstalk between GCs and insulin has been exten-

sively studied. The ability of GCs to inhibit AKT phosphorylation has been

observed in vitro (C2C12 myotubes) and in vivo (rat skeletal muscle) (Long

et al. 2003; Sandri et al. 2004). In rat skeletal muscle, GC excess decreases insulin

receptor tyrosine phosphorylation (Giorgino et al. 1993). Dex treatment in rats has

also been shown to reduce muscle PI3 kinase activity (Saad et al. 1993).

Inhibition of glucose oxidation is another mechanism by which GCs decrease

glucose utilization in the muscle. GCs strongly upregulate the expression of the

pyruvate dehydrogenase kinase 4 (Pdk4) (Sugden and Holness 2003). PDK4

inhibits the activity of the pyruvate dehydrogenase complex, thus inhibiting glucose

oxidation to acetyl-CoA, resulting in decreased glucose utilization. Pdk4 is a direct
target gene of GR. Interestingly, the Pdk4 GRE overlaps with the FOXO binding

site, which is in turn required for insulin-mediated suppression of Pdk4 expression

(Connaughton et al. 2010; Kwon et al. 2004).

Similar to their effects in muscle, GCs also antagonize insulin signaling in

adipose tissue, leading to decreased localization of GLUT4 transporters to the

plasma membrane (Sakoda et al. 2000). Moreover, Dex treatment in rats was

shown to decrease insulin-induced IRS-1 and IRS-2 phosphorylation with a con-

comitant decrease in AKT phosphorylation (Caperuto et al. 2006).

3 Lipid Metabolism

GCs are important regulators of whole-body lipid homeostasis. When fasting, or

under starvation conditions, elevated systemic GC levels stimulate adipose tissue

lipolysis, resulting in the generation of free fatty acids and glycerol. Muscle and

liver both utilize the energy (ATP) derived from the oxidation of FFAs, whereas

glycerol is used primarily by the liver as a precursor for gluconeogenesis. Given

these effects, it is not surprising that elevated GC levels can lead to central obesity,

dyslipidemia, and fatty liver. Summarized below are some of the complex effects of

GCs on adipose tissue and liver lipid metabolism (Fig. 2).
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3.1 Adipose Tissue

GCs exhibit pleiotropic effects on lipid metabolism by causing both increased

lipolysis and increased adipogenesis [reviewed recently by Peckett et al. (2011)].

Under fasting conditions, when GC levels are elevated, increased adipose tissue

lipolysis occurs due to increased expression of adipose triglyceride lipase (Atgl) and
hormone-sensitive lipase (Hsl or Lipe) (Slavin et al. 1994; Villena et al. 2004; Xu

et al. 2009). Monoacyl glycerol lipase (MGLL), which converts monoacyl glycerol

to glycerol, is also known to be induced by GCs (Yu et al. 2010). GC regulation of

Hsl andMgll appears to be direct through a functional GR binding site, whereas no

GRE has been identified to date in Atgl (Yu et al. 2010).

Recently, GCs were found to directly upregulate the expression of angiopoietin-

like 4 (Angptl4), a secreted protein synthesized in WAT and liver in response to

Fig. 2 Schematic view of the role of GCs in lipid metabolism in the liver, white adipose tissue

(WAT) and brown adipose tissue (BAT). Proteins that are involved (either directly or indirectly) in

the depicted metabolic processes are in shaded boxes. 11β-HSD 11β-hydroxysteroid dehydroge-

nase, ACC acyl-CoA carboxylase, AGPAT2 acylglycerolphosphate acyltransferase 2, ANGPTL4
angiopoietin-like 4, ATGL adipose triglyceride lipase,DES1 dihydroceramide synthase,DEXRAS1
dexamethasone-induced Ras 1, FAS fatty acid synthase, GPAT glycerophosphate acyltransferase,

HES1 hairy and enhancer of split-1, HSL hormone-sensitive lipase, KLF15 Kruppel-like factor

15, LPIN1 lipin 1, LPL lipoprotein lipase,MCADmedium-chain acyl-CoA dehydrogenase,MGLL
monoacyl glycerol lipase (MGLL), NTCP Na+-taurocholate cotransporting polypeptide, PPARγ
peroxisome proliferator-activated receptor γ, PREF1 pre-adipogenic factor 1, PNL pancreatic

lipase, PLRP2 pancreatic lipase-related protein-2, SCAD short-chain acyl-CoA dehydrogenase,

SCD1 stearoyl-CoA desaturase, SPT2 serine palmitoyltransferase 2, TGH triacylglycerol hydro-

lase, UCP1 uncoupling protein 1
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fasting. ANGPTL4 inhibits the activity of extracellular lipoprotein lipase (LPL)

(Shan et al. 2009), important for FFA uptake, and, at the same time, induces

intracellular adipocyte lipolysis (Gray et al. 2012), resulting in an overall increase

in plasma triglyceride (TG) levels. In vitro and in vivo studies have shown that GCs

regulate Angptl4 expression though a GRE located in the 30 untranslated region of

the gene (Koliwad et al. 2009). Angptl4-/- mice were protected from Dex-induced

hypertriglyceridemia and hepatosteatosis (Koliwad et al. 2009). In agreement,

treatment of mice with a synthetic GC antagonist, RU486, also attenuated

fasting-induced expression of Angptl4 (Gray et al. 2012). It should be noted that

although GCs are believed to be in general “lipolytic,” there is mounting evidence

suggesting that they also have anti-lipolytic actions (Peckett et al. 2011). In fact,

studies in 3T3-L1 adipocytes showed that both dose and duration of GC stimulation

dictate the net outcome of increased or decreased lipolysis (Campbell et al. 2011).

In the fed state, when insulin levels are elevated, GCs may act synergistically

with insulin to promote de novo lipogenesis by directly upregulating (via a func-

tional GRE) the expression of two key enzymes involved in fatty acid synthesis:

acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) (Diamant and Shafrir

1975; Volpe and Marasa 1975). Studies in cultured adipocytes showed that corti-

costerone in combination with insulin was able to increase lipogenesis by 66%

when compared to insulin alone (Minshull and Strong 1985). Involvement of GCs

in TG synthesis was also demonstrated in a genome-wide analysis of 3T3-L1

adipocytes and in vivo studies of mice treated with Dex, where a large number of

GR target genes were identified in the TG synthetic pathway: Scd1, Scd2, Gpat3,
Gpat4, Agpat2, and Lpin1 (Yu et al. 2010). Most of these genes, with the exception

of Agpat2, have at least one functional GR binding site (Yu et al. 2010).

Excessive GC stimulation has been shown to be instrumental for the develop-

ment of central obesity and its associated metabolic disorders. Although there is

some controversy surrounding the correlation of plasma GCs with obesity (Abra-

ham et al. 2013; Hautanen et al. 1997; Kjolhede et al. 2014; Praveen et al. 2011),

positive correlations between elevated GC activity and the development of meta-

bolic syndrome have been observed in humans (Phillips et al. 1998; Reynolds

et al. 2001; Stolk et al. 1996; Walker et al. 1998). HPA axis hyperactivity has

similarly been linked to the development of insulin resistance and hypertension.

Studies in Zucker rats showed that both adrenalectomy and GR antagonist treat-

ment were able to improve the metabolic phenotype in these animals, directly

implicating GCs in the development of obesity (Langley and York 1990; Yukimura

et al. 1978). In fact, patients with Cushing’s syndrome exhibit a characteristic

redistribution of adipose tissue from the periphery to the abdominal depots. This

fat-mass redistribution is believed to arise from the differential activity of GCs in

various fat depots. In the periphery, GCs induce the activity of HSL and ATGL

leading to increased lipolysis (Slavin et al. 1994), whereas, in central fat depots,

GCs promote lipogenesis (Chimin et al. 2014; Rebuffe-Scrive et al. 1988; Seckl

et al. 2004).

Pre-receptor metabolism has also been implicated in the depot-specific actions

of GCs. 11β-Hydroxysteroid dehydrogenase (11β-HSD1) is an enzyme that
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catalyzes the conversion of inactive cortisone to cortisol (in humans), thus increas-

ing the intra-tissue levels of active GCs (Seckl and Walker 2001). Interestingly, the

activity of 11β-HSD1 in omental adipocytes was found to be higher than that in

subcutaneous depots, suggesting that GCs might have a greater impact in the

abdominal depots (Bujalska et al. 1997). Indeed, mice overexpressing 11β-HSD1
have higher intra-abdominal GC levels and exhibit central adipocyte hypertrophy

(Masuzaki et al. 2001).

Adding more complexity to our understanding of GC-regulated lipid metabolism

is a recent study using a stable isotope (heavy water) labeling technique which

showed that GCs can, in fact, simultaneously increase TG synthesis and lipolysis in

inguinal fat pads of wild-type mice treated with Dex and in subcutaneous and

visceral depots of CRH-Tg mice (Yu et al. 2010). It was found that 4-day Dex

treatment of wild-type mice was able to induce the expression of genes involved in

TG synthesis (Scd2, Gpat3, Gpat4, Agpat2, and Lpin1), lipolysis (Lipe and Mgll),
lipid storage (S3-12), and lipid transport (Cd36, Lrp1, Slc27a2, Vldlr)
(Yu et al. 2010). Most of these genes had at least one functional GR binding site,

hinting at the direct regulation by GCs. Several unanswered questions remain:

(1) why do GCs stimulate lipolysis and lipogenesis simultaneously resulting in

futile cycling, and (2) what dictates the fat redistribution in Cushing’s patients or in

patients following chronic GC treatment? One possibility is that other hormones

participate in the regulation of lipid metabolism by tipping the scale from TG

synthesis to lipolysis or vice versa leading to a depot-specific adiposity.

Another mechanism by which GCs can increase adipose tissue mass is by

stimulating pre-adipocyte differentiation. In vitro, GCs are required to fully induce

adipocyte differentiation and as such they represent a key component of the

adipogenic differentiation cocktail (Steger et al. 2010). In 3T3-L1 cells, activated

GR transiently induces the expression of a key adipogenic transcription factor

Pparγ (a master regulator of adipogenesis) and suppresses the expression of

pre-adipogenic factor 1 (Pref1) (Steger et al. 2010). Interestingly, two direct target

genes of GR, Klf15 and Dexras1, have been recently implicated in GC-induced

adipogenesis. MEFs and 3T3-L1 cells lacking KLF15 or DEXRAS1, respectively,

were unable to stimulate adipocyte differentiation in vitro and animals lacking

DEXRAS1 were protected against Dex-induced obesity. In vivo, depot-specific

actions of GCs on adipocyte differentiation have also been observed, where treat-

ment of rats for 10 days with corticosterone was able to increase adipocyte

differentiation in visceral adipose tissue but not in subcutaneous depots (Campbell

et al. 2011). However, the relative contribution of adipocyte hypertrophy

vs. hyperplasia in the development of central obesity still needs to be examined.

Interestingly, GCs are also reported to induce the differentiation of brown

preadipocytes (Shima et al. 1994) while inhibiting uncoupling protein 1 (Ucp1)
expression and activity (Soumano et al. 2000). In fact, GC treatment in rats resulted

in decreased thermogenesis and increased lipid accumulation in both BAT and WAT

(Strack et al. 1995). In rodents, BAT plays an important role in regulating insulin

sensitivity and glucose homeostasis by regulating thermogenesis (Stanford et al. 2013).

With the recent discovery of metabolically active BAT in adult humans, it will be
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exciting to investigate the role of GCs at this site to determine the relative contribution

of BAT to GC-mediated glucose and lipid dysregulation (Cypess et al. 2014).

3.2 Liver

GC excess can lead to the ectopic accumulation of fat in the liver, causing the

formation of “fatty liver” also known as hepatic steatosis, which is implicated in the

development of insulin resistance and metabolic syndrome. Indeed, increased liver

fat content has been observed in patients with Cushing’s syndrome (Shibli-Rahhal

et al. 2006) and in patients undergoing chronic GC treatment (Schacke et al. 2002).

Unlike the extensive literature describing the role of GCs in adipose tissue lipid

metabolism, the role of GR signaling in hepatic lipid metabolism is not well

defined. A number of in vitro and in vivo studies have shown that GCs act in the

liver to increase fatty acid synthesis (Diamant and Shafrir 1975; Altman

et al. 1951), decrease fatty acid oxidation (Letteron et al. 1997), and increase

VLDL secretion (Cole et al. 1982), although the latter is controversial (Dolinsky

et al. 2004). Similar to adipose tissue, GCs in the liver can regulate de novo

lipogenesis by directly upregulating the expression of Fas and Acc, and these

effects are synergistic with insulin (Diamant and Shafrir 1975; Altman

et al. 1951). In addition, acyl-CoA dehydrogenase enzymes involved in fatty acid

β-oxidation are decreased by GC treatment in mice (Letteron et al. 1997). Similar

observations have been made in primary hepatocytes suggesting that these effects

are at least partially cell autonomous (Amatruda et al. 1983; Mangiapane and

Brindley 1986). Moreover, downstream genes encoding enzymes in TG synthetic

pathways, such as DGAT1 and DGAT2, were found to be upregulated by GCs, but

whether this regulation is direct requires further investigation (Dolinsky

et al. 2004). The combined effect of increasing lipogenesis and decreasing

β-oxidation is thought to contribute to the observed hepatic steatosis. The effects

of GCs on VLDL secretion are not well defined. Studies looking at patients with

Cushing’s syndrome are inconclusive, showing either elevated (Taskinen et al. 1983)

or normal (Tiryakioglu et al. 2010) plasmaVLDL levels. Numerous in vitro studies in

both mouse and rat primary hepatocytes and isolated livers found an increase in

VLDL secretion following Dex treatment; however, Dolinsky et al. found that VLDL

secretion rates were not affected in vivo or in primary hepatocytes (Dolinsky

et al. 2004). Interestingly, the stability of triacylglycerol hydrolase (TGH/Ces3), a

lipase involved in intracellular TG hydrolyses prior to incorporation into VLDL, was

found to be decreased by Dex treatment (Dolinsky et al. 2004).

A recent study performed by de Guia et al. 2015 has implicated microRNAs in

the regulation of hepatic triglyceride metabolism by GCs (de Guia et al. 2015).

miR-379/410 cluster was found to be a direct target of GR in the liver, and miR-379

levels were shown to be positively correlated with serum GCs and triglyceride

levels in humans (de Guia et al. 2015). Moreover, knockdown of miR-379 in wild-

type mice as well as obese animals decreased plasma TG and VLDL levels (de Guia

et al. 2015). It was discovered that miR-379 acts by decreasing the levels of LDLR
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and the lipolysis stimulated lipoprotein receptor (LSR), leading to decreased

hepatic TG uptake and increased circulating lipids (de Guia et al. 2015).

The ability of GR to orchestrate these complex events relies on its interaction

with a number of accessory proteins. For example, LXRβ was recently identified as
a critical player in GC-induced hepatosteatosis (Patel et al. 2011). Mice lacking

LXRβ were refractory to developing fatty liver following Dex treatment, although

the exact molecular mechanism of GR-LXRβ interaction is not known. Further-

more, liver-specific knockouts of MED1, a GR coactivator, are protected from

Dex-induced TG accumulation (Jia et al. 2009). In MED1-null livers, Dex fails to

inhibit fatty acid β-oxidation leading to reduced TG accumulation.

GR can also elicit its control over hepatic dyslipidemia via the repression of

Hes1 gene expression (Lemke et al. 2008). GCs were found to reduce Hes1 mRNA

and protein levels in vitro (U2OS-GR cells and rat primary hepatocytes) and in

livers of adrenalectomized mice (Revollo et al. 2013). In accordance, shRNA-

mediated knockdown of GR in the liver of db/db mice was found to induce the

expression of Hes1 with a concomitant reduction in hepatosteatosis, suggesting a

direct role of GR in the regulation of Hes1 expression. Overexpression of HES1 in

the liver of db/db mice was shown to be protective against GC-induced

hepatosteatosis. Beneficial effects of HES1 overexpression are believed to be due

to its ability to upregulate the expression of pancreatic lipases, Pnl and Pnlrp2, both
of which contribute to TG hydrolysis. Chromatin immunoprecipitation analyses

and luciferase-reporter assays revealed that Hes1 is a direct target gene of GR

in vivo (Lemke et al. 2008; Revollo et al. 2013). However, the exact molecular

mechanism ofHes1 regulation by GR is controversial, with studies hinting at the

involvement of HDAC and NFκB proteins (Lemke et al. 2008; Revollo et al. 2013).

In conclusion, GCs were found to stimulate hepatic TG accumulation via the

repression of Hes1, thus blocking the induction of pancreatic lipase gene expression.
GCs can also regulate the production and accumulation of ceramides in the liver

by stimulating the expression of genes involved in ceramide synthesis (serine

palmitoyltransferase 2, SPT2, and dihydroceramide synthase, DES1) (Holland

et al. 2007). Ceramides are sphingolipids composed of a fatty acid and sphingosine

moiety (Hannun 1994), which act as important signaling molecules that generally

promote catabolic processes. Ceramide levels are markedly elevated in rodent

models of insulin resistance induced by GC excess, whereas mice heterozygous

for Des1 are protected from Dex-induced insulin resistance (Holland et al. 2007).

This represents a mechanism by which GCs can indirectly antagonize insulin

signaling.

With respect to regulation of cholesterol metabolism, studies have revealed that

liver-specific GR deficiency results in dysregulation of cholesterol and bile acid

homeostasis (Lemke et al. 2008; Rose et al. 2011). Hepatocyte-specific GR knock-

out mice exhibit reduced serum cholesterol levels, increased cholesterol accumula-

tion in the liver, and elevated fasting bile acid levels. Moreover, mice lacking liver-

specific GR had lower gallbladder bile acid concentrations and were more prone to

developing cholesterol gallstones when placed on a cholesterol-rich diet (Rose

et al. 2011). It was then found that liver GR deficiency impaired hepatic bile acid
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uptake due to decreased expression of the basolateral bile acid transporter, Ntcp
(Slc10a1) (Rose et al. 2011).

4 Protein Metabolism

4.1 Muscle

It is known that GCs both increase skeletal muscle catabolism and decrease muscle

synthesis. The result of these combined processes is an increased rate of muscle

breakdown, which is observed in patients with Cushing’s disease. In vitro studies

have shown that GCs can elicit their catabolic actions in a cell autonomous manner.

For example, Dex treatment resulted in decreased cell diameters in C2C12 and L6

myotubes compared to vehicle treatment (Menconi et al. 2008). In vivo, animals

treated with GCs exhibit a decrease in skeletal muscle size (Baehr et al. 2011),

whereas muscle-specific GR knockout animals are resistant to Dex-induced muscle

atrophy (Watson et al. 2012). GC control of muscle breakdown comes from its

ability to upregulate two muscle-specific E3 ubiquitin ligases: muscle RING finger

1 (MuRF1) and muscle atrophy F-box (MAFbx) (Bodine et al. 2001). MuRF1 and

MAFbx are induced in many catabolic states including starvation, diabetes, and GC

treatment. Through ubiquitination, MAFbx and MuRF1 mark distinct protein

targets for proteosomal degradation. MuRF1 has been shown to target primarily

myofibrillar proteins such as myosin heavy chain (MYHC), whereas MAFbx was

found to interact with regulatory proteins including MyoD and eIF3-f (Clarke

et al. 2007; Csibi et al. 2009; Lagirand-Cantaloube et al. 2009). Interestingly,

mice lacking MuRF1 were spared from Dex-induced muscle wasting, while

Mafbx-/- animals were not (Baehr et al. 2011). Even more surprising is the fact

that sparing of the Murf1-/- muscle mass was found to be primarily due to

maintenance of protein synthesis rather than changes in proteolytic pathways

(Baehr et al. 2011). These findings suggest that MuRF1 can regulate muscle atrophy

through yet unknown non-proteolytic pathways, and this regulation is distinct from

that of MAFbx. It should be noted than unlike skeletal muscle, cardiac muscle

responds to GCs by cardiomyocyte hypertrophy suggesting that the catabolic

actions of GCs on protein turnover are also tissue specific (Ren et al. 2012).

GCs can also directly increase the expression of myostatin, which in turn

negatively regulates muscle growth (Ma et al. 2003). Mice lacking myostatin are

resistant to developing Dex-induced muscle atrophy (Gilson et al. 2007). The

expression levels of Murf1 and Mafbx are also decreased in myostatin-null mice,

implicating myostatin as an important mediator of GC-induced muscle atrophy

(Ma et al. 2003). More recently, it was found that Dex was able to suppress muscle

satellite cell function through the upregulation of myostatin and a resultant sup-

pression of Akirin1 (promyogenic gene) (Dong et al. 2013).

In addition to increased proteolysis, GCs can induce muscle atrophy by decreas-

ing protein synthesis. GCs achieve this via the inhibition of mTOR, a kinase that

phosphorylates S6K1 and 4E-BP1, two proteins involved in mRNA translation
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initiation (Schakman et al. 2008). Recent studies identified Klf15 andDdit4 (Redd1)
as two direct target genes of GCs involved in mTOR inhibition (Shimizu

et al. 2011). KLF15 has been shown to induce the expression of Bcat2, a mitochon-

drial enzyme that decreases mTOR activity (Shimizu et al. 2011). DDIT4, on the

other hand, was found to increase the activity of the regulatory TSC1/TSC2 protein

complex leading to mTOR inhibition (Shimizu et al. 2011; Wang et al. 2006).

Interestingly, KLF15 was also found to regulate the atrophy genes, Murf1 and

Mafbx, and is also regulated by GCs in adipose tissue to promote adipocyte

differentiation. Several other GR target genes, Sesn1, Depdc6, and Mknk2, have
also been shown to interact and inhibit mTOR activity or signaling (Kuo et al. 2012,

2013). Finally, GR was found to upregulate the expression of p85α through a GRE

(Kuo et al. 2012). Studies utilizing shRNA to knockdown p85α in C2C12 myotubes

found that Dex failed to inhibit AKT activity and atrophy gene expression. Inter-

estingly, studies by Hu et al. found that activated GR is able to directly bind p85α
(regulatory subunit of PI3 kinase) and prevent its association with IRS-1, thus

inhibiting insulin signaling (Hu et al. 2009). Overall, these data suggest that GCs

may suppress insulin signaling via p85α through genomic (direct DNA binding)

and non-genomic mechanisms.

5 Glucocorticoids and Other Target Organs

5.1 Pancreas

The endocrine pancreas is a major sensor of circulating glucose levels. Pancreatic

β-cells respond to elevated blood glucose by secreting insulin to promote glucose

uptake and utilization in peripheral tissues. The role of GCs on insulin secretion is

complex and a detailed review was published recently (Rafacho et al. 2012). GCs

impact pancreatic β-cell function early during embryonic development. Studies in

Grlox/lox and GrPdxCre mice have shown that maternal food restriction during late

pregnancy (which causes elevated fetal corticosterone levels) irreversibly decreases

the β-cell mass of newborn mice (Valtat et al. 2011). Moreover, there is evidence

suggesting that GCs may shift the fate of pancreatic progenitor cells from an

endocrine to an exocrine lineage, thus compromising β-cell expansion later in life

(Valtat et al. 2011). Interestingly, excessive GC signaling in mature β-cells does not
affect cell numbers but instead leads to impaired insulin secretion (Blondeau

et al. 2012). Studies performed in vitro on isolated islets and cultured β-cells also
showed that GCs inhibit insulin secretion and promote apoptosis (Lambillotte

et al. 1997; Ranta et al. 2006; Reich et al. 2012). Mechanistically, GCs impair

pancreatic cell function via several distinct mechanisms. Dex treatment of isolated

pancreatic β-cells decreases the stability and protein levels of the GLUT2 glucose

transporter leading to impaired insulin secretion (Gremlich et al. 1997). Moreover,

GC-mediated induction of serum-/glucocorticoid-regulated kinase 1 (Sgk-1) in

INS-1 cells led to increased activity of voltage-gated K+ channels, leading to

reduced insulin release (Ullrich et al. 2005). Furthermore, recent studies found
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that Dex can induce the expression of Txnip, a negative regulator of the antioxidant
thioredoxin in β-cells of mice and human islets, resulting in apoptosis (Reich

et al. 2012). Lastly, the unfolded protein response was also recently implicated in

β-cell dysfunction, where prednisolone administration to β-cells resulted in the

activation of ATF6 and IRE1/XBP1 pathways and increased caspase-3 activity

leading to apoptosis (Linssen et al. 2011).

Intriguingly, oral glucose tolerance tests performed in normal subjects immedi-

ately after receiving a single i.v. bolus of hydrocortisone showed an increase in

insulin secretion compared to vehicle treatment (Vila et al. 2010). Similarly, Dex

administration in healthy individuals was shown to cause hyperinsulinemia (Nicod

et al. 2003). Higher insulin levels were able to compensate for Dex-mediated

insulin resistance in skeletal muscle and adipose but not in the liver since hepatic

glucose production remained elevated during the clamp (Nicod et al. 2003). It is

believed that hyperinsulinemia, which arises following acute GC treatment, is a

result of compensatory actions by pancreatic β-cells to respond to hyperglycemia.

Chronic GC stimulation, on the other hand, leads to a decrease in insulin signaling

due to β-cell dysfunction and apoptosis.

5.2 CNS

Awell-known role of GCs in the brain is the classical negative feedback of the HPA

axis, where circulating GCs inhibit the expression of the hormones CRH (hypothal-

amus) and ACTH (pituitary gland) leading to inhibition of GC synthesis from the

adrenal cortex. A number of recent studies have shown that GC signaling in the

brain can also regulate peripheral metabolic responses. GR is highly expressed in

the paraventricular (PVN) and arcuate (ARC) nuclei in the brain where it was

discovered to regulate feeding behavior and glucose homeostasis by regulating the

expression of the orexigenic peptide neuropeptide Y (NPY). Local administration

of Dex (via retrodialysis) into the ARC, but not the PVN, was able to induce hepatic

insulin resistance during a hyperinsulinemic-euglycemic clamp (Yi et al. 2012). In

agreement, intracerebroventricular coadministration of the NPY1 receptor antago-

nist BIBP3226, or hepatic sympathetic denervation, was able to block this effect

(Yi et al. 2012). In summary, GCs seem to be able to regulate peripheral insulin

responsiveness via hypothalamic signaling and the sympathetic nervous system.

Interestingly, hepatic vagal innervation is also required for GC-induced insulin

resistance, hyperglycemia, and hypertension. Studies by Bernal-Mizrachi et al.

revealed that selective hepatic afferent vagotomy, as well as central afferent

vagal nerve sectioning, decrease Dex-induced Pparα and Pepck expression and

reverse insulin resistance in wild-type mice (Bernal-Mizrachi et al. 2007). PPARα’s
involvement in GC-induced insulin resistance and hyperglycemia has been previ-

ously established, and animals lacking hepatic PPARα are protected against

Dex-mediated effects (Bernal-Mizrachi et al. 2003; Lemberger et al. 1994). Intrigu-

ingly, adenoviral reconstitution of hepatic PPARα in normoglycemic Dex-treated

Pparα-/- animals increased PEPCK activity, blood glucose, and blood pressure in
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sham-operated mice but not after vagotomy, suggesting that both hepatic vagal

innervation and intact PPARα signaling are necessary for GC-induced metabolic

effects (Bernal-Mizrachi et al. 2007).

6 Concluding Remarks

The metabolic actions of glucocorticoids are highly coordinated between multiple

tissues, facilitating the rapid catabolic actions of GCs that have the overall effect of

increasing circulating glucose levels. While many of the biochemical processes

mediating these effects are now understood, the individual genes responsible for

these effects and the molecular mechanisms regulating their expression are still

being elucidated. Further understanding the complex feedback responses mediated

by hormones and the sympathetic nervous system will provide new insight into

possible mechanisms of inhibiting the detrimental metabolic consequences of

chronic GC exposure.
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