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1	 �Introduction

The main function classically attributed to 
peripheral somatosensory system is to receive, 
transduce, and channel external or internal infor-
mation toward central regions of the nervous sys-
tem. However, there are numerous examples 
throughout the body of mammals which indicate 
that some neurons from sensory ganglia are not 
restricted to generate afferent impulses. This 
population of neurons is characterized by its 
capacity to release neuropeptides from their 
peripheral terminals. It is postulated that through 
this neurosecretory character, peptidergic neu-
rons of dorsal root ganglia influence diverse pro-
cesses in their targets (efferent function). This 
notion is also supported by the presence of recep-
tor sites and degrading enzymes for neuropep-
tides in all tissues innervated by peptidergic 
neurons. Nevertheless, it is often assumed that 
efferent functions of sensory ganglia are only rel-
evant in clearly pathological events (e.g., neuro-
genic inflammation). Indeed, it is the fact that 
sensory nerves participate in pathological events 
that explains a resurgence of the study and an 
effort to characterize the effects and mechanisms 
that govern the interaction between sensory 

nerves and their peripheral targets such as the 
skin.

The synthesis and transport of neuropeptides 
to the peripheral terminals of dorsal root ganglion 
(DRG) neurons have been documented in various 
species [1–4]. Thus, efferent functions of DRG 
neurons may represent a conserved mechanism 
for tissue renewal and functional maintenance 
during normal physiological conditions. There 
are systematic observations about the deleterious 
effects related to sensory denervation which pro-
vokes major changes of gene regulation on its 
targets [5, 6]. Moreover, the generation of anti-
bodies to label fine terminals at the periphery has 
revealed that peptidergic terminals are in almost 
every part of the mammalian body, including the 
skin, muscle, bone, immune organs, teeth, blood 
vessels, and viscera. In these regions it has been 
observed both the existence of synaptic-like con-
tacts between peptidergic endings and some tar-
get cells and the expression of neuropeptide 
receptors by different cell types [7–10]. Overall 
the anatomical and functional studies suggest 
that peptidergic innervation plays an active and 
continuous role on epithelial renewal, wound 
repair, glandular secretion, and mineralized tis-
sue formation that is just beginning to be 
understood.

In this chapter, we will discuss several aspects 
of sensory innervation and the proposed mecha-
nisms by which sensory terminals influence epi-
thelial homeostasis. A brief survey of the main 
anatomical and neurochemical characteristics of 
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the nerve terminals that innervate the skin will be 
made. All of this will be discussed under the con-
text of the noceffector concept proposed by 
Kruger [11] which states that peptidergic neurons 
of DRG devote most of its biological existence to 
have an effector or trophic influence on its 
target.

2	 �Cytology 
and Neurochemistry 
of Dorsal Root Ganglion 
Neurons: An Overview

Broadly, two main classes of neurons have been 
described in sensory ganglia based on cell body 
size, cytoplasmic appearance, axonal diameter, 
and axonal myelin content. Due to light or dark 
appearance of its cytoplasm in electron and light 
microscopy studies, DRG neurons are subdivided 
into large light (also named A cells) and small 
dark neurons (also named B cells) [12, 13]. 
Furthermore, it has been determined by immuno-
histochemical studies that light appearance is 
given by a rich content of the 150 and 200 kDa 
neurofilament subunits [14]. Likewise, dark neu-
rons have a cytoskeleton primarily constituted by 
the intermediate filament protein called periph-
erin [15, 16]. Besides these cytological features, 
it is known that electrical properties such as con-
duction velocity correlate with soma size and 
fiber diameter [17]. Thus, large light neurons 
(soma diameter > 35 mm) correspond to neurons 
with myelinated fibers [14, 18, 19]. These large-
caliber and myelinated axons are the well-known 
A-fibers which are divided into three subgroups, 
namely, A, B, and C, from fastest to slowest. In 
addition, the small dark neurons (<20 mm) give 
rise to C-fibers which are unmyelinated fibers 
and, consequently, the thinnest and slowest fibers 
in sensory nerves [17, 20]. This relationship 
between anatomical parameters and functional 
properties does not necessarily apply to medium-
sized neurons (20–35 mm). For instance, some A 
cells skewed toward the large population are 
neurofilament-negative, and, conversely, neurons 
skewed toward the small population are 
neurofilament-positive [18, 21]. Rather than a 

clear subdivision of neuronal populations, there 
is a perplexing scenario of subpopulations with 
overlapping phenotypic and functional 
properties.

Besides its afferent (i.e., sensory) role, C- and 
Aδ-fiber neurons are mainly implicated in tissue 
management [22–24]. Although neuropeptide 
content is associated with pain modulation, it 
has been recently documented that a fraction of 
peptidergic neurons does not process exclusively 
nociceptive stimuli [2, 23, 25–27]. Moreover, 
efforts to define a biochemical profile to predict 
receptive modalities have not been successful at 
all. Some DRG neurons have the intrinsic genetic 
program to express neuropeptides, and others 
acquire a peptidergic phenotype only after they 
have contacted a target in late embrionary stages 
[28–30]. Apparently, peptidergic phenotype is 
related to localization of peripheral terminals in 
the target tissue rather than to a sensory modality 
[2, 23, 25]. Indeed, it has been postulated that 
peptidergic neurons constitute a nocifensor sys-
tem that probably lacks a sensory function [31]. 
In fact, there is still much debate about the exis-
tence of two separate populations for afferent 
and efferent role in dorsal root ganglion. For the 
sake of convenience, we will refer for those cra-
nial and DRG neurons having an efferent role 
only as peptidergic neurons or noceffectors, 
assuming that if a neuron presents vesicles with 
peptides in the peripheral terminals, it conveys a 
specific message that helps maintain tissue 
homeostasis, regardless if this neuron transmits 
a sensory stimuli or whether it is a noxious/non-
noxious stimuli [11].

In elegant studies using genetic axonal tracers, 
the peptidergic and non-peptidergic populations 
in mice are shown to be topographically segre-
gated. For instance, in mouse epidermis, non-
peptidergic fibers terminate in the stratum 
granulosum, while most of the peptidergic fibers 
terminate in the stratum spinosum [32]. Similarly, 
this segregation continues in the spinal cord and 
in ascending pathways. Peptidergic neurons proj-
ect to spinal lamina I and the outer region of lam-
ina II (IIo), and these spinal neurons project 
heavily to the brain stem (parabrachial nuclei) 
and thalamus, while non-peptidergic neurons 
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connect with second-order interneurons in the 
internal region of lamina II (IIinner). These inter-
neurons project to lamina V which then project to 
several limbic and striatal regions [32, 33]. The 
spatially segregated pathways suggest that these 
groups of neurons have at least different sensory 
processing capacities. If this anatomical separa-
tion could also be relevant for efferent functions 
of sensory neurons remains to be determined.

Neuropeptide content in DRG neurons has 
been reported in various vertebrates as rodents, 
primates, felines, birds, and reptiles [1–4]. The 
proportion of peptidergic neurons varies depend-
ing on the species, and inside a species varies 
according to the spinal cord level [34]. Regardless 
of the animal species, the peptidergic population 
is consistently composed by a subpopulation of 
C-fibers neurons and in smaller fraction by a sub-
population of A-fiber neurons [2, 3, 25, 35]. The 
major peptides synthesized by DRG neurons are 
substance P (SP) and calcitonin gene-related pep-
tide (CGRP). In addition, DRG neurons also syn-
thesize other peptides such as somatostatin, 
neuropeptide Y, galanin, vasoactive intestinal 
polypeptide, pituitary adenylate cyclase-
activating polypeptide-38, and opioids.

3	 �CGRP and Substance P 
in Dorsal Root Ganglia: 
Synthesis, Release, 
and Receptors

3.1	 �CGRP

The calcitonin gene peptide superfamily consists 
of four members with potent vasoactive properties 
that include calcitonin, CGRP, adrenomedullin, 
and amylin [36, 37]. CGRP exists in two isoforms 
encoded by different genes, α and β in rat and I 
and II in human. While the rat isoforms differ in 
one amino acid residue, in humans they differ in 
three [38, 39]. The most noticeable site of synthe-
sis of α-CGRP in the peripheral nervous system is 
the DRG, whereas β-CGRP is preferentially 
expressed by enteric neurons. The translation of 
I-CGRP mRNA generates a 121 and 128 amino 
acid precursor in rats and humans, respectively. 

The first 25 amino acids of this precursor 
correspond to the signal peptide, a sequence that 
assists the targeting of the messenger to the endo-
plasmic reticulum. The next 103 residues corre-
spond to the proCGRP [40]. The final 37 amino 
acid peptide is created by proteolytic cleavage of 
flanking peptides in proCGRP [41].

CGRP receptor belongs to the G-protein-
coupled receptor superfamily. A molecular, bio-
logical approach has revealed that CGRP receptor 
is a heterodimer composed of the calcitonin 
receptor-like receptor protein (CRLR or CLR) 
and receptor activity-modifying protein 1 
(RAMP-1) [37]. The latter is required to trans-
port CRLR to the plasma membrane and to con-
trol a specific pattern of glycosylation that 
determines the affinity for CGRP [42]. The 
CGRP receptor is associated with the formation 
of cAMP through the activation of adenylyl 
cyclase. The biological effects of CGRP end with 
a proteolytic cleavage by proteases as neutral 
endopeptidase, insulin-degrading enzyme, and 
endothelin-converting enzyme-1 [43, 44].

3.2	 �Substance P

SP is a member of the tachykinin family that 
includes peptides with a conserved FXGLM-NH2 
C-terminal sequence. The mRNAs that encode 
SP, neurokinin A, neuropeptide K, and neuropep-
tide G are derived from the preprotachykinin 1 
gene. In DRG neurons, alternative RNA splicing 
of the primary transcript results in the generation 
of four mRNAs called α-, β-, γ-, and δ-TAC1 [45, 
46]. SP precursor sequences are encoded by all 
four TAC1 mRNAs, but what directs the alterna-
tive splicing in the range of tissues where tachy-
kinins are expressed is still unknown [47–49]. 
Putatively, the posttranslational processing of all 
these precursors gives rise to the active form of 
substance P that consists of 11 amino acid resi-
dues [50, 51].

The effects of tachykinins are mediated 
through a group of three G-protein-coupled 
metabotropic receptors: neurokinin-1 (NK1), 
neurokinin-2 (NK2), and neurokinin-3 (NK3). 
Substance P binds preferentially to NK1 receptor 
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[52, 53]. The activation of tachykinin receptor 
leads to inositol phosphate accumulation [54]. 
NK1 receptor stimulation in tracheal smooth 
muscle causes Ca2+ release from intracellular 
stores through the activation of both inositol tri-
phosphate and ryanodine receptors. In muscle 
cells, the Ca2+ release from the sarcoplasmic retic-
ulum in response to NK1 activation is coupled to 
Ca2+ influx through channels located in the plasma 
membrane [55]. Once released, SP is inactivated 
by the action of the neutral endopeptidase and the 
angiotensin-converting enzyme [56].

4	 �Release of SP and CGRP 
from Somatosensory Nerves

CGRP and SP are strongly expressed in normal 
DRG neurons, which suggests that they are ready 
to use whenever it is needed. A great portion of 
the neurons with capacity of peptide release are 
recognized for being capsaicin sensitive. 
Capsaicin is the pungent ingredient in hot chili 
peppers of the Capsicum genus, and it has been a 
valuable pharmacological and clinical tool, 
because it has allowed studying both afferent and 
efferent functions of DRG neurons [57]. The 
notion that C- and Aδ-fibers have a neurosecre-
tory function dates from the early years of the 
twentieth century. Experiments by Bayliss [58] 
assigned an efferent role for the nerve fibers that 
emerge from posterior roots. They noticed that, 
when central ends of these fibers were excited at 
lumbar level, the impulse generated (i.e., anti-
dromic process) provoked vascular dilatation at 
their peripheral ends in the hind limbs of various 
species. Nowadays it is known that antidromic 
stimulation of C and Aδ produces vasodilatation 
and increases plasma extravasation [59, 60]. 
Immunohistochemical and pharmacological 
experiments had revealed that CGRP induces 
arterial vasodilatation, whereas SP provokes an 
increase in vascular permeability [61, 62]. 
Overall, these vascular changes and concomitant 
activation of mast cells, lymphocytes, and neu-
trophils lead to what is called neurogenic inflam-
mation. Thus, the main efforts to understand 

peptide release from peripheral terminals of 
peptidergic DRG neurons have been centered on 
factors involved in inflammation. In this regard, 
capsaicin is widely known for its capacity to 
induce neurogenic inflammation by releasing SP 
and CGRP from peripheral terminals. It is 
believed that capsaicin releases neuropeptides 
exclusively via activation of the vanilloid recep-
tor 1 (TRPV1), but other members of TRPV fam-
ily might be involved [63]. TRPV1 is a 
nonselective cation channel that allows entry of 
calcium and, besides capsaicin, is also gated by 
nociceptive stimuli such as low pH and heat [64, 
65].Classical exocytosis occurs when Ca2+ influx 
into the terminals and initiates exocytotic mecha-
nisms that release neuropeptides and/or other 
neurotransmitters [66]. The addition of capsaicin 
to nerve, skin, and mucosal explants induces pep-
tide release, but it is prevented if explants are 
incubated in Ca-free medium containing EGTA 
[67–69]. The notion that this effect is partially 
mediated by TRPV1 is supported by the fact that 
a competitive antagonist of TRPV1, namely, cap-
sazepine, diminished CGRP concentrations in 
eluates quantified by immunoassay or radioim-
munoassays [68, 69]. Ruthenium red, a noncom-
petitive channel blocker of TRPV1, attenuates 
neuropeptide release in response to capsaicin 
[67]. In addition, acidic stimulation promotes 
CGRP release in the nerves and skin through 
TRPV1-dependent mechanism [70]. Noxious 
heat (40–50  °C) evokes CGRP release in a 
calcium-dependent manner, as shown that both 
incubating in calcium-free medium and skin 
loaded with (BAPTA) diminished CGRP release 
[71, 72]. However, it has been shown that neither 
capsazepine nor Ruthenium Red abolished com-
pletely peptide release from nerve and skin 
explants [71, 73]. It is proposed that other heat-
activated channels of TRPV subfamily (V1–V4) 
might be involved in neuropeptide release from 
peripheral terminals [71, 73]. This is supported 
by the fact that neonatal capsaicin denervation 
does not eliminate all peptidergic fibers in 
different targets. Likewise, TRPV1 is not 
expressed by all peptidergic neurons, and its 
presence in fibers varies with the type of 
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target [74]. It is noteworthy that TRPV members 
are coexpressed in DRG neurons and potentially 
different members may heteromultimerize, con-
tributing to functional heterogeneity and a more 
complex pharmacology [75–77]. In considering 
TRPV channels as key elements for regulating 
peptide release from peripheral terminals, it must 
be taken into account that these channels are sen-
sitized by vanilloids, temperature, and proinflam-
matory mediators, which results in distinct 
biophysical and regulatory properties [78]. TRP 
participation in peptide release on both patho- 
and physiological conditions awaits further 
investigation to define its precise contribution.

Regarding factors coming from a target, there 
are some inflammatory mediators capable to 
evoke or sensitize SP and CGRP release in cer-
tain tissues and conditions. For instance, bradyki-
nin alone can induce neuropeptide release in the 
rat trachea and skin and in the heart of guinea pig 
[72, 79, 80]. Bradykinin evokes a significantly 
CGRP release only in the trachea, whereas in the 
skin, it only stimulates release of SP [72, 80]. The 
effects of bradykinin seem to be mediated through 
the activation of B2 receptor which activates 
phospholipase C, resulting in formation of diac-
ylglycerol and activation of protein kinase C [72, 
80, 81]. The sole action of histamine, serotonin, 
prostaglandin E2, or proinflammatory cytokines 
seems not to be sufficient to promote exocytosis 
in peripheral terminals [69, 79, 80, 82, 83]. The 
action of these mediators is favored by conditions 
such as acid pH or noxious heator in combination 
with other inflammatory mediators. The interac-
tion of serotonin and histamine sensitizes brady-
kinin effect on CGRP and SP release [72, 80]. 
Near inflammation zones and tumors, leukocytes 
and thrombocytes produced proinflammatory 
cytokines. In this regard, stimulation of rat skin 
from hind paw with IL-1b and TNF-a augmented 
heat-induced release of CGRP in a dose-
dependent manner [82]. As in the case of brady-
kinin, cytokines activate receptors coupled with 
kinases which may sensitize heat-activated ion 
channels by phosphorylation and lead to a major 
release of peptides [84]. It has also been observed 
that noceffector activity is also exerted to 

inhibitory modulation. Plasma extravasation in 
rat skin, bronchoconstriction of guinea pig and 
human, and contraction of the left atrium of 
guinea pig heart are blocked by the presence of 
nociceptin, an opioid-related peptide [85–88]. 
These processes require neuropeptides release 
from noceffector terminals. Indeed, release of 
substance P and CGRP from rat isolated trachea 
in response to electrical field stimulation was 
diminished by nociception [89]. It has been pro-
posed that nociceptin stimulates the G-protein-
coupled orphan receptor ORL1 to activate an 
inward-rectifier K+ channel. The latter reduces 
neuropeptide release from noceffector endings 
via a membrane hyperpolarization which proba-
bly counteracts TRPV1 gating [86]. Likewise, 
μ-/κ-/δ-opioid receptor agonist inhibited electri-
cal-induced release from noceffector endings in 
several preparations, although not all agonists are 
effective in all sites tested [83, 90–93]. The actual 
effect of endogenous opioids and its physiologi-
cal relevance for efferent functions remains to be 
elucidated. Apart from these factors that can be 
found in most tissues, apparently there are some 
tissue-specific signals capable to evoke peptide 
release. That is the case of the conversion of 
trans-urocanic acid to cis-urocanic acid by ultra-
violet radiation in the stratum corneum of the 
skin. In rodents cis-urocanic acid may increment 
microvascular blood flow of hind paw and dimin-
ished contact hypersensitivity by means of releas-
ing SP and CGRP [94].

As could be inferred for the depleting effects 
of capsaicin in neuropeptide contents in different 
preparations in vitro, long-term synthesis of neu-
ropeptides is intimately related with the amount 
of these neuropeptides that are available for 
release from the noceffector endings. Several 
reports indicate that neuropeptide exocytosis can 
be achieved by two means: local factors that 
stimulate direct or indirectly TRP channels and 
antidromically stimulations of peripheral endings 
which rely in axonal conduction by activation of 
voltage-dependent calcium channels. Since much 
of the research has dealt with inflammatory 
conditions, little is known if the same factors 
could modulate synthesis and release of 
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neuropeptides in noninjury conditions. Although 
capsaicin has helped to elucidate the pharmacol-
ogy of noceffector terminals, it remains unclear 
which are the endogenous ligands that have simi-
lar effects as capsaicin and the dynamics of pro-
duction and sources of such TRPV1 agonist in 
normal and pathophysiological conditions. Only 
a few molecules such as anandamide, arachido-
nate, and diacylglycerol have been shown to acti-
vate TRPV1 in a capsaicin-like manner [95, 96]. 
An intriguing issue that deserves further study is 
the role of antidromic process in vivo. It is known 
that a suprathreshold stimulus depolarizes pri-
mary afferents in the spinal cord (i.e., dorsal root 
reflex), which could trigger efferent action of 
noceffector [97]. Furthermore, dorsal rhizotomy, 
periaqueductal gray matter stimulation, and 
blockage in the spinal cord of GABAA, non-
NMDA, or 5-HT3 receptors interfere with devel-
opment of neurogenic cutaneous inflammation 
[98, 99]. This data implies that local mechanisms 
and/or central nervous mechanisms could modu-
late exocytotic release at periphery. The under-
standing of these mechanisms may clarify how 
noceffectors coordinate normal processes, such 
as hair growth, bone metabolism, gland secre-
tion, and vascular tone.

5	 �Efferent Effects of Peptides 
Released by Somatosensory 
Nerves on Skin Physiology

Noceffectors establish synaptic-like contacts 
with Langerhans cells, melanocytes, and mast 
cells in the skin [7–9]. In other targets like the 
smooth muscle, epithelium, viscera, lymphoid 
organs, blood vessels, teeth, and bone, where 
noceffectors lack specialized contacts, they 
appear to establish a paracrine way of communi-
cation [10, 11, 100]. Cellular elements located in 
the aforementioned targets not only possess 
receptors for the peptides released by noceffec-
tors from their C- and Aδ-fiber terminals but also 
express peptidases that terminate with the bio-
logical effects of such peptides [28, 29]. The 
anatomical and physiological evidence so far 
summarized suggests that, besides its ability to 

send information to the spinal cord (afferent 
role), the anatomical and functional organiza-
tions of ganglion sensory neurons render them 
capable of releasing the content of its vesicles 
and transmit a specific message to their periph-
eral targets (efferent role).

The skin receives innervation that originates 
from DRG and trigeminal ganglion. Nerve plexus 
of large caliber arrive at the deepest part of the 
dermis. As nerves ascend through the skin, they 
ramify in thinner plexuses. At the border between 
the dermis and the epidermis, individual fibers 
cross the basal membrane and terminate as free 
nerve endings in either stratum spinosum or stra-
tum granulosum (Fig. 1). Free nerve endings also 
innervate structures immersed in the dermis like 
hair follicles, blood vessels, and sebaceous 
glands [101–103]. Many of these free nerve end-
ings present immunoreactivity for SP and CGRP, 
and its distribution within the skin is conserved 
between individuals of the same species. The 
presence of SP and CGRP receptors in keratino-
cytes, fibroblasts, melanocytes, endothelial cells, 
and immune cells has been elucidated by immu-
nohistochemical studies and functional assays [8, 
104, 105].

A long-standing issue in the field of dermatol-
ogy is related to the observation that cutaneous 
denervation is followed by trophic changes which 
are manifested as alterations in skin, nails, and 
subcutaneous tissues [106, 107]. Not until recent 
investigation, anecdotal observations have been 
replaced for a careful quantification of efferent 
activity of peptidergic DRG neurons. Recently, it 
has been established that skin noceffector is 
involved in modulating expression of genes of 
cytoskeleton, extracellular matrix, transcription 
factors, proteases, receptors, intracellular trans-
ducers, and adhesion molecules [5]. Taken alto-
gether, these findings indicate that noceffector 
activity influences several kinds of cellular ele-
ments in its targets. Therefore, it is conceivable 
that malfunction of noceffectors may be a causal 
factor in some dermatological diseases.

In rodents and humans, epidermis becomes 
thinner after nerve injury [108, 109]. Sciatic 
nerve transection in rodents diminishes 
keratinocyte incorporation of analogs of 
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thymidine up to 40% which suggest a reduction 
of keratinocyte proliferation [109–111]. Both 
epidermal thickness and proliferation are restored 
if reinnervation is permitted [108, 110, 111]. Due 
to alterations in motor innervation also affect 
keratinocyte proliferation, it is argued that lack of 
movement rather than neuropeptide secretion 
from noceffectors is the cause of skin atrophy. 
Dorsal rhizotomy or ganglionectomy, procedures 
that conserve normal gait, also produces epider-
mal thinning. Sensory denervation of dorsal skin, 
which does not support body weight, produces 
epidermal thinning [112, 113]. An insight into 
the mechanism of this phenomenon comes from 
in vitro and in vivo studies. In cultures of kerati-
nocytes, fibroblasts, and endothelial cells, sub-
stance P promotes cell proliferation [114, 115], 
while CGRP promotes the proliferation of mela-
nocytes and endothelial cells [8].

The hair follicles receive peptidergic innerva-
tion which shows immunoreactivity for substance 
P and CGRP (Fig.  1). Normal hair cycle is 
accompanied by substantial morphological, cel-
lular, and biochemical changes in many skin 
compartments, such as changes in the thickness 
of the epidermis and dermis, reorganization of 

the skin vasculature and the extracellular matrix, 
as well as variations in the number and functional 
activity of major skin cell populations [116]. This 
tissue remodeling is associated with tightly regu-
lated sprouting and regression of peptidergic 
fibers. The number of CGRP and SP fibers 
increases from telogen to anagen in the dermis 
and subcutis [117, 118]. Peptidergic nerve fibers 
are concentrated around and above the bulge 
region where one major population of epithelial 
hair follicle stem cells resides. Thus, it is con-
ceivable that noceffectors participate actively in 
hair cycle modulation and concomitant tissue 
remodeling. SP-releasing microcapsules 
implanted at resting growth phase of hair (telo-
gen) stimulate growth phase (anagen) in mice 
skin [119], while treatment with substance P in 
anagen induces a premature regression of hair 
follicles (catagen) [120]. CGRP subcutaneous 
implants failed to promote transition of telogen to 
anagen [118]. Further investigations are required 
to define the precise role of the combination of 
nerve-derived signals in hair cycle.

Overall, the evidence indicates that noceffec-
tors interact with almost all cell populations in 
the skin. By means of this interaction, the 

a b

Fig. 1  General arrangement of sensory innervation in 
mammalian skin. In (a) glabrous skin and (b) hairy skin 
axons from dorsal root ganglia are grouped in the dermis 
as large plexuses. As axons reach the superficial layers of 

the skin, they travel in smaller plexuses. Sebaceous 
glands, blood vessels, and epidermis are innervated by 
ramified terminal fibers
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optimum functioning of major physiological 
processes that maintain the skin in a healthy state 
is preserved. Neuropeptide release is involved in 
modulating epidermal renewal, hair growth, 
blood flow, and immunological priming. 
Accordingly, it is not surprising that alteration in 
the synthesis and release of neuropeptides may 
result in disturbance of skin homeostasis. That 
could be the case of some variants of dermato-
logical diseases like atopic dermatitis, psoriasis, 
urticaria, or vitiligo whose etiology is unknown 
and sometimes attributed to a neurological ori-
gin. A common denominator in these diseases is 
an elevated number of nerve fibers in the dermis 
and epidermis containing SP and CGRP com-
pared with healthy skin [121–123]. In addition, 
more frequent contacts of nerve fibers with mast 
cells and blood vessels are observed [124, 125]. 
Until now little is known if peripheral nerve fiber 
sprouting responds to a diminishing in peptide 
release which in turn evokes secretion of neuro-
trophic signals from a target organ. For instance, 
keratinocytes in psoriatic lesions have reduced 
expression of the transcription factor Jun B with 
concomitant augmented levels of mRNA of two 
chemotactic proteins, S100A8 and S100A9, 
which are involved in the onset of psoriasis [126]. 
Remarkably, sensory denervation leads to an 
upregulation of S100A8 and S1009 genes [5]. 
Likewise, psoriatic lesions contain an increased 
number of keratinocytes expressing NGF, whose 
synthesis is promoted by neuropeptide release 
[105, 127].

6	 �Role of Peptidergic Nerves 
on Epithelial Renewal 
and Wound Repair

To get a better understanding on how sensory 
nerves influence epithelium physiology, we per-
formed a series studies using neonatal capsaicin 
treatment. This chemical denervation model 
allowed us to reduce the amount of peptidergic 
terminals in the skin and to determine whether 
the reduction of peptidergic terminals affects 

epithelial homeostasis both in noninjury 
conditions and during wound repair [128, 129]. 
We employed design-based stereological meth-
ods to assure an unbiased quantification of bio-
logical structures (Fig.  2). Most of the 
dermatological research has relied on qualitative 
or 2D sampling which may overestimate or 
underestimate the magnitude of a certain cellular 
responses. For example, the data of cell number 
is usually expressed as a ratio quantity (i.e., cell/
unit area) which can be misinterpreted if the ref-
erence space is not the same between experimen-
tal conditions. In contrast, stereological 
estimations of the number, length volume, or area 
of biological objects are performed by a system-
atic random sampling without any assumption of 
spatial distribution, size, shape, and object orien-
tation. Stereological probes facilitate the com-
parison of experimental conditions by expressing 
the data of measured parameters as an absolute 
quantity (i.e., millions of cells). Rather than to 
offer a guide on how to design a stereological 
study, the main intention of this section is to show 
how this methodology was used to study the role 
of innervation during wound healing [130–132].

Although it is well-known that neonatal 
capsaicin treatment eliminates a great number 
of DRG neurons with C- and Aδ-axons, there 
was no quantitative data about the repercussion 
of capsaicin treatment on the development of 
epidermal innervation. For this purpose, we 
quantified the amount of intraepidermal nerve 
fibers (IENF) immunoreactive for protein gene 
product 9.5 (PGP+) and calcitonin gene-related 
peptide (CGRP+) in the glabrous skin of the rat 
[129]. In control animals, the total estimated 
length of PGP+ and CGRP+ fibers remained 
relatively constant at 1, 3, and 6 months. These 
findings suggest that nerve supply generated 
during development is only redistributed as 
animal ages. Moreover, we also observed 
changes on IENF morphology which indicate 
that nerve fibers undergo continual remodeling 
over time (Fig.  3). Accordingly, the arboriza-
tion and location of sensory endings in the 
mouse cornea showed substantial changes over 
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a 1-month period [133]. Capsaicin treatment 
reduced the total length of PGP+ fibers on aver-
age by 80%, and that of CGRP+ fibers was 
reduced by 55%. While IENF showed an intri-
cate morphology in control rats, the nerve end-
ings in the epidermis of treated animals had a 
straight thick morphology and were poorly 
ramified. Despite the reduction of the nerve 
supply to the epidermis, the keratinocyte pro-
liferation was not altered in capsaicin-treated 
rats. Interestingly, the quantitative analysis of 
IENF on capsaicin-treated rats revealed that 
peptidergic fibers were the predominant type 
of fibers in the epidermis as was also confirmed 
by a double-immunofluorescence staining for 
CGRP and beta III tubulin (Fig. 3). Thus, we 
hypothesized that the remaining peptidergic 
innervation is sufficient to maintain adequate 

epithelial renewal in noninjury conditions, but 
in conditions of high cell demand, denervated 
epithelia are not able to generate the number of 
cells required for epithelial expansion.

Until recently, all efforts to show a beneficial 
action of sensory nerves during skin wound 
repair have been limited to document the impact 
of denervation upon the time of wound closure 
[134–138]. Since the discovery of adult stem 
cells in different parts of the body, it became 
clear that the innervation is an essential part of 
the stem cell niche. Little is known about the 
exact interaction between neurons and progenitor 
cells. By using the neonatal capsaicin denerva-
tion, we explored whether sensory innervation 
was involved in the modulation of the epithelial 
progenitors that participate in reepithelialization 
of the hairy skin [128]. The hair follicle is an 

a

b

Fig. 2  Stereological quantification of cell number and 
fiber length. Reliable and unbiased estimates of volume, 
number, area, and length of biological objects are obtained 
by design-based stereology methods. (a) Sections and 
counting sites are determined by a systematic random 
sampling which assures a representative sampling through 

the analyzed area. (b) The estimation of the total number 
of cells is performed by counting the cells inside a virtual 
box or optical dissector. The fiber length is obtained by 
counting the intersections of the nerve fibers with a stereo-
logical probe called space balls. Both procedures require 
thick tissue sections (>20 mm)
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excellent model to study the signals and mecha-
nisms that may govern the neural modulation of 
stem cells. Based on the anatomical location of 
sensory fibers in the bulge region of the hair fol-
licle, we evaluated the possibility that 
nerve-derived signals may influence the activa-

tion or migration of epithelial progenitors 
(Fig.  4). During the first 47  h post-wound, the 
epidermal proliferation was reduced in the 
capsaicin-treated rats, while the proliferation in 
the hair follicles was the same as in control 
rats. To determine if the low number of 

a b

c d

e f

g h

Fig. 3  Effects of 
neonatal capsaicin 
treatment on skin 
innervation. (a) 
Glabrous skin sections 
were immunostained for 
protein gene product 
9.5. (b) Capsaicin 
treatment decreased the 
number of 
intraepidermal nerve 
fibers and fiber 
complexity. While in (c) 
control rats the most 
abundant type of nerve 
fibers was of non-
peptidergic type (green 
arrows: 
immunoreactivity for 
beta III tubulin), (d) the 
epidermis of treated rats 
showed almost 
exclusively peptidergic 
fibers (red and yellow 
arrows: 
immunoreactivity for 
CGRP). Despite the 
reduction of 
intraepidermal nerve 
fibers in capsaicin-
treated rats (F), the 
keratinocyte 
proliferation was similar 
in (e) control and (f) 
treated rats. (g) Sensory 
innervation in the 
epidermis of glabrous 
skin of control rats. (h) 
Summary of the changes 
induced by neonatal 
capsaicin treatment. 
Scale bar = 150 mm
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bromodeoxyuridine-positive cells (BrdU+) in the 
epidermis of treated rats resulted from a reduced 
mobilization of transit amplifying cells from the 

hair follicle, we performed pulse and chase 
experiments with halogenated thymidine analogs 
(iododeoxyuridine, IdU; chlorodeoxyuridine, 

a b

c d

e f

Fig. 4  Effects of capsaicin treatment on wound healing. 
After 47h after wounding, the epidermis of (a) control rats 
was thicker and showed more BrdU+ nuclei than (b) 
capsaicin-treated rats. At 61h after wounding, the epidermis 
of (c) control rats presented more IdU/CldU labeled nuclei 
than (d) treated rats, which suggest that denervation is 

related to less migration of stem cell progeny from the hair 
follicle. Noteworthy, at 61 h after wounding, we observed 
an increased area of epidermis expressing keratin 6 in (f) 
capsaicin-treated rats than in (e) controls. epi epidermis, 
der dermis, sg sebaceous gland, b bulge, we wound edge, 
hf hair follicle. Scale bar = 200 mm. Modified from [128]
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CldU). This procedure is based on the principle 
that cells in the hair follicle proliferate faster than 
the cells in the epidermis allowing to track the 
fate of the double-labeled cells in different skin 
compartments. Remarkably, the proportion of 
IdU+/CldU+ cells in the epidermis increased over 
time only in the control group. This finding sug-
gests that the deficiency of sensory nerves ham-
pers the traffic of cells from the follicle toward 
the epidermis. Although it has been shown that 
cells from the hair follicle are dispensable for 
reepithelialization, the migration of these cells 
accelerates the reestablishment of the epidermis 
[139, 140]. In capsaicin-treated animals, the 
efflux of hair follicle cells is diminished which 
correlates with an extended time for wound clo-
sure. Moreover, treated rats showed an extended 
recruitment of epithelial precursors as indicated 
by the broader area of epidermis expressing kera-
tin 6, a marker of epidermal activation. Our 
results revealed that epithelial precursors must 
migrate more distance to reach the border of the 
wound in denervated rats. Taken together, our 
findings may explain the delay in reepithelializa-
tion observed in several models of denervation. 
From a clinical perspective, it would be desirable 
to understand the mechanism and signals behind 
the activation of distinct regions of the epithelium 
to better contend with chronic wounds. In this 
regard, it is noteworthy that the stem cell niche of 
the bulge showed the presence of receptors for 
substance P and CGRP (Fig. 5).

�Conclusions
This chapter summarizes the evidence that 
sensory neurons of dorsal root ganglia are not 
restricted to transmit information toward the 
central nervous system. These neurons are 
thought to be crucial participants in the main-
tenance of tissue integrity and functionality. 
Nevertheless, we are just glimpsing the poten-
tial of neurosecretory function of the so-called 
sensory neurons for body health. Perhaps the 
notion that these neurons are merely transduc-
ers of noxious information has delayed 
advancement toward the understanding of 
efferent functions. Moreover, it is frequently 
assumed that peripheral release of 

neuropeptides is restricted to a noxious condi-
tion just because at spinal cord level, neuro-
peptides serves as cotransmitters of painful 
transmission. This view, however, responds in 
great extent to technical limitations for record-
ing peripheral activity. Therefore, this field 
awaits for future improvement in procedures 
to investigate peripheral release in more phys-
iological terms. This issue is extremely impor-
tant because the available preparations only 
permit to study local factors that regulate 
noceffector activity and overlook systemic 
factors which may be more important during 
normal conditions. Although tissue homeosta-
sis does not rely entirely on noceffectors, they 
seem to be an essential component because 
different cell populations express receptors 
and degradatory enzymes for neuropeptides. 
Accordingly, alterations in the communica-
tion between noceffectors and peripheral tar-
gets could lead to a variety of functional 
modifications in the innervated target. 
Although, at first glance, it could be consid-
ered that neuropeptide effects on different 
organs are non-related with each other, we 
think that such effects must be the manifesta-
tion whereby the brain interacts with the body 
regulating central issues for its homeostasis 
both in health and disease.

Regarding wound healing, dorsal root gan-
glion neurons are involved in processes such 
as reepithelialization, angiogenesis, and 
inflammation. Here we described a mecha-
nism based on neural regulation of epithelial 
SC physiology. Peptidergic neurons seem to 
promote the mobilization of stem cell progeny 
from the hair follicle and to modulate the acti-
vation of epidermal progenitors (Fig. 6). The 
myriad of nerve-derived signals is not limited 
to neuropeptides. Both sympathetic and sen-
sory neurons could act in concert to regulate 
diverse aspects of adult stem cells [141, 142]. 
Next research efforts should reveal the molec-
ular pathways that the nervous system modu-
late to understand how neurons regulate the 
activation and differentiation of SC in differ-
ent niches of the body and its possible impli-
cations for tumor formation.

J. A. Martínez-Greene and E. Martínez-Martínez



137

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

Fig. 5  Neuropeptide receptors in the bulge region of the 
hair follicles. (a) Label-retaining cells were found in the 
bulge region of the rat hair follicles after 8 weeks of BrdU 
pulses in a region displaying expression of CD34. (b) By 

confocal microscopy, we found that (b) substance P 
receptor (NK-1) and (c, d) CGRP receptor (CLR and 
RAMP-1) were expressed by stem cells from the hair 
follicle. Scale bar = 20 mm. Modified from [128]
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