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1	 �Introduction

The annual costs of wound care in Australia ($2.6 
billion AUD), the UK (£2.3–3.1 billion) and the 
USA ($50 billion USD) are staggering. The cost of 
chronic wound infections is often due to lengthy 
hospitalisations because of infections caused by 
multidrug-resistant (MDR) bacterial pathogens [1]. 
There is an urgent unmet medical need for new anti-
biotics for wound and burn infections caused by 
MDR Gram-negative ‘superbugs’ Pseudomonas 

aeruginosa, Acinetobacter baumannii and Klebsiella 
pneumoniae. Resistance to the last-line therapy 
polymyxins (polymyxin B and colistin) has been 
increasingly reported, which virtually means no 
antibiotic will be available for treatment of wound 
and burn infections. Considering potential systemic 
toxicity and suboptimal pharmacokinetic/pharma-
codynamic attainment, the topical use of antibiotics 
often remains a superior approach for wound infec-
tions than parenteral administration.

The present chapter covers the development of 
novel broad-spectrum lipopeptides that are very 
active against not only polymyxin-resistant Gram-
negative pathogens but also MDR Gram-positive 
Staphylococcus aureus and Enterococcus faecium 
that also commonly cause serious wound infec-
tions. Furthermore, we have developed a chitosan-
based colistin self-healable hydrogel that provides 
high localised release of colistin for the treatment 
of burn wound infections. The development of 
these novel topical lipopeptide agents could slash 
the billion-dollar annual cost of wound treatment 
and result in improved healthcare on a global scale.

2	 �MDR Bacterial Wound 
Infections

Wound and burn infections are a major medical 
challenge worldwide and represent a considerable 
healthcare burden [2–4]. They are a common risk 
for patients with chronic non-healing wounds which 
cause high morbidity and mortality. As a poignant 
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example, ~75% of all deaths following major burn 
injuries are related to bacterial infections [3, 4]. 
Wound and burn infections caused by the aforemen-
tioned Gram-negative ‘superbugs’ are immensely 
concerning [5]. Burns are particularly susceptible to 
infections due to the disruption of the epidermal 
barrier, the systemic apoptotic response and immu-
nosuppression that disrupts self-defence mecha-
nisms to fight infection [3, 6]. Even though systemic 
antibiotic treatment is usually the most common 
therapeutic option, the significant difficulties are 
adverse effects and the risk of an insufficient tissue 
penetration due to impaired blood circulation. The 
use of topical chemotherapy has been fundamental 
and helped to improve the survival of patients with 
major burns and to minimise the incidence of life-
threatening burn wound sepsis [7]. The topical use 
of antibiotics plays a significant role in the manage-
ment of serious wound infections caused by Gram-
negative bacteria P. aeruginosa, A. baumannii and 
K. pneumoniae and Gram-positive S. aureus and E. 
faecium [3, 4]. Very worryingly, these bacteria are 
increasingly resistant to almost all current topical 
antibiotics [8, 9]. These bacterial ‘superbugs’ have 
been identified by the Infectious Diseases Society 
of America (IDSA) and Centre for Disease Control 
and Prevention (CDC) as the top-priority dangerous 
‘superbugs’ that require urgent attention for discov-
ery of novel antibiotics [10–13].

Polymyxins are an important last-line therapy 
against Gram-negative ‘superbugs’.

Polymyxins consist of a linear tripeptide frag-
ment having an N-terminal fatty acyl tail attached to 
a cyclic heptapeptide (Fig. 24.1). They are polyca-
tions at pH  7.4 owing to the five diaminobutyric 
acid (Dab) residues. Polymyxins were discovered 
more than 60 years ago. Because the early experi-
ence in the 1960s with parenteral polymyxins led to 
some cases of nephrotoxicity and neurotoxicity, 
their clinical use waned [14–17]. Since the mid-
1990s, there has been a greatly renewed interest in 
polymyxins because of the increasing prevalence of 
MDR P. aeruginosa, A. baumannii and K. pneu-
moniae [14–17]. Polymyxin B and colistin (poly-
myxin E) are the two clinically available polymyxins 
that are most commonly administered parenterally 
in patients as a last-line therapy for serious infec-
tions, when all other available antibiotics are inac-
tive. Our in vitro studies have shown that resistance 

can rapidly emerge in P. aeruginosa, A. baumannii 
and K. pneumoniae [18–20], and polymyxin resis-
tance in hospitalised patients has been increasingly 
reported [10, 21, 22]. Even more worrying is the 
recent reports in the Lancet Infect Dis of the emer-
gence of plasmid-mediated colistin resistance [23, 
24], which implies resistance to these important 
last-line antibiotics can now rapidly spread. 
Resistance to polymyxins implies a total lack of 
antibiotics for treatment of life-threatening Gram-
negative infections.

The majority of the modern pharmacological 
data of polymyxins are obtained by our group 
[18, 20, 25–43]. We were the first to character-
ise the modern pharmacokinetics of colistin 
and polymyxin B in patients [25, 30, 39, 40] 
and demonstrate that polymyxins exhibit rapid, 
concentration-dependent killing of susceptible 
strains of P. aeruginosa, A. baumannii and K. 
pneumoniae [20, 34, 41]. Our studies in both 
in vitro and animal infection models have, for the 
first time, elucidated that fAUC/MIC (i.e. ratio of 
the area under the free plasma concentration—time 
curve to minimal inhibitory concentration [MIC]) 
is the pharmacokinetic/pharmacodynamic (PK/
PD) index best correlating with colistin activity 
[44]. Our findings are led to the first scientifically 
based dosage regimens in patients. Our recent data 
suggest that intravenous polymyxins are not ideal 
for treatment of lung infections and wound infec-
tions due to suboptimal PK/PD exposure at infec-
tion sites. We first reported colistin heteroresistance 
(i.e. colistin-resistant subpopulations in an isolate 
susceptible based upon MIC) in the Gram-negative 
pathogens [20, 31, 36] and the potential for resistant 
subpopulations to rapidly amplify upon exposure to 
colistin in an in  vitro PK/PD model that mimics 
clinical dosing regimens in humans [18–20]. The 
latter highlights the urgency to develop new antibi-
otics active against isolates which are resistant to 
polymyxins and all other current antibiotics.

3	 �Mechanisms of Polymyxin 
Activity and Resistance

The initial cellular target of polymyxins is the 
lipid A component of lipopolysaccharide (LPS) 
in the outer membrane (OM). The purported 
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primary mechanism of polymyxin activity 
involves an initial electrostatic interaction of the 
cationic Dab residues of the polymyxin molecule 
with the negatively charged phosphate groups of 
lipid A [45]. This initial polar interaction is fol-
lowed by insertion of the fatty acyl tail of the 
polymyxin into the lipid A fatty acyl layer in the 
outer membrane. Many of the Gram-negative 
bacterial mechanisms of resistance to polymyx-
ins are based on modifications to lipid A which 
reduce or abolish this initial electrostatic interac-
tion. Modification of the phosphates of lipid A 
with positively charged moieties such as 4-amino-
4-deoxy-L-arabinose or phosphoethanolamine 
reduces the net negative charge of lipid A, thereby 
increasing resistance to polymyxins [46–53].

4	 �Discovery of New Polymyxin-
Like Lipopeptides Targeting 
MDR ‘Superbugs’

We were invited by the Journal of Medicinal 
Chemistry to review the current state of develop-
ment of polymyxin analogues [54]. Previous 
medicinal chemistry strategies for improving the 

antibacterial activity of polymyxins have been 
empirical and limited to modifications of the Dab 
residues, the heptapeptide ring and the length of 
the N-terminal fatty acyl chain (Fig. 1) [55–60]. 
Notably, numerous attempts have been made to 
modify the N-terminus with polar and lipophilic 
groups but with little success [54]. One such nota-
ble N-terminal analogue (CB-182804) came from 
Cubist; unfortunately this analogue failed in a 
Phase 1 clinical trial. Importantly, CB-182804 
was not active against any polymyxin-resistant 
isolates [61]. None of the previous discovery pro-
grammes were specifically driven by an SAR 
approach nor was polymyxin resistance targeted. 
These major shortcomings led to the failure of the 
novel polymyxin discovery programmes by 
Cubist, AstraZeneca and Pfizer. To the best of our 
knowledge, we are the first to apply an SAR-based 
mechanistic model (Fig. 2) to discover novel lipo-
peptides against polymyxin-resistant Gram-
negative ‘superbugs’ [62]. The SAR model has 
allowed us to identify key structural properties of 
polymyxins that confer antibacterial activity. In 
our model, the polymyxin-lipid A complex is sta-
bilised by a combination of polar and hydrophobic 
interactions (Fig. 2). The positive charges on Dab1 
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and Dab5 of polymyxin B interact with the nega-
tively charged 4′-phosphate group of lipid A, and 
Dab8 and Dab9 similarly interact with the 1-phos-
phate of lipid A. The polymyxin-lipid A complex 
is further stabilised by hydrophobic contacts 
between the N-terminal fatty acyl chain and posi-
tion 6/7 D-Phe-L-Leu segment of the polymyxin 
molecule, with the fatty acyl chains of lipid 
A.  Evidently, the SAR model indicates that the 
polymyxin-lipid A interaction in both polymyxin-
susceptible and polymyxin-resistant strains can 
be significantly accentuated through the introduc-
tion of additional hydrophobic contacts. To cir-
cumvent bacterial resistance mechanisms due to 
modifications of lipid A, in one series of our novel 
FADDI lipopeptides, hydrophobic modifications 
were introduced at position 6 or 7 to enhance pen-
etration into the lipid A fatty acyl layer as sug-
gested by the SAR model (Fig.  2). The SAR 
model was validated when our first generation 
lipopeptides (e.g. FADDI-002) (Table  1) with 
L-octylglycine substituted at position 7 displayed 
potent antimicrobial activity against polymyxin-
resistant Gram-negative clinical isolates [62]. 
Subsequently, expansion of our SAR-based 
design strategy to include compounds incorporat-
ing lipidic groups at position 6 and the N-terminus 

also generated potent lipopeptides active against 
polymyxin-resistant Gram-negative ‘superbugs’ 
(Table 1). Notably, FADDI-019 and FADDI-020 
which have the same or very similar MICs 
(1–4 mg/L) as colistin against colistin-susceptible 
P. aeruginosa isolates displayed significant activ-
ity (MICs 1–4 mg/L) against colistin-resistant P. 
aeruginosa (colistin MICs 32 or >128  mg/L). 
In static time-killing studies, FADDI-019 (MIC 
1  mg/L) at 4  ×  MIC achieved ~6 log10 kill 
against a polymyxin-resistant MDR clinical P. 
aeruginosa isolate (colistin MIC >128  mg/L) 
with no viable cells detected even at 2  h; no 
killing was observed with colistin even at 
32  mg/L.  Against polymyxin-susceptible P. 
aeruginosa ATCC 27853 (colistin MIC 
1 mg/L), FADDI-019 (MIC 1 mg/L) had com-
parable bacterial time-kill to colistin. For most 
of our lipopeptides, the ratios of MBCs (mini-
mal bactericidal concentrations) to MICs were 
≤4 indicating a low potential for development 
of resistance. Isothermal titration calorimetry 
studies confirmed that the hydrophobic contri-
bution from the N-terminal fatty acyl chain is 
the predominant driving force for polymyxin-
lipid A complexation [63, 64].

Serendipitously, a series of our lipopeptides 
have unexpected activity against MDR Gram-
positive S. aureus and E. faecium which are intrin-
sically resistant to polymyxins (colistin and 
polymyxin B MIC >128  mg/L). Transcriptome 
analysis using RNA-seq revealed that virulence 
determinants controlled by SaeRS and the expres-
sion of enterotoxins yent2, sei, sem and seo were 
all significantly downregulated by FADDI-019 
[65]. Clearly, our SAR-based mechanistic model 

FADDI-002

Novel D-OctylGly
modification at P6
overcomes resistance

Kdo2-LipidA

Fig. 2  SAR model of novel lipopeptide FADDI-002  in 
complex with E. coli Kdo2-lipid A

Table 1  Structures of representative lipopeptides

Lipopeptide Structure

FADDI-002 Octanoyl-Dab-Thr-Dab-Dab*-Dab-D-
Phe-OctGly-Dab-Dab-Thr*

FADDI-003 Biphenyl-Dab-Thr-Dab-Dab*-Dab-D-
Phe-OctGly-Dab-Dab-Thr*

FADDI-019 Octanoyl-Dab-Thr-Dab-Dab*-Dab-D-
OctGly-Leu-Dab-Dab-Thr*

FADDI-043 Dansylgly-OctGly-Dab-Thr-Dab-
Dab*-Dab-D-Phe-Leu-Dab-Dab-Thr*

FADDI-052 Biphenyl-Dab-Thr-Dab-Dab*-Dab-D-
Cys(6F3-Hex)-Leu-Dab-Dab-Thr*

*Cyclisation point of the peptide
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has led to unique opportunities to optimise the 
polymyxin structure to overcome both adaptive 
and intrinsic resistance to current polymyxins. 
There was no haemolysis in human red blood 
cells treated with the tested FADDI lipopeptides 
or polymyxins at 128 mg/L (the highest concen-
tration examined). After administration of 
FADDI-002, FADDI-003, FADDI-019 or FADDI-
020 to rats (intravenous, 0.75  mg/kg) and mice 
(subcutaneous, 40  mg/kg), no adverse effects 
were observed.

Preliminary in  vitro studies to examine the 
impact of the lipopeptides on human keratinocytes 
and murine fibroblast cells, polymyxin B, FADDI-
019 and FADDI-073 at 1.5, 5, 15 and 50 mg/L had 
little effect over 48 h on the morphology of fibro-
blasts (3 T3) and keratinocytes (HaCaT). FADDI-
019, FADDI-073 and polymyxin B stimulated 
metabolic activity above mock-treated cultures in 
3T3 cells in a dose-dependent manner at 24 and 
48 h. However, similar responses were not observed 
in HaCaT cells; neither FADDI-019 nor FADDI-
073 affected the cellular metabolic activity at any of 
the four concentrations at 24 or 48 h, while only 1.5 
and 5 mg/L polymyxin B slightly decreased the cel-
lular metabolic activity at both time points. It is note-
worthy that for many years a topical formulation 
containing polymyxin B has been used for treating 
skin infections, with negligible toxicity [66]. Our 
results suggest that our lipopeptides have at least 
similar tolerability to colistin and polymyxin B.

5	 �Synthesis of a Chitosan-
Colistin Hydrogel 
and Testing in a Mouse Burn 
Infection Model

We have synthesised a chitosan-colistin hydrogel 
and assessed its efficacy in a mouse burn infection 
model (Fig. 3) [67]. The chitosan-colistin hydro-
gel is an inexpensive, self-healable and highly bio-
compatible material which provides up to 95% 
colistin release within 24 h and showed excellent 
in vitro activity against P. aeruginosa in a disc dif-
fusion assay. The physical properties of the hydro-
gel were unaffected by colistin; this allowed us to 
load a wide range of colistin concentrations into 
the hydrogel matrix without impacting its size. 
Serendipitously, the hydrogel formation process 
was accelerated in the presence of colistin. 
Excitingly, the chitosan-colistin hydrogel dressing 
(containing 0.3  mg colistin) displayed excellent 
in vivo activity, producing a ~4 log reduction in the 
bacterial load in a burn wound (1 cm2) infection, 
established in mice by inoculating 100  μL 
108 CFU/mL of P. aeruginosa ATCC 27853. We 
are currently exploring lipopeptide-hydrogel 
dressing systems using the superior FADDI lipo-
peptides, for which formulation characteristics 
(e.g. lipopeptide loading and mechanical proper-
ties) will be investigated and optimised.

Silk proteins serve as excellent scaffolds for 
wound healing and in tissue engineering [68].
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Steinstraesser et al. [68] loaded ST-silk protein 
membranes (thickness, 100  μm; pore size, 
<100  nm) with colistin (0.027–270  mg/mL) and 
examined their efficacy against P. aeruginosa in 
animal wound infection models. The ST-silk mem-
branes loaded with 270  mg/mL colistin demon-
strated a > 3 log reduction in colony-forming units 
of P. aeruginosa ATCC 27853 after 4 days (~25-
fold decrease from the carrier control). Similarly, in 
a porcine wound infection model, the ST-silk mem-
branes loaded with 270  mg/mL colistin demon-
strated an almost complete clearance of the 
infection after the entire follow-up of 6 days.

6	 �Perspective

The World Health Organization has identified 
antimicrobial resistance as one of the three great-
est threats to human health. The last-line therapy 
polymyxins are losing their activity; however, no 
new antibiotic will be available for many years to 
come. The prevalence of wound infections caused 
by the bacterial ‘superbugs’ highlights the urgency 
of discovering novel antibiotics for topical treat-
ment of serious wound infections. As the Infectious 
Diseases Society of America highlighted, ‘as anti-
biotic discovery stagnates, a public health crisis 
brews’, the recent emergence of plasmid-borne 
resistance to the last-line polymyxins highlights 
the urgency to develop novel antibiotics to combat 
these very problematic pathogens. This chapter 
details the development of novel polymyxin lipo-
peptides and hydrogel formulations as new antibi-
otics for topical use in wound treatment against 
problematic ‘superbugs’ that are resistant to all 
current antibiotics. These next-generation poly-
myxins hold significant potential for the treatment 
of chronic wound infections caused by problem-
atic Gram-negative ‘superbugs’.
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