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1	 �Introduction

Hernias are among the most common conditions 
of surgical care with more than 300,000 surger-
ies occurring annually in the USA alone [1–3]. 
The volume and complexity of hernia surgery 
continues to remain a challenge because of 
increasing life expectancy, a proportionally 
older surgical population, and a growing popu-
lation of morbidly obese and diabetic patients 
with other comorbidities, which influence 
native strength, and perfusion of tissues [4, 5]. 
Hernias necessitating emergent surgery are on 
the rise [6]. Five to 27% of people will 
develop a hernia over the course of their life-
time [7, 8]. Although hernia repairs are per-
formed very frequently, they remain vulnerable 
to numerous complications such as infection 
and recurrence.

This socioeconomic burden would greatly 
benefit from a reduction in these complications; 
by reducing the rate of recurrence alone, the 

healthcare system would save $32 million for 
every 1% reduction in repeat operations [1]. 
Many of these issues are due to the lack of ideal 
materials used as mesh in the site of herniation. 
Reinforcing a repair mesh is the standard of 
treating incisional hernias given the high likeli-
hood of recurrence with suture repair alone; 
however the material may migrate from the her-
nia site, become infected, or erode into adjacent 
structures [9–13]. Chronic pain due to compli-
cations related to mesh is an issue and is gener-
ally relieved by surgery to remove it [14–16]. 
To try and overcome these shortcomings and 
combat the problems plaguing the industry of 
synthetic mesh, manufacturers and 
researches have created acellular biological 
prosthetics to be used in hernia operations [4, 
17, 18]. Although expensive, bioprosthetic 
meshes—constructed from human, bovine, or 
porcine tissue—have yielded promising results 
so far, particularly in contaminated fields and 
have therefore received much clinical and com-
mercial attention [4, 19, 20].

2	 �The Ideal Mesh

The introduction of synthetic polypropylene 
mesh in hernia repair revolutionized abdominal 
wall repair, winning Natta and Ziegler the Nobel 
Prize in 1954 [7, 21]. Yet synthetic mesh is far 
from a perfect solution. To introduce mesh is to 
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introduce foreign bodies that can impact the 
human body. They may lead to inflammation, 
infection, fibrosis, calcification, seromas, or 
adhesions to vital organs such as the bowel [22–
25]. Meshes cause abnormal physiologic wound 
healing and scar formation, altering the ratio of 
type I to type III collagen, which decrease 
mechanical stability regardless of the mesh used 
[26–28]. In order to minimize these complica-
tions from an immune response, recognizing syn-
thetic mesh as a foreign body, a new question 
emerged; would it be possible to transplant 
already existing architecture into which vessels 
can regrow and fibroblasts can remodel? To 
address the problems of synthetic mesh, research-
ers sought to find acellular matrices for 
reconstruction.

An ideal mesh is characterized by its strength, 
flexibility, and host tissue compatibility; no 
synthetic or biologic mesh has yet to fulfill all 
these criteria, and currently there is no true gold 
standard [21, 29, 30]. The metrics of a biologi-
cal prosthetic mesh’s success is revasculariza-
tion and cell repopulation in the tissue [31–33]. 
An ideal mesh must cause a significant enough 
of an inflammatory response to signal fibro-
blasts to deposit collagen, but tame enough to 
limit excessive scarring, graft encapsulation, 
and degradation [4]. Angiogenesis must occur 
to allow for tissue remodeling; otherwise the 
graft will be replaced by scar tissue [4]. 
Vascularization and cell repopulation are signs 
that demonstrate a mesh will incorporate well, 
hereby decreasing the odds of recurrence and 
infection [32]. Through the body’s natural heal-
ing processes, biological meshes are exposed to 
proteinases and collagenases that degrade them 
over time, thus weakening the repair. Cellular 
infiltration and angiogenesis of decellularized 
tissue constructs is not only dictated by the tis-
sue source but inherently the microarchitectural 
cues innate to that tissue. Thus, much work in 
the realm of tissue engineering and regenerative 
medicine has been performed to understand the 
structure and biochemistry of acellular 
scaffolds.

3	 �Tissue Engineering 
and Hernia Repair

The fields of regenerative medicine and tissue 
engineering hold the promise of revolutionizing 
the practice of medicine and surgery. Many 
patients in need of tissue and replacement organs 
may stand to benefit from the advancement being 
made in the field of tissue engineering. By com-
bining the principles of engineering and life sci-
ences, tissue engineers seek to develop biological 
substitutes capable of not only providing a scaf-
fold for innate cellular infiltration but in some 
ways facilitating drug delivery and cellular deliv-
ery in hopes of promoting enhanced healing by 
the patient’s own body. Specifically, in the realm 
of hernia repair, many investigators have sought 
new tissues or tissue constructs to be adapted to 
the repair of hernias in hopes of overcoming the 
adverse effects of synthetic material foreign body 
reactions that lead to the complications seen fol-
lowing hernia repair. Of those, the use of decel-
lularization technology has emerged to generate 
acellular tissue constructs capable of maintaining 
adequate mechanical strength while simultane-
ously providing a biological scaffold that would 
allow the body to remodel and replace with its 
own living tissue.

4	 �Bioprosthetic Mesh

In response to growing evidence of the adverse 
outcome associated with synthetic mesh repair, 
physicians and researchers alike sought to inves-
tigate alternative approaches to hernia repair with 
a focus on the prosthetic used. Bioprosthetic 
meshes, generated from source organs such as 
the dermis or small intestine, have emerged as 
commercially available products for use in hernia 
repair. There are several commercially available 
bioprosthetic meshes with new products emerg-
ing annually. Currently, they are indicated for 
ventral hernias in contaminated settings but can 
be used in a variety of scenarios and have been 
advocated for as an alternative to the more 
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commonly used synthetic meshes [4, 34]. 
Unfortunately, the lack of high-quality scientifi-
cally rigorous studies inhibits our ability to deter-
mine a gold standard for bioprosthetic meshes 
[29]. Further, with the lack of American Society 
for Testing and Materials (ASTM) International 
standard for biological tissues, considerable het-
erogeneity is seen from product to product of the 
same tissue and even within the same product 
line [35]. Commercially available biological 
products include homografts and xenografts from 
bovine and porcine sources (Table 1). In addition 
to different species, brands may be classified by 
organ of origin.

5	 �Dermis

There have been major advances in the field of 
bioprosthetics for ventral hernia repair using 
allogenic and xenogeneic materials. AlloDerm™ 
(LifeCell Corp, Branchburg, NJ) has been one of 
the most utilized and most studied homographs 
available today. Made from human cadaveric 
acellular dermal matrix (hADM), AlloDerm has 
been used as a tissue-grafting substitute for 
decades, although it has not been used for 

abdominal wall reconstruction and has decreased 
recently [36]. It has yielded promising results, 
helping to spur the movement for biomesh [36]. 
Some authors, however, have described laxity of 
the material and the propensity to stretch over 
time, leading to the development of pseudo-
recurrences [29, 36]. The processing of biopros-
thetics involves decellularization via a variety of 
methods to influence the native biochemical and 
biomolecular structure of the collagen scaffold 
[37]. The processing of hADM is one example of 
how processing of a tissue may change its archi-
tecture [38]. Compared to native hADM, the pro-
cessed tissue underwent noticeable changes to 
the ultrastructure (Fig.  1) [38]. The loss of the 
collagen integrity after processing may lead to an 
increased inflammatory reaction and increased 
fibrous capsule [38]. While the mechanical prop-
erties may not be ideally suitable for incisional 
hernia repair where strong mechanical forces are 
applied to the prosthetic, hADM has been used 
extensively in breast reconstruction and tissue 
expansion prior to definitive reconstruction 
because of its robust ability to neovascularize 
[36, 39–41].

Porcine dermal tissue has also been a 
common biological mesh used in abdominal 

Table 1  Commercially available bioprosthetics

Material Product Manufacturer Properties
Human dermis AlloDerm LifeCell Non-cross-linked, aseptic
Human dermis FlexHD Ethicon Non-cross-linked, aseptic
Human dermis AlloMax Bard Davol Proprietary process
Porcine dermis Permacol Covidien Chemically cross-linked Terminally 

sterilized
Porcine dermis Strattice LifeCell Non-cross-linked

Terminally sterilized
Porcine dermis XenMatrix Bard Davol Non-cross-linked, electron beam sterilized
Porcine intestine Surgisis Cook Modified submucosal matrix, 

non-cross-linked
Bovine pericardium Veritas Synovis Multidirection dense connective tissue
Bovine pericardium Tutopatch Tutogen Non-cross-linked bovine pericardium
Bovine dermis SurgiMend TEI 

Biosciences
Fetal dermis, non-cross-linked

Porcine liver Miromesh Miromatrix Non-cross-linked
Porcine urinary Bladder 
matrix

Gentrix Surgical 
Matrix

ACell Porcine derived extracellular matrix

Adapted from (http://plasticsurgerykey.com/biologic-mesh-choices-for-surgical-repair)
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wall repair, Strattice™ (LifeCell Corporation, 
Bridgewater, NJ, USA) [42]. This 
non-cross-linked porcine ADM has been shown 
to have minimal adhesion formation and bowel 
erosions, complications associated with syn-
thetic mesh repair, but is predisposed to recur-
rence, particularly when used as a bridge [4]. 
Butler et  al. [43] reported non-cross-linked 
PADM to have a quicker infiltration with host 
cells and vessels in comparison to cross-linked 
PADM, which were encapsulated. Also, non-
cross-linked PADMs had weaker intraperitoneal 
adhesions at repair sites with increasing 
mechanical strength at an earlier time at the 
bioprosthesis-musculofascial junction. More 

recently the use of non-cross-linked porcine 
ADM has increased as studies continue to dem-
onstrate its ability to resist infection and with-
stand mechanical forces of the abdominal wall 
[44, 45]. The rates of recurrence are similar to 
those with synthetic mesh repair when used in 
conjunction with component separation. The 
use of acellular dermal matrices in hernia repair 
and abdominal wall reconstruction was associ-
ated with 11.5–14.6% hernia recurrence rates at 
3-–5-years follow-up [46].

Permacol™ (supplemental cross-linked; 
Covidien, New Haven, CT, USA) is a biopros-
thetic made from porcine dermal collagen with 
post-processing cross-linking of proteins. The 

Fig. 1  Scanning electron micrograph of out-of-package morphology of hADMs (100×). Native hADM, electron beam-
irradiated hADM (e-HADM), γ-irradiated hADM (g-HADM), ethanol-stored hADM (EtOH-hADM) [38]
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cross-linking is performed in order to add 
strength to the material and reduce its inflam-
matory response [47]. Traditionally, porcine 
acellular dermal matrices (PADMs) were noted 
to induce greater immune response than human 
acellular dermal matrix (hADM) and thus have 
been processed to chemically cross-link the 
collagen fibers [43]. Collagen cross-linking 
has been noted to have a key role on tissue 
response to biologic meshes, which alters the 
extracellular matrix structure and possibly 
inhibits cellular infiltration, revascularization, 
and matrix remodeling potential [48]. The 
structure, similar in structure to human dermis, 
can support fibroblast infiltration and neovas-
cularization [49]. However, its strengthened 
cross-linked architecture may actually hinder 
the material’s success in remodeling and neo-
vascularization [29, 50]. Integration of 
Permacol™ into host tissue and angiogenesis, 
though delayed, help to facilitate antibiotic dif-
fusion and help to resist infections [51]. Some 
studies noted the rate of complications in 
cross-linked porcine dermal collagen mesh was 
double than that of their non-cross-linked por-
cine dermal counterparts [43].

6	 �Small Intestinal Submucosa

Small intestinal submucosa (SIS) is another tis-
sue for decellularized matrices used in abdomi-
nal wall reconstruction. Originally investigated 
as a bioprosthetic for use in vascular repair, SIS 
emerged as a potential prosthetic for use in her-
nia repair [52, 53]. Today, the most commonly 
placed SIS mesh in abdominal wall repair is con-
structed from porcine SIS, Surgisis™ (Cook 
Surgical, Bloomington, IN). It notably has a 
lower recurrence rate than AlloDerm and 
Permacol in a comparative study (8.0% rather 
than 20.8% and 10.9%, respectively) [54]. Some 
authors note that Surgisis starts strong at first, 
but loses strength with remodeling [26, 55]. The 
small intestine is a more vascular organ than the 
dermis, and neovascularization could play a role. 
Studies investigating its use in laparoscopic 

hernia repair were promising, and more recently 
its use in the contaminated field has been shown 
to be safe [56, 57].

7	 �Bovine Pericardium

Bovine pericardium consists of collagenous con-
nective tissue with three-dimensional intertwined 
fibers. Initial studies showed that the bovine peri-
cardium might not have stood up to the test in 
hernia repair with either early resorption or poor 
incorporation in animal models [58]. Tutomesh® 
(Tutogen Medical GmbH Germany) has been 
praised for retaining multidirectional strength 
and keeping the elasticity of the original tissue, 
yielding good results [29, 59]. The product has 
less elastin relative to dermal products, resulting 
in a higher ratio of mature collagen to elastin and 
reducing pseudo-recurrence [60]. When com-
pared to fascia lata, it was found to be superior in 
burst strength and adhesion formation [61]. More 
recently, attention has been paid to its potential 
use as a prosthetic in contaminated hernia repair. 
It has been demonstrated to be safe and effective 
in repair in the contaminated field and particu-
larly in the setting of bowel resection [62].

8	 �Liver

Biologic mesh has been an available alternative 
to permanent synthetic mesh for over 20 years. 
Various biologic meshes, specifically porcine tis-
sue prostheses, have been evaluated. More 
recently, porcine liver has been decellularized for 
use in both transplantation science and in decel-
lularized implant tissue engineering (Fig.  2) 
[63–65]. Petro et  al. [66] have demonstrated 
application of porcine liver prosthesis for hernia 
repair. They utilized a novel prosthetic, 
Miromesh, a biologic mesh derived from porcine 
liver. They were able to demonstrate the efficacy 
of Miromesh in comparison to Strattice in regard 
to cellular infiltration, acute inflammation, 
chronic inflammation, granulation tissue, foreign 
body reaction, and fibrous capsule formation 
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[66]. The advantage in using Miromesh com-
pared to Strattice and other dermal prostheses is 
its proprietary perfusion decellularization with 
intact portal triads that provide optimal collagen 
scaffold for cellular infiltration. The study con-
ducted revealed that Miromesh had greater cel-
lular infiltration with comparable clearance of 

bacteria. However, there are some weaknesses 
associated with the use of Miromesh, which 
include heterogeneity, large porosity, and lower 
density matrix, which could negatively impact 
the longtime durability and mechanical ability of 
the inserted mesh. Further studies are needed to 
investigate the use of porcine liver prostheses.

Native

Native

Decellularizeda b

c d

e f

Decellularized

Native Decellularized

Fig. 2  Native and decellularized liver. Representative 
H&E staining of the ultrastructure of native liver (a) and 
decellularized liver matrix (b). Scale bars = 100 μm. DAPI 
staining demonstrated a lack of nuclear components 

suggestive of complete decellularization (c, d). Sirius red 
staining of different types of collagen and proteoglycan 
shows retention of important ECM substrates (e, f). Scale 
bars = 200 μm [63]
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9	 �Use in the Contaminated Field

Since the introduction of biologic mesh mate-
rial, it has been viewed as a promising alterna-
tive to synthetic mesh by providing cellular 
infiltration, neovascularization, and potentially 
regeneration into native tissue [67, 68]. These 
specific properties of biologic material may lead 
to superior outcomes over synthetic material in 
the setting of contamination [67]. In addition, 
biologics have been used with some success to 
repair complex abdominal wall defects in clean-
contaminated and infected fields when synthetic 
mesh is contraindicated. Management of con-
taminated ventral hernia repairs has been evalu-
ated over the years; however, there is still no 
consensus about the most optimal and durable 
repair. Some authors have argued for a multi-
stage reconstructive approach, which includes 
delayed definitive reconstruction 6–12  months 
later with component separation when inflam-
mation and dense adhesions have resolved [69]. 
Rosen et al. [67], in a retrospective study, were 
able to demonstrate that biologic mesh rein-
forcement can be safely performed in the repair 
of ventral hernias in contaminated fields in a 
single-stage approach. Despite a high rate of 
wound morbidity in the study, this did not lead to 
complete mesh excision nor did it include mesh 
infections. The study evaluated patients under-
going single-staged ventral hernia repairs in a 
contaminated field using biologic mesh over a 
5-year period. The outcomes included postoper-
ative wound complications in 47.7% and hernia 
recurrence in 31.3% of the patient population. 
The high rate of wound morbidity can be 
accounted for based on the ASA score, recent 
history of smoking, diabetes mellitus, number of 
previous abdominal surgeries, number of previ-
ous hernia repairs, hernia defect size, bridged 
defects, and long operative times [67]. Short-
term efficacy can be noted with the probability 
of recurrence at 1  year at 8%. When taken to 
24  months, patients who underwent a hernia 
repair in the contaminated setting had successful 
repair as a single-stage procedure using porcine 

ADM [70]. Few randomized controlled compar-
ative studies have compared complication rates 
on all biomeshes on the market, and currently 
there is no gold standard [71]. More research is 
needed to find the most cost-effective mesh with 
the fewest instances of recurrence. As the source 
tissue for decellularization continues to expand, 
we must continue to broaden our view of what is 
considered a possible tissue. Many organs 
because of their inherent mechanical strength 
may not initially be thought of as candidate for 
hernia repair. Many of the tissues used are con-
nective in nature, but because of this property 
may not be optimized for the biologic response 
required for long-term repair. An alternative 
approach, focusing on the potential for biologic 
optimization and incorporation, may provide 
answers as to the expansion of potential sources 
such as the lung.

10	 �Porcine Acellular Lung 
Matrix

The generation of decellularized lung tissue 
began with an effort to address the growing need 
for tissue-engineered approaches for whole lung 
regeneration [72]. Of the organs procured for 
transplantation, the lung is the most sensitive to 
ischemia and the most damaged as a result of the 
retrieval and preservation process [73]. While 
transplantation wait list times continue to go 
down, the need for organs has not and the need is 
as great as ever. One approach to this grave prob-
lem is the regeneration of whole lung tissue. 
While other organs have undergone decellular-
ization processes in order to make them suitable 
for implantation, the lung, with a complex and 
multifunctional system, had not been investigated 
for this purpose in humans. In his seminal work, 
Ott et al. [74] described and perfected the process 
of lung decellularization and recellularization 
with autologous cells and implantation (Fig. 3). 
This work paved the way for more advanced 
approaches and scaling up of the model for 
human use.

Porcine Acellular Lung Matrix in Wound Healing and Hernia Repair
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Nichols et  al. have described porcine 
acellular lung matrix (PALM) as a natural scaf-
fold capable of cell attachment while maintain-
ing cell viability [72, 75]. Porcine lungs were 
taken and processed through both mechanical 
infusion of decreasing gradient of SDS (Fig. 4) 
[75]. In their work, they were able to demon-
strate that PALMs can sustain forces of mechan-
ical ventilation for prolonged periods of time 
without changes to macro- or microstructure of 
the tissue due to its predominance of collagen I 
and elastin [75]. In addition, PALMs were noted 
to have minimal inflammatory response with 
minimal apoptosis of mesenchymal stem cells 
or human alveolar epithelial cells. The extracel-
lular matrix (ECM) proteins play an important 
role in influencing lung strength, flexibility, and 
elasticity [72]. It is vital for production of decel-
lularized lung to retain key ECM components 
while removing cell debris and nucleic acid 

through exposure to detergents and physical 
methods. More recently, Dr. Ott’s team also 
demonstrated the capacity of PALM to sustain 
human cells, survive implantation in a pig 
model of lung transplantation, and withstand 
the forces of mechanical ventilation allowing 
for gas exchange [76]. Various detergents are 
used for decellularization of the lung including 
sodium dodecyl sulfate (SDS), sodium deoxy-
cholate (SDC), and 3-[(3-cholamidopropyl)
d imethy lammonio] -1-propanesu l fona te 
(CHAPS). SDS-based perfusion decellulariza-
tion has been shown to produce acellular lung 
scaffold with loss of DNA while preserving 
ECM composition and architecture [77]. The 
preservation of this architecture and ECM com-
position is vital to the success of any tissue-
based scaffold, and in this case the PALM. Thus, 
with a the lack of optimal bioprosthetics mate-
rial for ventral hernia repair, there is an ongoing 

CD31 Laminin DAPI CD31 SM22–α DAPI COLIV PODXL DAPI

a b c

d e

Fig. 3  Decellularized lung is capable of cell adherence 
and proliferation. (a) A representative stitched image 
showing endothelial coverage of a HUVEC-hMSC regen-
erated lung lobe after two-phase culture (CD31, red; lam-
inin, green; DAPI, blue). (b) Interconnected vascular 
network structures formed by endothelial cells (CD31, 
red) with individual hMSCs (SM22-α, green) adhering to 
the network. (c) Establishment of apical-basal polarity 

shown by localization of PODXL (green) on the luminal 
surface and COLIV (red) on the basement surface. (d) A 
representative whole-mount image of decellularized rat 
lungs perfused with green-fluorescent microspheres 
(0.2  μm) through the PA. (e) A representative whole-
mount image of decellularized rat lungs perfused with 
green-fluorescent microspheres (0.2 μm) through the PA 
and red-fluorescent microspheres (0.2 μm) through the PV
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search for ideal mesh materials that will provide 
long-term efficacy with improved biological 
activity and incorporation into native tissue.

11	 �PALM in Hernia Repair

Critical to the success of any tissue repair is the 
robust infiltration of reparative cells and blood 
vessels. With their rich vascular architecture, the 
lung theoretically makes an ideal matrix suitable 
for cell and blood vessel infiltration. Biomedical 
engineers have long investigated the ideal micro-
architecture for angiogenesis. To achieve this, the 
material must possess a controlled interconnec-
tivity of pores that supports the invasion and pro-
liferation of progenitor cells that will ultimately 
recapitulate the natural environment [78]. Not 
only must the porosity be ideal for the migration 

of cells but also for the diffusion of nutrients and 
product of cellular activity and to maintain cell-
cell and cell-scaffold interaction [78, 79]. 
Researchers have developed patterned biomateri-
als mimicking the natural environment with intri-
cate architectures and variable porosity in an 
attempt to promote angiogenesis [80, 81]. 
Likewise, investigators have sought out natural 
materials with high vascularity in order to pro-
mote cellularization and neovascularization, two 
metrics of incorporation [18, 19, 36, 59, 82]. As 
mentioned above, the dermis, pericardium, sub-
mucosa, and liver have all been investigated as 
tissue sources for enhanced incorporation. With 
this in mind, we sought to identify another source 
of highly vascularized tissue to test in the setting 
of bridging ventral hernia repair.

To this end, Fernandez-Moure et al. evaluated 
the efficacy of PALMs in chronic hernia repair in 

Fig. 4  Decellularization bioreactor. Porcine lung in 
initial phases of decellularization within the 
decellularization chamber which is comprised of a 

perfusion system infusing the processing detergent 
through the pulmonary artery into the lung

Porcine Acellular Lung Matrix in Wound Healing and Hernia Repair
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a b

c d

Fig. 5  Characterization of decellularization. Hematoxylin 
and eosin staining at (a) day 0 and (b) day 7 confirms 
complete decellularization following SDS baths (scale 
bar, 150 μm; inset 40× magnification scale bar 20 μm). (c) 

Well-formed and cellularized tubular vascular structures 
are in lung tissue prior to processing (scale bar, 100 μm). 
(d) Decellularized vascular structures retain tubular mor-
phology and architecture (scale bar, 100 μm)

hADM PALM

Fig. 6  Subcutaneous implantation. Human acellular 
dermal matrix and (hADM) and porcine acellular lung 
matrix (PALM) following implantation. Macroscopic 

vessel infiltration (arrows) is seen following 6 weeks of 
subcutaneous implantation

V. Chegireddy et al.
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rat models in comparison to the human acellular 
dermal matrix (hADM) [83]. In the study, the 
porcine lungs were processed via a perfusion 
decellularization process using SDS solution, 
and decontamination was performed by perfus-
ing streptomycin, penicillin, and amphotericin B 
prior to dissection. Effectiveness of the decellu-
larization of the porcine lungs was evaluated 
using hematoxylin and eosin (H&E) staining, 
which showed loss of cells throughout the tissue. 
Also, scanning electron microscopy (SEM) 
showed the highly organized structure of the lung 
that contributes to its high potential for neovascu-
larization (Fig. 5). Subcutaneous implantation of 
PALM and hADM showed PALM was capable of 

robust macroscopic neovascularization compared 
to hADM (Fig. 6). The animal model was one of 
a chronic hernia fixed with a bridging repair. The 
authors feel this approach while not necessarily 
suitable for human translation is optimal for eval-
uating mesh under mechanical forces. The rats 
were divided in two groups, and each animal had 
hernia repair with bridging repair with implanta-
tion of either PALM or hADM. After 6 weeks, 
the PALMs group demonstrated significantly 
greater cell infiltration and cell density compared 
to the hADM group. Also, the PALMs group 
showed a greater number of vessels per 1 mm2 
and up to six times the number of vessels per field 
of view compared to hADM (Fig.  7). Given 

Subcutaneous

a b

c d

Hernia

P
A
LM

hA
D
M

Fig. 7  PALMs demonstrate greater vessel formation. 
Representative images of Masson’s trichrome-stained 
implants following (a, c) subcutaneous implantation and 
(b, d) implanted for hernia repair. PALMs had greater 

vessel infiltration (white and black arrows) compared with 
hADM (scale bar, 50 μm) (insert 40× magnification; scale 
bar, 20 μm)

Porcine Acellular Lung Matrix in Wound Healing and Hernia Repair
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the innate architecture of the lung, the authors 
felt this along with the preserved ECM compo-
nents contributed to the significant incorporation 
and the lack of re-herniation or scaffold break-
down. The lung, unlike other bioprosthetics, does 
not maintain its mechanical properties when 
decellularized. After processing the lung tissue 
becomes very soft and fragile. Another critical 
finding they noted was that PALM implants did 
not undergo significant bulge or mechanical fail-
ure, which is clinically relevant since bulge is a 
predictor of long-term mechanical failure (Fig. 8) 
[84]. Based on the characteristics for metrics of 
incorporation with cell infiltration and vessel 
formation, the study demonstrated that PALMs 
have superior surgical outcomes compared to 
hADM.

�Conclusions
Abdominal wall hernias continue to be a large 
socioeconomic burden in the USA. Currently, 
the most commonly used prosthetics are 
purely synthetic in nature and carry significant 
risks with them. To address this issues investi-
gated have looked to nature for biologically 
derived tissues as prosthetics. Various decel-
lularization technologies have emerged, as 
have various tissue sources for prosthetic 
repair. The dermis remains the most com-
monly used and most studied although it may 
not be ideal for repair as evidenced by unac-
ceptable long-term failure rates in bridging 
repair. Thus, research have sought new tissue 
sources based on the microarchitecture of the 
substrate organ in order to maximally promote 

hADM PALM

Fig. 8  PALM and hADM following 6-week implantation. Both Palm and hADM were intact following 6  weeks. 
Minimal bulging was seen in PALM with none of the animals demonstrating any mesh failure at that time

V. Chegireddy et al.
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the metrics of incorporation, namely, cell 
infiltration and vascularization. PALM has 
been investigated as a novel prosthetic for 
repair and has demonstrated enhanced incor-
poration and short-term mechanical stability 
in a chronic ventral incisional hernia model 
with bridging repair. We hope this focus of 
pre-existing microarchitecture and gentle 
decellularization technologies will foster a 
new avenue of thought when evaluating cur-
rent prosthetics and those to come.
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