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Abstract

A stochastic process can be represented and analysed by four different quantities in the
time and frequency domain: (1) the process itself, (2) its autocovariance function, (3) the
spectral representation of the stochastic process and (4) its spectral distribution or the
spectral density function, if it exits. These quantities and their relationships can be clearly
represented by the “Magic Square”, where the quantities build the corners of this square
and the connecting lines indicate the transformations into each other.

The real-valued, time-discrete, one-dimensional and covariance-stationary autoregres-
sive process of order p (AR(p) process) is a frequently used stochastic process for instance
to model highly correlated measurement series with constant sampling rate given by satellite
missions. In this contribution, a reformulation of an AR(p) to a moving average process with
infinite order is presented. The Magic Square of this reformulated process can be seen as
an alternative representation of the four quantities in time and frequency, which are usually
given in the literature. The results will be evaluated by discussing an AR(1) process as
example.

Keywords

Autoregressive process � Moving average process � Spectral analysis � Stochastic process �
Time series analysis

1 Introduction

In practice many phenomena with random characteristics
exist, which cannot be represented by deterministic func-
tions. In these cases, stochastic processes often allow for
a sufficient description (see e.g. Koch and Schmidt 1994;
Moritz 1980; Welsch et al. 2000). Applications of stochastic
processes in geodesy tend to focus on analyses within the
time domain at the level of the measurements themselves. In
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contrast, the usage of the relationships of a process with its
spectral representation, autocovariance function and spectral
distribution (or density) function is less popular, or even
done incorrectly. One reason for this is that the mathematics
and thus the computational aspects of these relationships
and representations are rather intricate and oftentimes not
readily available for a specific type of process to be used
in a practical situation. To remedy this problem, Krasbut-
ter et al. (2015) discussed a kind of Magic Square with
respect to a general real-valued, one-dimensional, discrete-
time, covariance-stationary stochastic process. The Magic
Square has the advantage that it is a well-arranged represen-
tation of the described four quantities of a process in the time
and frequency domain and their relationships. Furthermore,
Krasbutter et al. (2015) expanded the Magic Square to
stochastic processes, which are obtained by non-recursive
filtering of an input process and evaluation of the results by
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application to a q-th order moving average (MA(q)) process
(see the following Sect. 2 for an overview).

In this contribution the Magic Square will be formulated
for another well-known process: a discrete-time p-th order
autoregressive (AR(p)) process. The use of such a process
as a description of the random error term in linear obser-
vation equations seems to have been proposed first by the
econometricians D. Cochrane and G. H. Orcutt (Cochrane
and Orcutt 1949). In geodesy, this kind of model is becoming
increasingly popular; see Koch and Schmidt (1994) and
Schuh (2003) for general descriptions and Schubert et al.
(2019) for a current application to the highly correlated
measurement errors of the Gravity Field and Steady-State
Ocean Circulation Explorer (GOCE) satellite mission. The
AR(p) process may be viewed as being obtained by recursive
filtering. The Magic Square of such a process is explained in
Schuh et al. (2014) and further discussed in Schuh (2016).

In contrast, we study in the current contribution the Magic
Square for AR(p) processes obtained through non-recursive
filtering. For this purpose, we elaborate a certain reformula-
tion of that process. In Sect. 3 the transformation is presented
with a MA process of infinite order (MA(1)) as a result.
The Magic Square of this transformed stochastic process is
an alternative representation of the four quantities of an AR
process given in Schuh et al. (2014). The transformation can
be seen as a link to the Magic Square describe in Krasbutter
et al. (2015) To demonstrate the evaluation of these results,
the transformation is applied to an AR(1) process and the
corresponding Magic Square is compared with representa-
tions given in the literature (cf. Sect. 3). In Sect. 4 this paper
is concluded with a summary and an outlook.

2 TheMagic Square of a Non-Recursive
Filtered Stochastic Process

A general stochastic process XT is defined by a family of
random variables on a probability space, symbolically

XT D .˝;A; P ; fXt ; t 2 T g/; (1)

where˝ denotes the sample space, A a �-Algebra of events,
P the probability measure and Xt is a random variable.

Additionally we restrict our representation to stochastic
processes with the following properties:

– One-dimensional and real-valued:

.˝;A/ ! .R;B/;

where B is the Borel �-Algebra, which is generated by all
real-valued, one-dimensional, left open and right closed
intervals.

– Discrete in time with constant and general sampling rate
�t :

t D n ��t; n 2 Z; �t 2 R:

On account of this, a random variable depends only on n
and it will by symbolised by Xn in the following.

– Covariance-stationary with zero mean, variance �2 and
autocovariance function �Xk , where k is called lag (cf.
Brockwell and Davis 1991, pp. 11–12).

Additionally, it is assumed, that the process XT is
obtained by filtering another one-dimensional, discrete-time,
covariance-stationary stochastic process UT by

Xn D
qX

jD0
 jUn�j D �.L/Un; (2)

where �.L/ D  0 C  1L C : : : C  qL
q with lag operator

notation LjUn D Un�j is a non-recursive, causal, absolutely
summable and invertible filter. The order q of the filter can
be infinite (‘q D 1’) or finite (q 2 N).

The Magic Square of this real-valued, one-dimensional,
discrete-time, covariance-stationary, non-recursive filtered
stochastic process is presented in Fig. 1. In the upper left
corner the stochastic process itself is given and can be seen
as a collection of random and equidistant variables.

The spectral representation of the described stochastic
process (upper right corner) is denoted by dbZX

s .�/. In
the following the hat will symbolize a quantity in the
frequency domain and the superscripted factor s the fact
that the corresponding representation in the time domain is
discrete-valued.

However dbZX
s .�/ is a stochastic orthogonal increment

process with the following properties:

– One-dimensional and complex-valued,

˝ ! C;

– Frequency-continuous with � defined within the interval
Œ��N ; �N �, where �N D 1

2�t
is known as the Nyquist

frequency.
– Orthogonal increments (cf. Brockwell and Davis 1991,

pp. 138–140):

E
n
dbZX

s .�1/.d
bZX
s .�2//

�o D 0; for �1 ¤ �2;

where � denotes the conjugate complex.

While the proposed process can be described as a filtering
of an input process Un in the time domain (see (2)), the
description for the frequency domain is:

dbZX
s .�/ D b�s.�/dbZU

s .�/; (3)

where dbZU
s .�/ is the corresponding spectral rep-

resentation of the input stochastic process Un and



Non-Recursive Representation of an Autoregressive ProcessWithin the Magic Square 185

Xn = Ψ(L)Un

F (s) { }�
F−1

(s) { }
dẐX

s (ν) = Ψ̂s(ν)dẐU
s (ν)

νN

−νN

↽ E {Xn � Xn} E
{

d ̂
̂ ̂

Zs(ν)dẐ∗
s (ν)

}
∣∣∣

↽

γX
k =

∞∑
m=0

∞∑
s=0

m sγ
U
|k|−m+s

F { }�
F−1 { }

dΓ̂X
s (ν) = |Ψs(ν)|2dΓ U

s (ν)
νN

−νN

time domain frequency domain

Fig. 1 Magic Square for covariance-stationary, discrete-time, non-
recursive filtered stochastic process with upper left: stochastic process,
lower left: autocovariance function, upper right: spectral representation
of the stochastic process and lower right: spectral representation of the

autocovariance function. The interrelations are symbolised by arrows
with the corresponding mathematical operations, where Ff�g/F�1f�g
symbolise the Fourier transform/integral, F.s/f�g/F�1

.s/ f�g the stochastic
Fourier transform/integral, E f�g the expectation and ‘?’ a correlation

b�s.�/ D Pq
jD0  j e�i2��j�t is the Fourier transform of

the filter �.L/ called the transfer function (cf. Priestley
2004, pp. 263–270).

The interrelation between the stochastic process and its
spectral representation, which is indicated by the harpoons,
can be described by the “stochastic Fourier transform”
F.s/f�g and the converse relationship by the “stochastic
Fourier integral” F�1

.s/ f�g. The mathematical formulas and
a detailed explanation of these relations is not the focus
of this paper and are omitted. But the interested reader is
referred to Krasbutter et al. (2015) and Lindquist and Picci
(2015, Chapter 3).

The two quantities in the lower row of the square are
the autocorrelation function �Xk (left side) and its spectral

representation db	 X
s .�/ (right side). This spectral represen-

tation is an increment process of the spectral distribution
function b	 X

s .�/. If the derivative db	 X
s .�/=d� exits, it is

called spectral density functionb�Xs .�/.
Both quantities in the lower row of the square are deter-

ministic functions, where the autocorrelation function is dis-
crete and its spectral representation is frequency-continuous
with � defined in the interval ��N to �N and is continued
periodically outside of this range. As described in Priest-
ley (2004, p. 214) �Xk and b�Xs .�/ are even, if the related
stochastic process is real-valued, which we have fixed by the
above described characteristics of the process. Furthermore,
the autocovariance can be formulated by the filter �.L/ and
the autocovariance of the input process �Uk , while its spectral
representation is given by the transfer function of the filter
b�s.�/ and the increment of the spectral distribution function
of the input process db	 U

s .�/. Thus, the autocorrelation of
�Xk is given by

�Xk D
1X

mD0

1X

sD0
 m s�

U
jkj�mCs (4)

and the corresponding spectral representation by

db	 X
s .�/ D jb�s.�/j2db	 U

s .�/: (5)

The interrelation of these two equations can be described by
the “deterministic Fourier transform” Ff�g and the converse
relationship by the “deterministic Fourier integral” F�1f�g.
A detailed explanation of these two equations and its interre-
lation is given by Priestley (2004, Sect. 4.12), Brockwell and
Davis (1991, Proposition 3.1.2) and Krasbutter et al. (2015).

As explained above, the upper corners are stochastic
functions and in contrast to them the lower corners are
deterministic functions so that the transformation from top
to bottom can be interpreted as a reduction from stochastic
to deterministic. This reduction is achieved by using the
expectation (symbolised with E f�g in Fig. 1), which has the
drawback of information loss, thus the way vice versa (from
bottom to top) is not possible without additional information
(indicated by the missing arrow from the lower to the upper
corners). The operations from top to bottom can be seen on
the left side as a stochastic correlation. The correlation is
symbolised by ‘?’ in Fig. 1. The corresponding operation in
the frequency is a stochastic multiplication.

3 TheMagic Square of an p-th Order
Autoregressive Process

The time-discrete, autocovariance-stationary, invertible
AR(p) process with p 2 N is defined by

Xn W D 
1Xn�1 C : : :C 
pXn�p C En; .n 2 Z/

” �.L/Xn D En; (6)
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Xn =
p∑

j=1

θjXn−j+En,

↽
Pre-processing

Xn =
∞∑

j=0

θjEn−j , with θ0 = 1

F (s) { }
�

F−1
(s) { }

dẐX
s (ν) = dẐE

s (ν)
∞∑

j=0

θje−i2πνjΔt
∣∣∣νN

−νN

↽

E {Xn � Xn} E
{

dẐX
s (ν)dẐX

s

∗
(ν)

}

↽

γX
k = σ2

E

∞∑
s=0

θs+|k|θs

F { }
�

F−1 { }

dΓ̂ X
s (ν) = σ2

Edν
(
1 + 2

∞∑
j=1

θj cos (2πνjΔt)

+
∞∑

j=1

θ
2
j + 2

∞∑
j=1

∞∑
s=j+1

θjθs cos (2πν(s − j)Δt)
)∣∣∣νN

−νN

time domain frequency domain

Fig. 2 Magic Square for covariance-stationary, discrete-time autore-
gressive process of order p (AR(p)) with general sampling rate �t .
This AR(p) process is reformulated in a pre-processing step to a moving
average process of infinitive order. The Magic Square is then derived
out of this reformulated process with upper left: reformulated stochastic
process itself, lower left: autocovariance function, upper right: spectral

representation of the reformulated stochastic process and lower right:
spectral density function. The interrelations are symbolised by arrows
with the corresponding mathematical operations, where Ff�g/F�1f�g
symbolises the Fourier transform/integral, F.s/f�g/F�1

.s/ f�g the stochastic
Fourier transform/integral, E f�g the expectation and ‘?’ a correlation

where �.L/ D 1 � 
1L � : : : � 
pL
p is a recursive,

causal filter and En denotes white noise with En � N.0; �2E/
(Brockwell and Davis 1991, Definition 3.1.1). The AR pro-
cess is covariance-stationary if and only if the roots of the
polynomial

1 � 
1z � 
2z2 : : : � 
pzp D 0; z 2 C

lie outside of the unit circle. Furthermore, AR processes with
finite order are invertible (cf. Box and Jenkins 1976, Sect.
3.2.1).

In Schuh et al. (2014) the Magic Square of an AR(p)
process is presented. In contrast, the idea of this contribution
is to transform the AR(p) process given by (6) in the form
of (2). The advantage of a non-recursive representation is
that it is easier to evaluate concerning warm up, behaviour
of the covariance and the stationarity of the process. In so
doing the explained Magic Square in Sect. 2 can be applied
to the reformulated process. The result is an alternative but
equivalent representation of the AR(p) process within the
Magic Square; the transformation can be seen as a link
between these two representations of an AR(p) process
within the Magic Square.

In a first step the reformulation of the AR(p) process to
(2) is described and afterwards the alternative representation
of the Magic Square is given. All outcomes of each step
are applied to an AR(1) process and compared to the results
given in the literature, where no reformulation is applied.

3.1 Reformulation of the AR(p) Process

The reformulation can be seen as a pre-processing step and
is symbolised in Fig. 2, where the Magic Square of the
AR(p) process is presented. This additional step starts by the
multiplication of (6) with �.L/�1 on both sides:

Xt D �.L/�1En:

(cf. Gilgen 2006, p. 251).
To familiarize ourselves with the filter �.L/�1, whose

order for instance we do not know yet, a reformulation is
done. Thus, the inverse filter of �.L/ can be formulated by

�.L/�1 D 1

1 � 
1L� : : : � 
pLp (7)

(see Hamilton 1994, Chapter 2.4). This inverse representa-
tion can be rewritten by using the infinite geometric series

1

1 � x
D 1C x C x2 C x3 C : : : (8)

with jxj < 1 (cf. Andrews 1998, Eq. (3.3)) and results in

�.L/�1 D 1C .
1LC : : :C 
pL
p/

C.
1LC : : :C 
pL
p/2 C : : : : (9)
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The next step is to expand and resort (9) to

�.L/�1 D 1C 
1LC 
2L
2 C : : :

D �.L/; (10)

where �.L/ is the reformulated representation of �.L/.
The determination of 
i for i 2 N can be achieved by the
following algorithm:

Step 1: Find all s combinations of the sorted product



l1;j
1 �
l2;j2 � : : : �
lp;jp , where

pP
mD1

m � lm;j D i with lm;j 2 N

holds. The index j D 1; : : : ; s specifies the combination
number.

Step 2: Determination of

dj D

�
pP

mD1
lm;j

�
Š

l1;j Š � l2;j Š � : : : � lp;j Š :

where Š denotes the factorial function. This factor indi-
cates the number of possibilities for combining the filter
coefficients 
1; 
2; : : : 
p of combination j .

Step 3: The last step is to determine the filter coefficient

i by


i D
sX

jD1

�
dj � 
l1;j1 � 
l2;j2 � : : : � 
lp;jp

�
:

Hence, the alternative representation of (6) is given by

Xn D �.L/En D
1X

jD0

jEn�j ;with 
0 D 1: (11)

This process is known as moving average process of infinite
order (MA(1) process), which is a special form of the
filtered stochastic process described in Sect. 2.

Example of the Transformation
The transformation is applied exemplary to an AR(1) pro-
cess, which is defined by

�.L/Xn WD En; (12)

with �.L/ D 1 � 
1L and j
1j < 1 (cf. Hamilton
1994, p. 53). This process has only 
1 as filter coefficient
and therefore the described algorithm to determine 
i is
simplified, because l1;� D i . Hence, the reformulated AR(1)
process is given by

Xn D
1X

jD0


j
1 En�j :

The results for transformed AR processes with higher orders
are much more complicated. For instance, the reformulated
AR(2) process is given by

�.L/ D 1„ƒ‚…

0

C 
1„ƒ‚…

1

LC .
21 C 
2/„ ƒ‚ …

2

L2 C .
21 C 2
1
2/„ ƒ‚ …

3

L3

C .
41 C 3
21 
2 C 
22 /„ ƒ‚ …

4

L4 C .
51 C 4
31 
2 C 3
1

2
2 /„ ƒ‚ …


5

L5

C .
61 C 5
41 
2 C 6
21 

2
2 C 
32 /„ ƒ‚ …


6

L6 C : : : :

In this contribution, due to the complexity of AR processes
with higher orders, the results are applied only to AR(1)
processes.

3.2 Magic Square of the Reformulated
AR(p) Process

The Magic Square of the reformulated AR(p) process is
described and the results are presented in Fig. 2. The deriva-
tion starts with the quantities in the time domain (corners on
the left-hand side of the square), followed by the results in
the frequency domain (corners on the right-hand side of the
square).

3.2.1 Time Domain (Left-Hand Side)
The upper left corner of the square is given by (11), being
the reformulated AR process itself. This process has an
autocovariance function (lower left corner), which can be
derived by using (4) and the property

�Ek D
�
�2E for k D 0

0 else

of white noise, resulting in

�Xk D �2E

1X

sD0

sCjkj
s: (13)

Example: AR(1) Process
As described in the last section the reformulation of the
AR(1) to an MA(1) process is given by 
i D 
i1 . This
result is substituted into (13), leading to

�Xk D �2E

1X

sD0


sCjkj
1 
s1 D �2E

1X

sD0


2sCjkj
1 : (14)

It can be shown, that (14) is an alternative representation of
the autocovariance

�Xk D �2E

jkj
1 � 1

1 � 
21
; (15)
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which is often mentioned in the literature (cf. Priestley
2004, Eq. (3.5.16)). To show the equivalence between these
two representations of the autocovariance function, (14) is
reorganised to

�Xk D �2E

jkj
1

1X

sD0

2s1

D �2E

jkj
1 .1C 
21 C 
41 C : : :/:

In the next step the pre-processing step is undone by using
the definition (8) of the infinite geometric series. The result
is (15).

3.2.2 Frequency Domain (Right-Hand Side)
The spectral representation of an AR(p) process by using (3)
is defined by

dbZX
s .�/ D dbZE

s .�/
b�s.�/

D dbZE
s .�/

1X

jD0

j e

�i2��j�t ; (16)

where b�s.�/ D
1P
jD0


j e
�i2��j�t is the transfer function

of the filter �.L/ and dbZE
s .�/ the spectral representation

of discrete-time white noise, also known as increment pro-
cess of a Wiener process (see Lindquist and Picci 2015,
Sect. 3.3.3). The spectral representation is defined for � given
in the interval Œ��N ; �N � and is periodic outside of this range.

The spectral representation of the autocovariance is
defined by using (5) and the property of white noise
db	 E

s .�/ D �2Ed�:

db	 X
s .�/ D �2Ed�

0

@
1X

jD0

1X

sD0

j 
se

�i2��j�tei2��s�t
1

A : (17)

This sum can be reorganised to

db	 X
s .�/ D �2Ed�

0

@
0
0 C
1X

jD1

j 
0e

�i2��j�t

C
1X

sD1

s
0e

i2��s�t C
1X

jD1


2

j

C
1X

jD1

1X

sD1;s¤j

j 
 se

�i2��j�tei2��s�t
1

A :

Now, Euler’s formula and the relation 
0 D 1 is applied and
results in

db	 X
s .�/ D �2Ed�

0

@1C 2

1X

jD1

j cos .2��j�t/C

1X

jD1


2

j

C 2

1X

jD1

1X

sDjC1

j 
 s cos .2��.s � j /�t/

1

A ; (18)

where the frequency � takes values within the interval
Œ��N ; �N �. Obviously, the derivative of (18) exits, so the
spectral density function of the AR(p) process is given by

b�Xs .�/ D �2E

0

@1C 2

1X

jD1

j cos .2��j�t/C

1X

jD1


2

j

C 2

1X

jD1

1X

sDjC1

j 
s cos .2��.s � j /�t/

1

A : (19)

Example: AR(1) Process
The spectral representation and the spectral density function
of the reformulated AR(1) process are obtained by substitut-
ing 
j D 


j
1 into (16) and (19). The spectral representation

is then defined by

dbZX
s .�/ D dbZE

s .�/

1X

jD0


j
1 e

�i2��j�t (20)

and the spectral density function by

b�Xs .�/ D �2E

0

@1C 2

1X

jD1


j
1 cos .2��j�t/C

1X

jD1


2j
1

C 2

1X

jD1

1X

sDjC1


jCs
1 cos .2��.s � j /�t/

1

A : (21)

In (Priestley 2004, p. 238) the spectral density function of an
AR(1) process is given by

b�Xs .�/ D �2E
.1 � 2
1 cos .2���t/C 
21 /

: (22)

It can be shown that this result is equivalent to (21) by
substituting Euler’s formula:

b�Xs .�/ D �2E
.1 � 
1ei2���t � 
1e�i2���t C 
21 /

D �2E

��
1

1 � 
1e�i2���t

��
1

1 � 
1ei2���t

��
:
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The infinite geometric series is applied and results in

b�Xs .�/ D �2E

0

@
1X

jD0


j
1 e

�i2��j�t
1

A
 1X

sD0

s1e

i2��s�t

!

D �2E

0

@
1X

jD0

1X

sD0


j
1 


s
1e

�i2��j�tei2��s�t
1

A :

As described above a rearrangement of the sums results
in (21).

4 Conclusion and Outlook

Within this paper the transformation of an AR(p) into a
MA(1) process, which is in practical use easier to inter-
pretate concerning warm-up, covariance and stationarity, is
demonstrated. In so doing the graphical representation of
a stochastic process in time and frequency domain given
by Krasbutter et al. (2015) can be applied to determine
the explicit mathematical expressions of each corner in the
Magic Square for an AR(p) process. The practical applica-
tion for instance to AR processes estimated by means of the
data given by satellite mission GOCE and the convergence
behaviour of the transformed AR(p) process is still to be
examined. Due to lack of space in this contribution this
investigation is omitted.

The application of the transformation to widely used
stochastic processes, for instance the autoregressive moving
average process (ARMA process), would be an extension of
this scenario and will be considered in the future.
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