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Abstract

Currently, extensive work is being done in the field of geodesy on producing better
gravitational models using purely space-based techniques. With the large datasets spanning
a long timeframe, thanks to the GOCE and GRACE missions, it is now possible to compute
high quality global gravitational models and publish them in a convenient form: spherical
harmonics. For regional geoid modeling, this is advantageous as these models provide a
useful reference which can be improved with terrestrial observations. In order for these
global models to be usable below the topographical surface, certain considerations are
required; topographical masses cause the function that describes the gravity potential to be
non-harmonic in the space between the topographical surface and the geoid. This violates
the mathematical assumptions behind solid spherical harmonics.

This paper aims to look at the error caused by evaluating solid spherical harmonics when
topography is present. It thus provides a more rigorous methodology than the commonly
used approach of computing the quasigeoid and then applying an approximate correction
term for the geoid-quasigeoid separation. It is therefore well-suited for the Stokes-Helmert
approach to high-precision regional geoid computation. Comparisons between the more
rigorous methodology and the generally used algorithm are made in order to study the error
that is committed. With a range of 23.6 cm and a standard deviation of 0.8 cm, this is a non-
trivial error if the ultimate goal is to compute a regional geoid with an accuracy of better
than 1 cm.
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1 Introduction

This paper describes a methodology for rigorously evaluating
functionals from global gravitational models over land
while accounting for topographical density and is designed
specifically for use in the well documented SHGeo
high-precision regional geoid computational scheme and
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associated software package (Vaníček and Martinec 1994).
This paper also investigates the error that is committed by
neglecting the requirement of harmonicity of the gravity
potential within topography when one wishes to work with
the global model below the topographic surface, or in our
case, on the geoid. A similar methodology is presented in
Wang et al. (2012) although the numerical results are not
rigorously evaluated as they opt for an alternative approach
more tailored for use with ultra-high degree reference
geopotential models.

Initially, several satellite-only global models were
considered in the computations: DIR-R5, GGM05S, and
GOCO05S. These models were considered due to the
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differing data sources used in their formulation but only
the results from DIR-R5 will be discussed in this paper as
the results confirmed that the error committed by assuming
that a non-harmonic function will behave as if it were
harmonic depends on topography and is independent of
the potential model. Due to the limited useful spectral
content of the satellite-only models, the studied model is
limited to degree and order 160 which is sufficient for
providing a satellite-only reference field for computing
regional high-precision geoids (Abdalla et al. 2012; Foroughi
et al. 2016).

The model spherical harmonic coefficients are generally
referred to the sphere with radius equal to the major-semi
axis of the geocentric ellipsoid of revolution (a), such as
the GRS80 reference ellipsoid. For various applications, we
need to know the potential field described by the series on
the geoid (i.e. inside of topography) and not on this sphere.
This complicates matters as the field cannot be continued
downward to the geoid because it does not behave in a
harmonic manner within the topographical masses located
between the Brillouin sphere and the geoid (Heiskanan and
Moritz 1967). In practice, various functionals of the gravity
field are often evaluated within the topography directly from
the harmonic coefficients (Barthelmes 2009) which violates
the fundamental assumptions of harmonic series (that the
field they represent is harmonic in the space where the field
is considered).

2 Methodology

The first fact to be considered is that topography protrudes
in places above the sphere of radius a thus making the
gravity potential in the space above the sphere inherently
non-harmonic. In order to work around this problem, the
spectral coefficients should be scaled to the Brillouin sphere
of somewhat larger radius RB. Then, by making use of
Helmert’s second condensationmethod, it is possible to more
or less rigorously (the topographical density is known only
to a certain degree) account for the effects of topographical
masses and make the gravity potential everywhere above the
geoid more or less harmonic (Helmert 1884; Vaníček and
Martinec 1994). It should be noted that there are an infinite
number of ways to compensate for the topographic masses
(Helmert’s condensations, Pratt-Hayford, Airy-Heiskanen,
etc. (Heiskanen and Moritz 1967)), and that Helmert’s sec-
ond condensation was chosen here due to the direct applica-
bility to the SHGeo computational scheme. The difference
between the topographical and the condensed topograph-
ical potentials – the so-called direct topographical effect
(DTE, ıV) – is expressed in spectral form derived by Vaníček
et al. (1995). Its subtraction transforms the gravity potential
from the real space to the Helmert space in which the gravity

potential behaves (more or less) harmonically everywhere
above the geoid. We have:
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where G is the gravitational constant, �0 is the global mean
topographic density of 2,670 kg m�3, and (H2)nm are the
coefficients of topographical height squared. The astute
reader will notice the differences between Eq. (2) presented
above and Eq. (20) from Vaníček et al. (1995); the difference
comes from the choice to conserve the total mass of the Earth
as opposed to conserving the centroid when transforming to
Helmert’s space (Wichiencharoen 1982; Martinec 1993).
Once we have obtained Helmert’s gravity potential WH ,
the normal potential (U) generated by the GRS80 ellipsoid
of revolution is subtracted from it to arrive at Helmert’s
disturbing potential:

8n � 0; m D 0; 1; : : : ; n W T H
nm D W H

nm � Un0; (3)

where Un0 has only even zonal harmonics different from 0.
Because the space through which the potential is to be

“downward continued” has been made as free of mass
as we know how, the gravitational potential behaves
more or less harmonically and it is now possible to
express Helmert’s disturbing potential on the Helmert co-
geoid by evaluating the harmonic coefficients of TH for
r D rg:
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where (', �) are the geocentric latitude and longitude, CH

and SH are the harmonic coefficients of Helmert’s disturbing
potential (THnm) in the geodetic norm (Varshalovich et al.
1988), Pnm are the associated Legendre polynomials, R is
the radius to which the coefficients are referred (in our case
the radius of the Brillouin sphere), and r is the radius of
the surface where the disturbing potential TH is synthesized
(in our case, the radius of the geoid, rg, approximated by re
with a resulting error of less than 1 cm) (Barthelmes 2009;
Vaníček et al. 1995). Let us note that the same expression
in spectral form can be used in any space where the gravi-
tational potential behaves harmonically above the surface r
defined in Eq. (4) and Helmert’s space was chosen for this
study simply due to the ease of implementation with the
SHGeo software package.
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We note that a “Helmertisation” of a global field had
already been attempted by Vaníček et al. (1995). In their
derivations, Vaníček et al. assumed, incorrectly as it turns
out, that the global field would be known at the reference
ellipsoid level and be valid at the geoid. As this cannot be the
case, their results are not quite correct.

Once “downward continued”, Helmert’s disturbing poten-
tial is transformed to give us the Helmert co-geoid (the geoid
in Helmert’s space) using Bruns’s formula. If needed, the
Helmert co-geoid is transformed to the real space by account-
ing, once again, for the residual topographical potential of the
difference between topography and the condensation layer,
also known as the primary indirect topographical effect on
the geoid (PITE) or ıV

�0
. Thus, geoidal undulation (N) in the

real space is obtained as:
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3 Numerical Example

In this section several comparisons are made between the
methodology described in the previous section and the not so
rigorous methodology that directly estimates geoidal undula-
tion without converting topography into a space in which the
gravity potential is harmonic. This is done approximately by
applying Eq. (116) from Barthelmes (2009) presented as:
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where CH
nm and SHnm are the spectral coefficients of topo-

graphical heights scaled by R and CT
nm and STnm are the

spectral coefficients of disturbing potential after applying
Eq. (3) in the real space. The first term of this equation
is supposed to give the quasigeoid and the second term
adds an approximation of the geoid-quasigeoid separation.
Apart from the fact that the quasigeoid cannot be properly
expressed either by a harmonic series, nor any other series,

there are several mathematical and physical problems with
this approach. Firstly, the quasigeoid is a folded surface;
therefore, the quasigeoidal height cannot be described as a
function of horizontal position. Secondly it seems peculiar
to use an approximate formula for the geoid-quasigeoid
separation in the computation of an accurate geoid model.

For the comparisons, DIR-R5 was used up to degree and
order 160 using the two differing methodologies. This com-
parison will give us the error committed by overlooking the
laws of physics and mathematics. The following assumptions
were made for the purpose of these numerical tests:
1. Topographical surface of the Earth (being a discontinuous

function) can be represented by an infinite summation of
continuous functions in the mean sense.

2. Real density variations within topography can be approx-
imated by mean topographic density; the effect of topo-
density inhomogeneity should also be considered if this
methodology is to be applied properly but was not avail-
able when computations were done for this paper.

3. The radius of the geoid (rg) can be approximated by the
geocentric radius of the reference ellipsoid (re) with a
sufficient accuracy (Vaníček et al. 1995).
Height squared coefficients from DTM2006.0 (Pavlis et

al. 2007) were used in Eq. (2). The differences quoted here
are those between the geoidal undulations computed by
applying Eqs. (1)–(5) and the geoidal undulations computed
by applying Eq. (7) in the real space. Figure 1 shows the
differences between the non-rigorous process and our more
rigorous process; the statistical summary of the differences
between the two approaches are presented in Table 1.

For this numerical example, geoidal undulation was cho-
sen as the functional of the gravity potential that must
naturally be computed within topography. It should be noted
that similar errors will arise when attempting to evaluate
any other functional of the gravity potential within topog-
raphy.

4 Discussion and Conclusions

One problem people may perceive with the aforementioned
methodology is that nominally, the interior gravity potential
series (meaning interior to the Brillouin sphere) is divergent
because the radial functions R/r are everywhere larger than
1 and the sequence of radial functions (R/r) n grows beyond
all limits with growing n. Here we make the following rea-
sonable assumption: that the series does in fact converge for
all r between the Brillouin sphere and the geoid because the
Helmert disturbing potential coefficient sequence converges
to 0 faster than the sequence (R/r) n diverges. It is intuitively
clear that this condition is always satisfied as gravity in
the space between the geoid and the Brillouin sphere has
been always observed to be well within finite limits. For
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Fig. 1 Differences between approaches – DIR-R5

Table 1 Statistics of the differences between non-rigorous and rigor-
ous methodologies

Maximum Minimum Mean Standard deviation

DIR-R5 11.3 cm �12.3 cm 0.00 cm 0.8 cm

the purpose of this project, it is also clear that the series
cannot numerically diverge as we truncate the series at a
finite degree and order and therefore even the sequence
(R/r)n cannot diverge to infinity.

As can be seen from the values shown in Table 1, the
differences in the two methodologies are significant. From
Fig. 1 we can see that the differences are directly correlated
to topographical heights as should be expected from Eq.
(2). The large differences in Antarctica and Greenland are
likely due to the assumption that the mean topographical den-
sity represents real density. If a topo-density inhomogeneity
model were used, as it should have been, the differences
between the rigorous and more commonly-used methodolo-
gies would have been smaller in these regions but possibly
larger in others.

Numerically, it would appear that the error committed
by neglecting the requirement of harmonicity of the grav-
itational potential is not negligible if one aims to com-
pute a regional geoid model with accuracy of 1 cm; errors
present in the global model will have a direct effect on
the resulting regional model. The range of the differences
is 23.6 cm with a mean that tends to zero and a standard
deviation of 0.8 cm. It seems only logical that one should
prefer to use a methodology that strictly adheres to physical
and mathematical principles rather than one which does
not.

The next step in testing would be to incorporate the effect
of lateral density variations to better capture the effects of
real topography. The continuation of this work should also
include the assessment of the geoidal undulations over a sam-
ple of GPS/levelling benchmarks globally; this would allow
us to gain a better sense of the geometrical fit and it would
also make the assessment more trustworthy by virtue of
using independent data. Finally, the effect on regional geoid
modeling of neglecting the requirements of harmonicity of
global models should be investigated. Global models are
implemented in various stages of the regional formulations;
therefore, the propagation of errors might be more complex
than initially assumed.
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