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Abstract

The data pre-analysis plays a significant role in the noise determination. The most important
issue is to find an optimum criterion for outliers removal, since their existence can affect
any further analysis. The noises in the GNSS time series are characterized by spectral index
and amplitudes that can be determined with a few different methods. In this research, the
Maximum Likelihood Estimation (MLE) was used. The noise amplitudes as well as spectral
indices were obtained for the topocentric coordinates with daily changes from few selected
EPN (EUREF Permanent Network) stations. The data were obtained within the EPN re-
processing made by the Military University of Technology Local Analysis Centre (MUT
LAC). The outliers were removed from the most noisy 12 EPN stations with the criteria
of 3 and 5 times the standard deviations (3� , 5�) as well as Median Absolute Deviation
(MAD) to investigate how they affect noise parameters. The results show that the removal
of outliers is necessary before any further analysis, otherwise one may obtain quite odd and
unrealistic values. The probability analysis with skewness and kurtosis was also performed
beyond the noise analysis. The values of skewness and kurtosis show that assuming a wrong
criterion of outliers removal leads to the wrong results in case of probability distribution.
On the basis of the results, we propose to use the MAD method for the outliers removal in
the GNSS time series.

Keywords

EPN • Kurtosis • MLE • Noises • Outliers • Skewness

1 Introduction

Commonly, the noises in most of geophysical time series are
described as a power-law process (Agnew 1992) with the
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power spectrum equal to:
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(1)

where f is the spatial or temporal frequency, P0 and f0 are
the normalising constants and � is the spectral index of noise
(Mandelbrot and Van Ness 1968). Agnew (1992) described
that the spectral indices for the geophysical processes often
fall between �3 and �1. The integer values of indices indi-
cate special types of noises: “� D �2” represents random-
walk process which is related to the monument instability
of the GPS antennae (Johnson and Agnew 1995; Williams
et al. 2004; Klos et al. 2014); “� D �1” stands for the flicker
noise process (Mandelbrot 1983) that is recognized in most
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of GNSS time series (Mao et al. 1999; Williams et al. 2004;
Bogusz and Kontny 2011); “� D 0” corresponds to the white
noise which is not correlated in time.

Any of the topocentric component is thought to follow the
sum of:

x.t/ D x0 C vx � t C
nX

iD1

ŒAi � sin .!i � t C 'i /�

COx C
mX

j D1

pj � x
off
j C "x.t/ (2)

where x0 is the initial value, vx is the velocity, A, !, � are
the amplitude, angular velocity and phase shift of the i-th
periodic component of a time series, Ox stands for any known
outliers, xoff for offsets, p is the Heaviside step function,
"x is the noise. The noises in geophysical time series are
correlated in time. This correlation has a great impact on any
linear parameters that are estimated from these time series
(Williams 2003).

The outliers detection and their removal plays a significant
role in the interpretation of the GNSS data. The disputable
issue here is the criterion. The most common criteria that
depend on the time series character are the removal of values
greater than 3 or 5 times the standard deviation. Bergstrand
et al. (2007) estimated the noises in the GPS time series
after removal of the outliers with 5� criterion what was
stated to be more conservative approach than the 3� one,
used for instance by Johansson et al. (2002). Dong et al.
(2006) used the method of discarding the residuals exceeding
the constant values of 100, 100 and 300 mm for east, north
and vertical components, respectively, to remove the outliers
before performing the Principal Component Analysis (PCA).
It is worth to note that sigma-based methods correspond
strictly to the normal distribution of data. However, what
about data that are not normally distributed? Having the
above in mind, we decided to investigate the influence that
the outliers removal method may have on the time series
characteristic using skewness, kurtosis (derived from the
moments of data probability density function – PDF) and
noise analysis (with Maximum Likelihood Estimation). We
took 12 extremely spread EPN time series and removed
the outliers with three chosen criterions. At the beginning,
the commonly used 3 and 5 times of standard deviations
were applied that assume data normal distribution. Then, the
Median Absolute Deviation criterion was used. Our main
goal of this research was to show how the proper removal
of outliers affects estimation of kurtosis and skewness and
therefore our understanding of the nature of the data. As
shown previously by Peinke et al. (2004) or Sura and Gille
(2003), the geophysical phenomena are not necessarily Gaus-
sian. The deviations from Gaussianity can have an impact on

the real dynamics. On the other hand, Sura and Gille (2010)
stated that the skewness is positive if the additive and multi-
plicative noises are positively correlated and the skewness is
negative if the noise terms are negatively correlated.

2 Data Processing andMethods

The time series used in the following research were obtained
within the reprocessing project (“repro-1”) according to
the EPN guidelines (Bruyninx et al. 1996) using Bernese
5.0 software (Dach et al. 2007). It was performed at the
Military University of Technology in the Centre of Applied
Geomatics that is one of the 16 independent Local Analysis
Centres (MUT LAC). The coordinates in the ITRF2005
reference frame (Altamimi et al. 2007) were obtained as the
result. The set of 12 stations with the greatest number of
outliers was selected to the research. The white and power-
law noise were assumed to be present in the time series
before the Maximum Likelihood Estimation (MLE) with
CATS software (Williams 2008). The MLE method follows
the equation of:

lik .bv; C / D 1

.2 � �/N=2 � .det C /1=2
�

exp
�
�0:5 �bvT � C �1 �bv�

(3)

The power-law noise is characterized by spectral index ›

and the amplitude A. The MLE method has been already
successfully used to evaluate noises in many researches,
described e.g. in the papers by Beavan (2005), Bergstrand
et al. (2007), Teferle et al. (2008), Bos et al. (2008).

3 Outliers Removal in the Noise
Analysis

Three methods of outliers removal were tested in this
research. The first and the second one removed the outliers
greater than 3 and 5 times the standard deviation of
time series (referred to as: 3 sigma (3�), 5 sigma (5�)),
respectively. The third one focused on the Median Absolute
Deviation – MAD (Mosteller and Tukey 1977; Sachs 1984),
of time series. No interpolation of removed data was
performed. The advantage of MAD method is being much
more robust for outliers than sigma-based methods. The
‘robust’ is being used throughout the paper when describing
the MAD method. We mean here that the data median value
makes MAD not to be as sensitive to outliers as the sigma-
based criterions are. The MAD is calculated from:

MAD D median .jXi � median.X/j/ (4)
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Fig. 1 The time series (in the ITRF2005) with the highest amount of
outliers taken for the removal analyses. For shorter time series, all data
were analyzed, for longer ones – only the data in the black boxes were

considered. Some of the time series are quite consistent and there are
just few of outliers. For others, all data are spread (SNEC, ZWEN) and
noise estimation can be disturbed by them

To use the MAD value in a similar way as the standard devi-
ation for the normal distribution, we multiply it by 1.4826
(Ruppert 2011). Later in this paper, whenever we use MAD it
is actually 3�1:4826�MAD, what makes the values of median
absolute deviation close to 3 times the standard deviation, but
never equal to. Twelve extremely noisy EPN stations (BISK,
BOLG, CNIV, BZRG, HERS, MDVO, MEDI, MOPI, NYIR,
SNEC, ZWEN, SFER) were chosen to investigate how the
outliers influence noise estimation (Figs. 1 and 2).

The number of outliers removed from the twelve of the
analyzed stations reaches the greatest value of 4% for ZWEN
station with the 3 sigma criterion, whereas it is larger than
15% for MAD for the same station (Fig. 3). The MLE
was performed after outliers removal with 3� , 5� , MAD
assuming the white plus power-law noises. As the result, the
spectral indices and noise amplitudes with uncertainties were
obtained (Fig. 4a–c).

The spectral indices for twelve of analyzed stations range
between �2 and 0. The noise amplitudes for stations with

spread time series reach quite odd and unrealistic values
(HERS, SNEC, SFER). The noise amplitude uncertainties in
case of no removal of outliers are too large and unacceptable.
All stations prove the necessity of outliers removal. The
disputable issue here is the criterion. No removal or 5�

criterion brings unacceptable results for stations with just a
few of outliers (BISK; BOLG; CNIV; BZRG; HERS – the
North and East components; MDVO; MEDI; MOPI; NYIR;
ZWEN). The noise amplitudes obtained after 3� or MAD cri-
terion are smaller than 10 mm � yr�=4 and quite close to each
other at the same time for the consistent time series. The sit-
uation changes in case of spread time series. Here, the MAD
criterion results in smaller noise amplitudes and uncertainties
as well. The most interesting time series with extremely
spread values for both horizontal and vertical changes comes
definitely from the SNEC station. The spectral index for
SNEC was estimated as close to random-walk what may
be interpreted as changes related to the monument instabil-
ity. As stated by King and Williams (2009) random-walk
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Fig. 2 The removed values with 3� , 5� and MAD criteria for SFER station, here – Up component was presented, data in the ITRF2005

Fig. 3 The percentage of outliers removed from the analysed time series using the 3� , 5� and MAD criteria. The results are presented for
topocentric components in the North, East, Up order

amplitudes for well monumented stations are probably no
higher than 0:5 mm � yr�0:5. The SNEC station with such
a spread time series reaches the highest noise amplitude.
It is still too large even after MAD outliers removal. Now,
the BZRG station with quite consistent time series with two
periods of strong reflexes from trend. No removal of outliers,
5� and 3� criteria result in similar values of amplitudes,
while the MAD criterion results in smaller and interpretable

noise parameters. It causes the reduction of amplitudes to
around 10 mm � yr�=4 with the increment of spectral index
to -1 for the Up component. Bearing in mind, that the type
and amplitude of noise takes part in estimation of the linear
parameters from the time series, one has to understand the
values he obtains. Sometimes they do not strictly reflect the
existence of the noise, but they can simply be the effect of
the wrong or even lack of data pre-analysis.
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Fig. 4 The spectral indices (a), noise amplitudes (with one sigma
error bars) (b) and their uncertainties (one sigma error bars, presented
apart from noise amplitudes) (c) estimated for all of analyzed stations
using the MLE method. The amplitudes are presented in mm � yr�=4.

The results are presented with respect to the analyzed stations. The
blue colour indicates no removal of outliers, green stands for the 5�

criterion, red for 3� , and yellow for MAD. In all cases no interpolation
of removed data was performed

4 The Probability Analysis

The probability analysis was conducted beyond the noise
analysis. The point is whether treating the time series as
normally distributed for the GNSS time series and therefore
using the 3� criterion for outliers removal is appropriate or
some robust method (here MAD) should be used. The analy-
sis was performed by estimation of moments of the data’s
probability density function (PDF) that are the skewness

and kurtosis. Their advantage in this study, however, is high
sensitiveness to outliers.

The asymmetry of PDF’s shape can be described by the
skewness:

S D E.x � x/3

�3
(5)

where x is the mode of x, � is the standard deviation of
the data and E is the expected value. If the classic Gaussian
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Fig. 5 The values of skewness and kurtosis (with no removal, 5� , 3� and MAD criteria) for analyzed stations for the North, East and Up
components, data in the ITRF2005

distribution is considered, its skewness is equal to zero. If
not, the distribution is skewed right for values greater than
zero or skewed left for values below zero. The standard error
of skewness (SES) can be computed by (Cramer 1977):

SES D
s

6n .n � 1/

.n � 2/ .n C 1/ .n C 3/
(6)

where n is the number of data in the time series. In this paper,
SES D ˙0:06. The value of 3 � SES D ˙0:18 was assumed
here as the boundary value for normal distribution.

The kurtosis is a measure of the probability distribution
“peakedness” of a real-valued random variable. The kurtosis
is computed by the formula:

K D E.x � x/4

�4
(7)

If the kurtosis is equal to 3 we deal with the normal distri-
bution. High kurtosis means that the peak near the mean is
distinct, and probability distribution decline rather rapidly.

The standard error of kurtosis can be estimated by (Cramer
1977):

SEK D
s

n2 � 1

.n � 3/ .n C 5/
(8)

where n is the number of data in the time series. Here, SEK D
˙0:12 and 3 � SEK D ˙0:36 were assumed as the boundary
values for the normal distribution. The skewness and kurtosis
put together can indicate the normally distributed time series.

Firstly, the skewness and kurtosis were calculated for
data with no removal of outliers. Then, for the 5� , 3� and
MAD criterion. The usage of 5� brought the unexpectedly
good betterment in the analyzed values (even though there
were just few values exceeding this limit), what proved that
the skewness and kurtosis are really sensitive to outliers
(Fig. 5). The differences in the skewness values after removal
of outliers with 3� and MAD criteria are mostly within 3
times of SES for the horizontal components what proves that
the use of removal criterion does not change the probability
distribution. Three stations (HERS, SNEC, SFER) in case
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Fig. 6 The probability density function for the SNEC station – the Up component with no removal (left) and after MAD (right) outliers removal

of the Up component show quite large differences between
skewness after 3� and MAD. The differences between the
kurtosis values after 3� and MAD removal in most cases fall
into 3 times the SEK. However, the differences are greater for
few stations: HERS (the East and Up components), MDVO
(the East component), SNEC (the East and Up components),
SFER (the North and Up components). One of the kurtosis
interpretations is the precision of data gathered. If kurtosis
is high, precision is also high – the peak near the mean
is very distinct (but only if the skewness is equal to 0).
In case of the inappropriate criterion of outliers removal
and no analyses of skewness, remaining outliers can have a
significant impact on kurtosis values and therefore lead to
falsified conclusions. The example of data stated as highly
precised (without analysing its skewness) is presented in
the Fig. 6. However, it is well known that high values of
kurtosis can also mean heavy tails, which is exactly what
would be expected if outliers are present. Thus, the large
value of kurtosis obtained without outliers removal is entirely
expected. Therefore the data pre-analysis is so essential
before any further estimations.

5 Discussion and Conclusions

Our main goal in this research is to show how the proper
removal of outliers affects the estimation of kurtosis and
skewness and therefore our understanding of the nature of
the data. The pre-analysis of data that includes outliers
removal has to be well-chosen to the type of time series. The
commonly used 3� criterion seems to fail in case of spread
GNSS time series, due to the fact that the standard deviation
is calculated from the whole data set. Otherwise, the MAD
criterion seems to be more appropriate for outliers removal,
since it is calculated from the median value and therefore
is much more robust for outliers than sigma-based methods.
The obvious issue is that the outliers have to be removed,

while further analyses that are to be conducted could be
really sensitive to them. As showed in this research, although
the MLE method resulted in quite consistent spectral indices,
the amplitudes of noises were unacceptable in a few cases.
They did not even differ in the range of their uncertainties,
what may result in the variety of wrong interpretations. To
show how the outliers can affect any further estimations,
the probability analysis was performed, since skewness and
kurtosis are highly sensitive to outliers. We showed that the
wrongly-chosen criterion leads to the misinterpretation on
the time series distribution and also data precision. A few of
differences of skewness and kurtosis showed in this research
were higher than the set value of 3 times the SEK and SES.
It proved that sometimes the use of 3� criterion is not proper
enough to remove outliers since the analyzed time series do
not strictly reflect the normal distribution. On the basis of the
results, the usage of the MAD criterion is recommended for
the GNSS data. Its advantages over commonly used sigma-
based criteria are quite obvious, according to the presented
paper. Being less sensitive to outliers, it removes greater
number of them, providing in this way better interpretation
of real effects. The presented paper discusses the univariate
time series. In the future, authors plan to expand the work for
multivariate cases as in Feng (2012).
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