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Abstract

Geodetic adjustment theory has been developed on the basis of a linear or nonlinear Gauss-
Markov model, in which the random errors of measurements are always assumed to be
independent of the true values of measurements themselves and naturally added to the
functional model. However, modern geodetic instruments and geodetic imaging systems
have clearly shown that the random errors of such measurements consist of two parts: one
is of local nature and has nothing to do with the quantity under observation, and the other
is proportional to the true value of measurement. From the statistical point of view, these
two types of errors are called additive and multiplicative errors, respectively. Obviously,
the conventional geodetic adjustment theory and methods for Gauss-Markov models with
additive errors cannot theoretically meet the need of processing measurements contaminated
by mixed additive and multiplicative random errors. This paper presents an overview of
parameter estimation methods for processing mixed additive and multiplicative random
errors. More specifically, we discuss two types of methods to estimate parameters in a
mixed additive and multiplicative error model, namely, quasi-likelihood and least-squares-
based methods. From this point of view, we extend the conventional adjustment theory
and methods and give a solid theoretical foundation to process geodetic measurements
contaminated by mixed additive and multiplicative random errors. Finally, we further
discuss parameter estimation with prior information.
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1 Introduction

Geodetic adjustment theory has been developed by assuming
the following model of measurements:

y D f.ˇ/ C �

E.y/ D f.ˇ/

D.y/ D W�1�2

9
=

;
; (1)

where y is a vector of measurements, f.ˇ/ is the mathe-
matical or functional model which describes the physical
or geometrical relationships between the measurements, ˇ
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is the real-valued vector of unknown parameters to be esti-
mated, � is the random error vector of the measurements.
Very often, we also assume that � is of zero mean and
variance-covariance matrix W�1�2, with W being a given
weight matrix of measurements and �2 an unknown positive
scalar (the variance of unit weight), E.�/ and D.�/ stand
for the expectation and variance-covariance matrix of the
measurements, respectively. The most important feature of
adjustment model (1) is that the random errors � are added
to the functional model f.ˇ/. In other words, the sizes or
magnitudes of random errors are independent of the true
values of measured quantities.

However, in geodetic practice, we know that this assump-
tion is not necessarily always true. For example, we know
that the accuracy of an EDM, VLBI and/or GPS baseline is
proportional to the length of the baseline itself, namely,

�2
L D a2 C b2L2; (2)

(see e.g., Ewing and Mitchell 1970; MacDoran 1979; Seeber
2003; Petrov et al. 2010), where both a and b are constants.
Physically, the constant a may be more specific to the local
environment of stations and b more to the path of propagation
of light/electronic waves (see e.g., Xu et al. 2013). From
the statistical point of view, the accuracy formula (2) is
equivalent to the following representation of random errors:

�L D �a C L �b; (3)

where �L is the random error of L, and �a and �b stand
for the random errors of mean zero and variances a2 and
b2, respectively, if �a and �b are assumed to be statistically
independent. The error representation (3) clearly indicates
that the random error �L is proportional to the measured
baseline. In geodetic practice, both �a and �b are generally
assumed to be normally distributed. For other modern space
observation technology such as SLR (see e.g. Pearlman
et al. 2002; Seeber 2003) and DORIS (see e.g. Willis et al.
2010), since they essentially utilize electromagnetic waves
for observation and go through the same physical media as
VLBI and GPS, we conjecture that errors of SLR and DORIS
baselines should also show multiplicative error behavior,
which will be a topic of research in the future.

Modern geodetic technology also fully utilizes coherent
imaging systems such as Synthetic Aperture Radar (SAR)
images and Light Detection And Ranging (LiDAR). As
is well known, SAR images are contaminated by speckle
noise (see e.g. Goodman 1976; Ulaby et al. 1986; Oliver
1991; López-Martínez et al. 2011) and the corresponding
observational equation can be represented as follows:

yij D sij .1 C �ij /; (4)

where yij is the measurement, sij the true (or noiseless) value
of the signal and �ij the random error with zero mean and
variance �2. Intensity measurements of SAR type are usu-
ally assumed to have a gamma-distribution. Other imaging
systems would also produce Gaussian multiplicative random
errors (see e.g., Tian et al. 2001). Range measurements of
LiDAR are also shown to be contaminated by multiplicative
speckle errors (see e.g., Flamant et al. 1984; Wang and Pruitt
1992; Hill et al. 2003).

The paper is organized as follows. Section 2 will first
define mixed additive and multiplicative error models. In
Sects. 3 and 4, we will discuss two important classes of
methods for parameter estimation in mixed additive and
multiplicative error models, namely, quasi-likelihood and
least squares (LS). Computational algorithms will be briefly
given. If the reader is interested in other methods such as
cumulant moment and variational methods, he may refer to,
Swami (1994) and Aubert and Aujol (2008), for example.
Actually, variational methods assume gamma-distributions
for intensity measurements and then add an extra smoothness
or regularized term to the log-likelihood of the gamma-
distributions for de-speckling or de-noising multiplicative
random errors, as can be seen in Xu (1999) and Aubert and
Aujol (2008). We will then extend the bias-corrected LS
method to the case with prior information in Sect. 5. Finally,
we will then finish our paper with some concluding remarks
in Sect. 6.

2 Mixed Additive andMultiplicative
Error Models

We will now extend the conventional Gauss-Markov adjust-
ment model (1) to account for both additive and multiplica-
tive errors. The new starting model of adjustment becomes

y D f.ˇ/ ˇ .1 C �m/ C �a

E.y/ D f.ˇ/

E.�m/ D 0; D.�m/ D †m

E.�a/ D 0; D.�a/ D †a

9
>>=

>>;

; (5)

where y and f.ˇ/ have been defined in (1), ˇ stands for
the Hadamard product of matrices and/or vectors, 1 for the
vector with all its elements being equal to unity, both of the
random errors �m and �a are of mean zero and variance-
covariance matrices †m and †a, respectively. Since the
random vector �m is multiplied to the true value of mea-
surements f.ˇ/, �m has been naturally called multiplicative
errors. As in the case of the additive error model (1), �a

in (5) is additive. Accordingly, �a is called additive errors.
To illustrate additive and multiplicative random errors, we
simulate the random errors of baselines, with the constants a

and b set to 0.05 m and 10 ppm, respectively. The generated
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Fig. 1 Illustration of the additive and multiplicative random errors of baselines: the upper panel – the additive errors; the middle panel – the
multiplicative errors; and the lower panel – the mixed additive and multiplicative errors

errors with the lengths of baselines are illustrated in Fig. 1.
It is obvious from the simulated random errors in the upper
panel of Fig. 1 that the additive random errors uniformly
scatter over different lengths of baselines. The multiplicative
errors in the middle panel of the same figure show a clear
trend of fan shape, with the amplitudes of errors increasing
with the increase of lengths of baselines.

Assuming that �m and �a are statistically independent and
applying the error propagation law to each of the measure-
ments y, we have

�2
yi

D f 2
i .ˇ/�2

mi C �2
ai ; (6)

where �2
yi

is the variance of the ith measurement of y, and
�2

mi and �2
ai are the ith diagonal elements of †m and †a,

respectively. It is obvious from (6) that the larger the true
value of measurement fi .ˇ/, the noisier the corresponding
measurement yi . When applying the same error propagation
law to the measurement vector y, we can obtain the variance-
covariance matrix of the measurements y as follows:

†y.ˇ/ D Dfˇ†mDfˇ C †a; (7)

where Dfˇ is a diagonal matrix with its ith diagonal element
being equal to fi .ˇ/. The elements of †y.ˇ/ are obviously
the functions of the parameters ˇ. For simplicity, we will use

†y to denote the variance-covariance of y. If necessary, we
can also readily take the correlation between �m and �a into
account, which will not be discussed in this paper, however.

If f.ˇ/ is linear, then the error model (5) becomes

y D .Aˇ/ ˇ .1 C �m/ C �a

E.y/ D Aˇ

E.�m/ D 0; D.�m/ D †m

E.�a/ D 0; D.�a/ D †a

9
>>=

>>;

; (8)

where A is a given design matrix, which will be assumed to
be of full rank. The model (5) will be called mixed additive
and multiplicative error models in the remainder of this
paper. In accordance with (8), we can rewrite Dfˇ as Daˇ ,
whose diagonal elements are equal to aiˇ, where ai is the ith
row of the matrix A.

3 The Quasi-LikelihoodMethod

The quasi-likelihood method was first proposed by Wed-
derburn (1974). It has since become a statistical method
to estimate the parameters in the model of type (4) and
widely applied in many areas of science and engineering.
Actually, the multiplicative error model (4) has been better
known in statistics as the generalized linear model and
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well documented in statistical books (see e.g. McCullagh
and Nelder 1989; Heyde 1997, chapter 5.3), if the function
of signal sij can be represented linearly by a number of
unknown parameters ˇ.

Wedderburn (1974) started with a set of independent
measurements yi .i D 1; 2; : : : ; n/, with expectations yi

and variances �2
i .y/, and then defined the quasi-likelihood

function QLF.yi ; yi / as follows:

@QLF.yi ; yi /

@yi

D yi � yi

�2
i .yi /

; (9)

where the variance of each yi is assumed to be the function of
yi . By letting the expression (9) equal zero over all the mea-
surements yi , Wedderburn (1974) was then able to estimate
the unknown parameters from the measurements y. If yi

can further be represented linearly by a number of unknown
parameters ˇ and if the measurements y are assumed to be
correlated, then (9) can be rewritten as follows:

@QLF.ˇ/

@ˇ
D AT †�1

y .ˇ/.y � Aˇ/; (10)

where †y.ˇ/ is the variance-covariance matrix of y whose
elements are all the functions of the unknown parameters
ˇ. The quasi-likelihood function is proved to be equal to
the maximum likelihood function, if the distribution of yi

is exponential. In general, quasi-likelihood is different from
maximum likelihood, however.

Although Wedderburn (1974) defined the quasi-likelihood
function QLF.yi ; yi / through the differential equation (9),
QLF.yi ; yi / is really not required for parameter estimation.
Actually, all what we need for parameter estimation is the
expression on the right hand side of (9), which is completely
defined by yi , its expectation yi and its variance �2

i .yi /.
When the quasi-likelihood method is applied to the mixed
additive and multiplicative error model (8), we have the
system of normal equations:

AT †�1
y . Ǒ

ql /.y � A Ǒ
ql / D 0; (11)

where Ǒ
ql stands for the quasi-likelihood estimate of ˇ.

Obviously, the system of normal equations (11) is nonlinear
and can generally be solved by using numerical methods.
Very often, one can use the Gauss-Newton method to find
the solution to (11). The quasi-likelihood estimator Ǒ

ql is
asymptotically unbiased (see e.g., McCullagh 1983) and its
variance-covariance matrix, denoted by D. Ǒ

ql /, is then given
approximately by

D. Ǒ
ql / D .AT †�1

y A/�1: (12)

It is seen from (11) that the equation system (11) has com-
pletely defined the quasi-likelihood estimator Ǒ

ql , no matter
whether we can or cannot solve for the quasi-likelihood func-
tion QLF.y; ˇ/ through the differential equation of type (9).
The system of normal equations clearly indicates that an esti-
mator can simply be constructed through a system of equa-
tions. As a result of this, the system of equations like (11)
has been called generalized estimating equations (see e.g.,
Crowder 1995; Desmond 1997; Heyde 1997; Kukusha et al.
2010; Fitzmauric 1995).

4 Least-Squares-BasedMethods

Although quasi-likelihood has become a standard method
for parameter estimation in multiplicative error models, its
associated quasi-likelihood function may hardly be derived
for a general nonlinear function f.ˇ/. Even if such a func-
tion can indeed be found by solving the corresponding
differential equations, it may not be connected with any
physically meaningful distribution function. As a result,
Xu and Shimada (2000) alternatively proposed LS-based
methods to estimate the unknown parameters in the mixed
additive and multiplicative error model (8). In this section,
we will briefly discuss the ordinary LS, the weighted LS
and bias-corrected weighted LS methods. If the reader is
interested in the error analysis of adjusted measurements and
the corrections of measurements and/or the estimation of the
variance of unit weight in multiplicative error models, she/he
is referred to Shi et al. (2014).

4.1 The Ordinary LSMethod

When applying the ordinary LS method to estimate the
unknown parameters ˇ in the model (8), we have the fol-
lowing optimization objective function:

min W F1.ˇ/ D .y � Aˇ/T .y � Aˇ/: (13)

The solution to (13) is the ordinary LS estimate of ˇ, which
is denoted by Ǒ

LS and given by

Ǒ
LS D .AT A/�1AT y: (14)

The variance-covariance matrix of Ǒ
LS is then given as

follows:

D. Ǒ
LS / D .AT A/�1AT †yA.AT A/�1; (15)

where †y is the variance-covariance matrix of the measure-
ments y.
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If we assume that the signal within a small area of pixels
in a coherent image with multiplicative noises is identical,
namely, sij remains unchanged in such a small area, then
all the corresponding measurements yij are of the same
variances. In other words, the weights of measurements yij

are all equal to each other. As a result, the estimate of sij

is simply equal to the mean value of all yij in the area.
Actually, it is exactly the local mean filter for de-noising
images contaminated by multiplicative noises.

4.2 TheWeighted LSMethod

When applying the weighted LS method to the model (8), we
have the following minimization problem:

min W F2.ˇ/ D .y � Aˇ/T †�1
y .y � Aˇ/: (16)

To derive the weighted LS estimate of ˇ, we can differentiate
F2.ˇ/ of (16) with respect to ˇ and let it be equal to zero.
After some lengthy derivations, we can finally obtain the
system of normal equations as follows:

.AT O†�1

y A/ Ǒ � AT O†�1

y y � G1.A Ǒ � y/ D 0; (17)

where

G1 D

2

6
6
6
6
6
4

.A Ǒ � y/T O†�1

y Dae1 †m
ODaˇ

O†�1

y

.A Ǒ � y/T O†�1

y Dae2 †m
ODaˇ

O†�1

y

:::

.A Ǒ � y/T O†�1

y Daet †m
ODaˇ

O†�1

y

3

7
7
7
7
7
5

;

Daei is a diagonal matrix with its kth diagonal element
being equal to .akei /, ei is the ith natural basis vector of
dimension t , ODaˇ is the estimate of Daˇ by replacing ˇ with
its corresponding weighted LS estimate Ǒ . Following Xu
et al. (2013), we can solve for the weighted LS estimate of ˇ

through the following iteration procedures:

Ǒ
kC1 D .AT O†�1

yk A/�1fAT O†�1

yk y C G1k.A Ǒ
k � y/g; k D 0; 1; : : :

(18)

where O†yk and G1k stand for computing O†y and G1 at the
point of Ǒ

k.
It is obvious from (17) that the weighted LS estimate Ǒ

is nonlinear and is expected to be biased. Xu et al. (2013)
derived the bias of Ǒ in the mixed additive and multiplicative
error model (8), which is denoted by b. Ǒ / and is simply
listed as follows:

b. Ǒ / D E.bˇ/ D N�1g2; (19)

where N D AT †�1
y A and g2 is given by

g2 D

2

6
6
6
4

trfDae1†mDaˇ†�1
y g

trfDae2†mDaˇ†�1
y g

:::

trfDaet †mDaˇ†�1
y g

3

7
7
7
5

:

By limiting themselves to the linear term of Ǒ with
respect to the random errors �m and �a, Xu et al. (2013)
also derived the first order approximation of the variance-
covariance matrix of the weighted LS estimate Ǒ , which is
denoted by D1. Ǒ / and given as follows:

D. Ǒ / D .AT †�1
y A/�1: (20)

After taking the bias (19) into account, we obtain the approx-
imate mean squared error (MSE) matrix of Ǒ as follows:

M. Ǒ / D D. Ǒ / C b. Ǒ /Œb. Ǒ /�T

D .AT †�1
y A/�1 C .AT †�1

y A/�1g2gT
2 .AT †�1

y A/�1;

(21)

where M. Ǒ / stands for the MSE matrix of Ǒ .

4.3 The Bias-CorrectedWeighted LS
Method

Bias analysis in Xu and Shimada (2000) and Xu et al. (2013)
clearly indicates that the bias of the weighted LS estimate
is solely caused by the non-zero term of derivatives of the
variance-covariance matrix †y with respect to ˇ. Thus both
works propose deleting the corresponding term in the normal
equations, namely the third term on the right hand side of the
normal equations (17), to remove the bias from the weighted
LS estimate Ǒ . As a result, they are able to construct the bias-
corrected weighted LS estimate of ˇ.

When the same idea is applied to the mixed additive and
multiplicative error model (8), they derive the bias-corrected
weighted LS estimate of ˇ, which is denoted by Ǒ

bc and
solved through the following system of normal equations:

.AT O†�1

y A/ Ǒ
bc � AT O†�1

y y D 0; (22)

where Ǒ
bc is the bias-corrected WLS estimate of ˇ. Equiva-

lently, Ǒ
bc can be formally rewritten as follows:

Ǒ
bc D .AT O†�1

y A/�1AT O†�1

y y; (23)
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which is unbiased up to the second order approximation
(Xu et al. 2013). The variance-covariance matrix of Ǒ

bc is
denoted by D. Ǒ

bc/ and given by

D. Ǒ
bc/ D .AT †�1

y A/�1: (24)

Because the matrix O†y depends on Ǒ
bc , (23) is actually a

nonlinear system of equations and can, in general, be solved
numerically. If the Gauss-Newton method is used to solve
for the bias-corrected weighted LS estimate, we have the
following iterative formula:

Ǒ kC1

bc D Ǒ k

bc�.AT O†�1

yk A/�1AT O†�1

yk .A Ǒ k

bc�y/; k D 0; 1; : : :

(25)

(see also McCullagh 1983; McCullagh and Nelder 1989;
Dennis and Schnabel 1996; Xu et al. 2013).

We should like to note that given some approximate
values, say ˇ0, †m0 and †a0, we can then replace O†y of (22)
with †y0 (computed at ˇ0, †m0 and †a0), which is exactly
the conventional practice of adjustment of geodetic networks
such as EDM, VLBI and GPS baselines. In other words, the
conventional weighted LS adjustment of baseline networks
can be interpreted as a special case of the bias-corrected
weighted LS method with given approximate values. Never-
theless, the effectiveness of using approximate values would
depend on how far away these approximate values deviate
from their true values, as also pointed out and demonstrated
in Xu et al. (2013).

5 Mixed Additive andMultiplicative
Random Error Models with Prior
Information

In this section, we will extend the parameter estimation
in mixed additive and multiplicative random error models
to the case with prior information. Prior information will
only be assumed in the form of the first two moments
on the unknown parameters ˇ, i.e. its prior mean � and
prior variance-covariance matrix. Bearing the concept of
additive and multiplicative random errors in mind, we will
accordingly assume two types of prior variance-covariance
matrices. As in the case of Gauss-Markov models with addi-
tive random errors, the first type of prior variance-covariance
matrices is assumed to be independent of ˇ and symbolically
denoted by †0. If prior information on ˇ is obtained from
measurements contaminated by multiplicative errors other
than the measurements y in the mixed additive and multi-
plicative error model (8), then the prior variance-covariance
matrix will surely be dependent on ˇ, as can be readily seen
in (24), for example. Thus, the second type of prior variance-
covariance matrices is assumed to be the functions of ˇ and

denoted by †ˇ . Of course, prior information can also be
presented in the form of prior distributions. In this case,
one can use Bayesian inference to estimate the unknown
parameters. For more information, the reader is referred to
Xu (1999).

If the model (8) is combined with the first type of prior
variance-covariance matrices, namely, †0, then the corre-
sponding generalized (weighted) LS objective function will
become

min W F3.ˇ/ D .y � Aˇ/T †�1
y .y � Aˇ/ C .ˇ � �/T †�1

0 .ˇ � �/:

(26)

According to the bias analysis in Xu and Shimada (2000) and
Xu et al. (2013), we know that †y will create a bias in the
solution to (26). Since the prior variance-covariance matrix
†0 is independent of ˇ, it will not contribute extra terms to
the bias of the solution. By following the same rationale as
in Sect. 4.3, we can ignore the dependence of †y on ˇ as if it
were independent of ˇ and, as a result, readily construct the
bias-corrected estimator of ˇ with prior information, denoted

by Ǒ p0

bc , as follows:

Ǒ p0

bc D .AT O†�1

y A C †�1
0 /�1.AT O†�1

y y C †�1
0 �/: (27)

The first order accuracy of Ǒ p0

bc is then given by

D. Ǒ p0

bc/ D .AT †�1
y A C †�1

0 /�1: (28)

If the second type of prior information is combined with
the measurements from the model (8), we should then have
the following optimization problem:

min W F4.ˇ/ D .y � Aˇ/T †�1
y .y � Aˇ/ C .ˇ � �/T †�1

ˇ .ˇ � �/:

(29)

Obviously, both of †y and †ˇ will now directly contribute
terms to the bias of the optimal solution to the optimization
problem (29), according to Xu and Shimada (2000) and Xu
et al. (2013). In the similar manner to (27), we can construct
the bias-corrected estimator of ˇ with prior mean � and prior

variance-covariance matrix †ˇ , which is denoted by Ǒ p1

bc and
simply listed as follows:

Ǒ p1

bc D .AT O†�1

y A C O†�1

ˇ /�1.AT O†�1

y y C O†�1

ˇ �/; (30)

which is unbiased up to the second order approximation, and
its first order accuracy is given by

D. Ǒ p1

bc/ D .AT †�1
y A C †�1

ˇ /�1: (31)

As in the case of the bias-corrected weighted LS
estimation, the bias-corrected stochastic inference (or LS
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collocation) with prior information in mixed multiplicative
and additive error models is essentially of the same form as
in the case of purely additive error models, as correctly
pointed out by one of the reviewers. However, unlike
stochastic inference in additive error models, the bias-
corrected stochastic inference with prior information in
mixed multiplicative and additive error models requires

that Ǒ p1

bc of (30) be computed iteratively, since the

right hand side of (30) contains the unknowns Ǒ p1

bc

as well. Nevertheless, if one would simply apply the
conventional principle of stochastic inference to mixed
multiplicative and additive error models, one would end
up with a biased estimator, which would not be of
the same form as in the case of purely additive error
models.

In the one-dimensional case, namely,

yij D .1 C "mij /sij C "aij ;

then the bias-corrected LS estimate of sij with prior informa-
tion can be rewritten as follows:

Osij D �ij C �2
�

�2
ms2

0ij C �2
a C �2

�

.yij � �ij /; (32)

where �ij is the prior mean of sij , �2
� is the prior variance

of �ij , s0ij is some approximate value of sij , and �2
m and

�2
a are the variances of the multiplicative and additive errors

"mij and "aij , respectively. By properly choosing the values
of �ij , �2

�, s0ij , �2
m and �2

a , one can then construct the filter
by Kuan et al. (1985) for image de-noising.

6 Concluding Remarks

Geodetic adjustment has been developed on the basis of
Gauss-Markov models with additive random errors. The
most important feature of such a Gauss-Markov model with
additive random errors is that the accuracy of a measurement
has nothing to do with the true value of the measurement.
However, geodetic practice has clearly demonstrated that
random errors of EDM, VLBI and GPS baselines indeed
change with the length of a baseline. In other words, random
errors of such types usually consist of two parts: one behaves
more or less constant and may reflect only random effects
of local nature, while the other is proportional to the length
of the baseline and could, very likely, reflect total effect
of the propagation path between the two stations. Such
error characteristics are part of modern geodetic coherent
imaging systems such as SAR and LiDAR. Obviously, the
conventional adjustment theory that has been developed on

the assumption of additive random errors cannot theoretically
meet the need to process geodetic measurements that are
contaminated by multiplicative and/or mixed additive and
multiplicative random errors.

In this paper, we have briefly reviewed two types of
methods for parameter estimation in mixed additive and
multiplicative error models, namely, quasi-likelihood and
least-squares-based methods, with or without prior informa-
tion. Quasi-likelihood, though theoretically connected with
distributions, can be used directly for parameter estimation
without any assumption on distributions. If there exist mul-
tiple solutions to the generalized estimating equations, no
criterion is available for quasi-likelihood to pick up the right
solution, however. The LS-based methods have a clearly
defined objective function. Thus the sense of optimality of
LS-based estimates is well defined. For the linear model (8),
quasi-likelihood, the ordinary and bias-corrected weighted
LS methods can all warrant an unbiased estimate of the
unknown parameters, while the weighted LS method will
generally lead to a biased estimate. Quasi-likelihood and the
bias-corrected weighted LS method are more efficient than
the ordinary LS method. We have also extended the bias-
corrected LS estimate to the case with prior information,
which can either be given in the form of prior mean and
a parameter-free or a parameter-dependent prior variance-
covariance matrix.
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