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Abstract

It has long been known that the Errors-In-Variables (EIV) Model is a special case of the
nonlinear Gauss–Helmert Model (GHM) and can, therefore, be adjusted by standard least-
squares techniques in iteratively linearized GH-Models, which is the approach by Helmert
(Adjustment Computations Based on the Least-Squares Principle (in German), 1907) and –
later – by Deming (Phil Mag 11:146–158, 1931; Phil Mag 17:804–829, 1934).

Apart from the fact that there are, at least, two other nonlinear models that are equivalent
to the above GH-Model, thus allowing two more classical least-squares approaches based
on iterative linearization, it was the seminal paper by Golub and van Loan (SIAM J Numer
Anal 17:883–893, 1980) in which they proved that a purely nonlinear approach can be
followed as well, thereby avoiding any model linearization. They called such an approach
“Total Least-Squares adjustment” by which any normal equations may be replaced by a
simple eigenvalue problem, as long as only diagonal dispersion matrices are involved.

Here, an attempt will be made to show the differences and parallels in various algorithms,
even in the fully weighted case, which obviously all generate the same results, but without
necessarily showing equal efficiency in doing so, as is well known since the publications by
Schaffrin and Wieser (J Geodesy 82:415–421, 2008), Fang (Weighted Total Least-Squares
solutions with applications in geodesy, 2011), and Mahboub (J Geodesy 86:359–367, 2012).
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1 Introduction

The Errors-In-Variables (EIV) Model has recently seen a
lot of attention since, in accordance with Golub and van
Loan (1980), it can be treated in its nonlinear form by a
least-squares approach that they coined “Total Least-Squares
adjustment”. It eventually leads to a (generalized) eigenvalue
problem that needs to be solved in lieu of the sequence of
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normal equations that would result from a traditional “Least-
Squares adjustment” within iteratively linearized models.
The latter approach dates, at least, back to Helmert (1907),
but has as well been used by Deming (1931, 1934) for
the approximation of curves and, more recently, by Neitzel
(2010) to determine the parameters of a similarity transfor-
mation.

In contrast, the nonlinear Total Least-Squares (TLS)
approach which, in its original formulation, could tolerate
only “element-wise weighting” and thus only diagonal
weight matrices, has since been generalized in several steps
by Schaffrin and Wieser (2008), Fang (2011), and Mahboub
(2012) to now accept any positive-definite weight matrices.
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This development will be presented in the following Sect. 2,
thereby showing how the more specialized algorithms can be
derived from the more general ones by simplification.

Moreover, it should be noted that progress has also been
made towards the use of positive-semidefinite dispersion
matrices in TLS adjustment, which may be handled as
described by Schaffrin et al. (2014). These cases are quite
relevant whenever the random error matrix needs to show a
certain pattern or structure after the adjustment. Due to the
limited space, these advanced methods will not be discussed
below.

Instead, attention will be paid to a triplet of classical non-
linear models that all can be constructed to be equivalent to
the EIV-Model and, furthermore, may undergo a sequence of
Least-Squares adjustments via iterative linearization which,
in the end, converge to the very same TLS solution. This will
be the theme in Sect. 3 although many details have to be left
out; for those, see Schaffrin (2015).

2 Nonlinear TLS Adjustment
in an EIV-Model

2.1 Fang’s Algorithm

Let the EIV-Model be defined by
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„ ƒ‚ …
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where

y is the n � 1 observation vector;
A is the n � m (random) coefficient matrix with full column

rank (aka “data matrix”);
EA is the n � m (unknown) random error matrix associated

with A;
� is the m � 1 (unknown) parameter vector;
ey is the n � 1 (unknown) random error vector associated

with y;
eA is the nm � 1 vectorial form of the matrix EA;
Q is the n .m C 1/ � n .m C 1/ block-diagonal pos.- def.

cofactor matrix;
P WD Q�1 is the corresponding block-diagonal pos.- def.

weight matrix;
�2

o is the (unknown) variance component (unit- free);
Cov

˚

ey; vecEA

� D 0 for the sake of simplicity.

The model generalizes the one used by Schaffrin and
Wieser (2008) where a Kronecker product structure for

QA D P �1
A D Qo ˝ Qx (2)

was assumed, as well as the one used by Golub and von Loan
(1980) who only allowed diagonal cofactor matrices with

Qo WD Im; Qx WD Qy D Diag
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(3)

The objectives of a nonlinear Total Least-Squares (TLS)
adjustment are now based on the principle

eT
y Pyey C eT

APAeA D min : s:t: .1a/ ; (4)

which can be given the equivalent form of a Lagrange target
function, namely:
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Consequently, the Euler-Lagrange necessary conditions
result in the following system of nonlinear “normal
equations”:
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which still needs to be reduced by partial elimination since
the sufficient condition is fulfilled as
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Now, (6a, b) are transformed to provide the residual vectors
through
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so that (6d) can be rewritten as
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being nonsingular, thus leading to
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and, together with (6c), to the system
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Obviously, the estimated parameter vector is now obtained as
in Fang (2011, p.27) via
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and allows updates for Q1, b�, and ẽA, from which a new
estimate b� results.

The Total Sum of weighted Squared Residuals (TSSR)
may now readily be computed from
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so that a suitable variance component estimate may be
obtained through
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= .n � m/ D TSSR= .n-m/ (13)

as the redundancy in model (1a, b) is still n-m.
Alternatively, system (10) can be given the asymmetric

form
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which would then provide the estimated parameter vector
through
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and should lead to a similar iteration as before. Note that
(15) also appears as formula (21) in Xu et al. (2012), but

essentially represents a variant of Fang’s algorithm; also, cf.
Fang (2013) where further alternatives are presented.

2.2 Mahboub’s Algorithm

On the other hand, combining (9) with (6c) leads to the
following sequence of identities:
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where K denotes a nm � nm ”commutation matrix” that is
also known as “vec-permutation matrix”; for more details,
see Magnus and Neudecker (2007).

Obviously, (16) translates into the estimated parameter
vector
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and, from (16), with

R1
b� D � QET

A
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without necessarily implying that R1 D � QET
A . Therefore, the

sequence of solutions to (15) may differ from the sequence
of solutions to (17a) when iteratively updating Q1, b�, and R1,
before a new parameter vector estimate b� can be found; yet
the ultimate convergence points will be the same.

Again, the TSSR can be computed from (12) which will
lead to the variance component estimate in (13).

2.3 A New Variant of Mahboub’s Algorithm

After giving (16) the form
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the estimated parameter vector may as well be obtained

from
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thus allowing updates for Q1 and b�. This algorithm will be
further explored in the near future.

2.4 The Schaffrin–Wieser Algorithm

This algorithm was designed for the somewhat more special
case where the cofactor matrix QA can be split into a
Kronecker product, thereby indicating that all columns have
cofactor matrices proportional to each other. This implies
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while (12) and (13) generate first the TSSR and then a
suitable variance component estimate.

2.5 The Golub-van-Loan Algorithm

Now, the condition (19) is further specialized to
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so that (22a) becomes
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and this, from (24a, b), becomes
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(24a) and (24c) allow the problem to be rephrased as a
generalized eigenvalue problem, specifically as:
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with the variance component estimate
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The original situation, treated by Golub and van Loan
(1980), was characterized by the further specializations
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which, in turn, lead to the standard eigenvalue problem
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whose solution provides the Total Least-Squares Solution

(TLSS).
In the next section, a few equivalent models will be

presented for which, traditionally, an identical weighted
LEast-Squares Solution (LESS) would have been found after
iterative linearization.
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3 Traditional Models, Equivalent
to the EIV-Model

3.1 The Nonlinear Gauss–Helmert Model

Here, the new vectors
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with the nonlinear vector-valued vector function
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due to the term EA � �, forms an equivalent Gauss–Helmert
Model that would traditionally be linearized for an iterative
Least-Squares adjustment.

The truncated Taylor series, following Pope (1972), then
reads:
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with suitable approximations �o and �o WD Y � 0� where 0�
here denotes a “stochastic zero vector” of size n .m C 1/�1.
This leads first to
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and eventually to the linearized Gauss–Helmert Model:
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Note that the weighted LEast-Squares Solution (LESS) is
now being formed through the normal equations
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and the residual vectors through
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Looking at the next and all the following iteration steps,
it becomes clear that this represents one specific iterative
solver of Fang’s TLS normal equations (11).

For more details, see Fang (2011, ch. 4.4), Snow (2012,
ch. 4), and the forthcoming OSU-Report by Schaffrin (2015),
as well as Neitzel (2010) for a specific application.

3.2 The Nonlinear Gauss–MarkovModel

In this case, the expectation of the data matrix A is introduced
as a new n � m ”parameter matrix”

„A WD A � EA with �A WD vec„A; (36)

leading to the equivalent Gauss-Markov Model
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with the nonlinear vector-valued vector function

aN W R.nC1/m ! Rn (37b)

due to the term „A � �. The linearization of model
(37a, b) with respect to the approximations �o and
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and finally to the linearized Gauss–Markov Model
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After a number of further manipulations, the weighted LESS
for model (39a, b) can be shown to fulfill the “normal
equations”
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which nicely corresponds to (35a, b). More details can be
found in the forthcoming OSU-Report by Schaffrin (2015).

3.3 TheModel of Direct Observations
with Nonlinear Constraints

Now, the expectation of the observation vector y is intro-
duced as just another parameter vector �y of size n�1 so that
the new model combines the direct observation equations
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with the nonlinear constraints

�y � „A � � D 0 (41b)

which might be linearized into
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In the already mentioned OSU-Report by Schaffrin (2015), it
will be shown how the resulting iterative LESS’s do converge
to the Total Least-Squares Solution.

For another take on this model, refer to Donevska et al.
(2011) who stress the equivalence to orthogonal regression
as applied by Deming (1931, 1934).

4 Conclusions

It has been clarified that the TLS approach towards the EIV-
Model requires a nonlinear treatment of the nonlinear model.
A number of different algorithms have been presented to
generate the Total Least-Squares Solution from a certain
set of nonlinear normal equations. A triplet of conventional
nonlinear models has also been considered, suggesting that
the LEast-Squares Solutions from iterative linearization do
converge to the nonlinear TLS-Solution in all three cases.
Most of the details, however, will be published in a forth-
coming OSU-Report, due to the space restrictions for these
Proceedings.
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