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Abstract

It is well known that the inverse gravimetric problem is generally ill-posed and therefore its
solution requires some restrictive hypotheses and strong numerical regularization. However,
if these initial assumptions are improperly used, the final results could be theoretically
and physically admissible but far from the actual mass density distribution. In this work,
a Bayesian approach to estimate the mass density distribution from gravity data coupled
with a-priori geological information is presented. It requires to model the masses in voxels,
each of them characterized by two random variables: one is a discrete label defining the
type of material (or the geological unit), the other is a continuous variable defining the mass
density (considered constant inside the single voxel). The a-priori geological information is
translated in terms of this model, providing for each class of material the mean density and
the corresponding variability and for each voxel the a-priori most probable label. Basically
the method consists in a simulated annealing aided by a Gibbs sampler with the aim to
find the MAP (maximum a posteriori) of the posterior probability distribution of labels
and densities given the observations and the a-priori geological model. Some proximity
constrains between labels of adjacent voxels are also introduced into the solution.

The proposed Bayesian method is here tested on two simulated scenarios. In particular
the first is an example of bathymetry recovering, while the second a salt dome shape
estimation. These experiments show the capability of the method to correct the possible
inconsistencies between the a-priori geological model and the gravity observations: 86%
and 60% of wrong voxels have been corrected in the first and second test respectively.
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1 Introduction

The intrinsic indetermination of the inverse gravimetric prob-
lem is well known and the description of the whole set of
possible internal masses, given the external gravity potential,
has been fully described on a purely mathematical ground
(e.g. Parker 1975; Sampietro and Sansò 2012). However, in
order to obtain realistic solutions, some constraints should be
added in the solution of the inverse gravimetric problem. For
instance the solution can be derived from the “experience”
of an operator assisted by fast forward algorithms (Parker
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1973; Caratori Tontini et al. 2009; Gordon et al. 2012) and
from generic geological information by means of trial and
error procedures.

Another possible solution could be to add severely con-
straints in terms of mass contrast leading to search for the
geometry of discontinuity surfaces (Barbosa et al. 1997,
1999; Fedi and Rapolla 1999; Fedi 2006). This approach is
commonly called non-linear inverse problem due to the non
linearity of the functional relating gravity observations and
geometrical parameters of the sources. On the contrary in the
so-called linear inversion (Last and Kubik 1983; Guillen and
Menichetti 1984; Barbosa and Silva 1994) there is a linear
relation in terms of Newtonian integral between the mass
density and the functional of the external gravity potential,
which is usually described as a summation on volume ele-
ments (voxels). Considering the linear problem the relation
between data and unknowns is univocal when the number of
voxel is conveniently taken smaller than the number of obser-
vations. However this relation is highly unstable because,
as the dimension of voxels decreases, we are approaching
the continuous setting, where non-uniqueness is large, as
recalled above. Therefore the solution is usually obtained by
imposing proper constraints. This can be done either under
deterministic models (Medeiros and Silva 1996) or stochastic
ones (Tarantola and Valette 1982; Tarantola 2002). In any
case this approach is reconducted to the optimization of
some non-linear, often quadratic, functionals of the gravity
observations and the unknown mass distribution. This opti-
mization can be obtained by Monte Carlo Markov Chain
methods, including simulated annealing (Nagihara and Hall
2001; Roy et al. 2005), as it is very well known in literature.
Naturally the relation between sources and observations, i.e.
the forward model, can be conveniently reckoned using a
Fourier approach that greatly speeds up the computational
time.

This paper is in the flow of the above way of reason-
ing, but trying to incorporate also the interactive approach
mentioned at the beginning by modelling the geological
information in a Bayesian mode as prior probability. This is
already present in geophysical literature even coupling gravi-
metric and magnetic observations (e.g. Bosch 1999, 2004;
Bosch and McGaughey 2001; Mosegaard and Tarantola
2002; Bosch et al. 2006; Guillen et al. 2008). In particular we
propose here an approach similar to the one shown in Guillen
et al. (2008) in which a field of discrete variables (namely
geological units) is introduced as an additional unknown,
with some prior information. As it will be explained in the
following, the main differences with respect to Guillen et al.
(2008) are in the way the prior information is formalized
and in the algorithm used to find the solution of the inverse

problem. Note that this work represents only a preliminary
study, mainly focused on the mathematical formalization
of the problem and that the improvement of the method is
still a matter of investigation. Wishing to estimate a MAP
(Maximum A Posteriori) of our posterior distribution, we are
facing an optimization problem with part of the variables
which are discrete. The proposed solution resorts to an
application of a Gibbs sampler combined with a simulated
annealing (Smith and Roberts 1993; Sansò et al. 2011), as it
can be found in a large part of literature; here the application
of the method to the image analysis, with the seminal paper
by Geman and Geman (1984), is worth being mentioned.

A remark however can be put forward already in this intro-
duction, namely that while image analysis deals only with
“local” observations, i.e. observations that solely depend on
the pixel to be updated in the Gibbs sampler, in our case any
variation of density at any point will instead affect all the
observable gravity anomalies wherever they are.

2 Problem Formalization

Similarly to Guillen et al. (2008) the inversion algorithm
is developed assuming that some geological information is
available in the studied region. In details, we suppose to
know a list of all the possible geological units present in
the area and their approximate geometrical distribution (e.g.
from geological sections). We also suppose to know for each
geological unit the most probable density and its variability
(e.g. from literature). However, while in Guillen et al. (2008)
only the boundaries of the geological units can be modified,
in case merging separated portions of features or removing
isolated ones, in the proposed method the formalization of
the prior probability allows a more general solution to the
problem, e.g. the possibility to generate new features.

In the following we formalize these assumptions in a
Bayesian scheme: we start from the Bayes theorem in the
usual form (Bayes 1763; Box and Tiao 2011):

P .xjy/ _ L .yjx/ P .x/ (1)

where y is a vector of observable quantities, while x is a
vector of body parameters. The investigated volume is split
into voxels, Vi , with index i D 1; 2; : : :; N ; each voxel will
carry two parameters .�i ; Li / where �i is the voxel mass
density and Li is a “label” attributing to Vi the presence of a
certain geological unit chosen from the a-priori archive (e.g.
water, sediment, salt, rock of a given type, etc.). So �i is
a continuous variable and Li a discrete one among the M

integers denoting the various materials.
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Crucial is the way in which the prior probability P .x/

is supplied, namely the shape of the distribution P .x/ D
P .L1; �1I L2; �2I : : :I LN ; �N /. We assume that:

P .x/ D
NY

iD1

P .�i jLi / � P .L/ D

D
NY

iD1

P .�i jLi / � P .L1; L2; : : :; LN / (2)

meaning that, once a label Li D ` has been chosen for Vi ,
the corresponding density will follow the law P .�i jLi D `/,
which in our case is a normal distribution:

P .�i jLi D `/ � N
�
�`; �2

`

�
(3)

with the mean �` and the variance �2
` given by geological lit-

erature. In this respect a comprehensive set of rock properties
can be found for instance in Christensen and Mooney (1995).
As for the prior P .L/ � P .L1; L2; : : :; LN /, we assume to
have a Gibbs distribution (Azencott 1988):

P .L/ _ e�E .L/ (4)

where the energy E .L/ depends only on the values `o
i of Li

provided by the geological model, as well as from cliques
(Geman and Geman 1984) of order two expressing the fact
that the value of Li is more likely to be equal to the value
of the labels of the nearest neighbour voxels according to the
following rules:

P .Li D `jL�i / _ e
��s2.Li ;`

o
i /��

P
j2�i

q2.Li ;Lj /
(5)

where � , � are parameters to be empirically tuned,

s2
�
Li ; `o

i

� D s2
i D

(
0 if Li D `o

i

˛i if Li ¤ `o
i

(6)

q2
�
Li ; Lj

� D q2
ij D

(
ai if Li D Lj

aij if Li ¤ Lj

(7)

with Vj 2 �i and �i is the neighbourhood of the voxel Vi

defined by the cliques of order two, as mentioned above.
Note that given the geological model it is possible to

create a table of proximity of geological units and then,
by tuning ˛i , ai and aij , to create a hierarchy of the most
probable values for Li . For example supposing to have
three units, ` D f1; 2; 3g, and a proximity table as the

Fig. 1 Example of proximity table. The geological unit 1 can be close
to unit 2, but not to unit 3

one presented in Fig. 1, this translates into the following
definition:

s2
i D

8
<̂

:̂

0 if Li D `o
i

˛ if Li is a geological neighbour of `o
i

ˇ if Li is not a geological neighbour of `o
i

(8)

q2
ij D

8
<̂

:̂

a if Li D Lj

b if Li is a geological neighbour of Lj

c if Li is not a geological neighbour of Lj

(9)

with ˇ > ˛ > 0 and c > b > a.
Summarizing, the geological information enters into the

solution providing the set of the possible geological units (i.e.
the possible labels) with their mean density and its variabil-
ity, the neighborhood relationship between the different geo-
logical units and the most probable value `o

i of each voxel.
All these data can be derived from basin geological studies
(e.g. geological sections or maps) or through geophysical
techniques.

Two remarks are in order: the first is that L, with prior
P .L/, is indeed a Markov random field (MRF), see Rozanov
(1982). The second is that the final result of our optimization
will depend from the chosen value of all the constants, which
have to be tuned on the specific example.

As always for a MRF, the characteristics, namely the
conditional distributions (5), determine a joint distribution
P .L/ such that:

log P .L/ / �1

2
�

NX

iD1

s2
�
Li ; `o

i

� � 1

2
�

NX

iD1

X

j 2�i

q2
�
Li ; Lj

�
:

(10)

The logarithm of the posterior distribution (1) will be writ-
ten as:

log P .xjy/ D log P .�; Lj�go/ _

_ �1

2
.�go � A�/T C�1

�g .�go � A�/ C
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� 1

2
.� � �/

T C�1
� .� � �/ � 1

2
�

NX

iD1

s2
�
Li ; `o

i

�C

� 1

2
�

NX

iD1

X

j 2�i

q2
�
Li ; Lj

�
(11)

where we recall that �go is the vector of observed gravity
anomalies, C�g its noise covariance matrix, A is the forward
modelling operator from densities to gravity anomalies, �

and � the vectors of components �i and �i D � .`i /, C� the
corresponding covariance matrix and s2

�
Li ; `o

i

�
, q2

�
Li ; Lj

�

given by (6) and (7). This is the target function we want to
maximize with respect to �i and Li .

The maximization of (11), due to the fact that some
variables are discrete, is never an easy task, as we know
from other important problems in geodesy, e.g. the GNSS
initial phase ambiguity fixing (De Lacy et al. 2002). The idea,
mutuated from image analysis, is to apply a Gibbs sampler,
chained with a simulated annealing (Casella and Robert
1999). In order to apply it to both the variables .�i ; Li /,
which are functions of the voxel Vi , we have simplified
the problem by considering �i as a discrete variable too. In
practice we have substituted the normal distribution (3) with
a discrete distribution on K values, e.g. on five argumental
values taken at the average �`, and at �`˙�`, �`˙2�` respec-
tively. Of course to each argument the proper probability is
assigned, according to the normal law. Once this is done, the
Gibbs sampler is applied by drawing one couple .�i ; Li / at
a time, holding fixed all the other values and following a
simple updating routine. The probabilities of the sampling
are computed from (11) letting �i run over its K values and
`i run over 1; 2; : : :; M ; in this way we have a table of K�M

knots with their probabilities.
Actually the probability of x is modulated by introducing

a “temperature” parameter T :

PT .x/ _ e
1
T log P .xjy/ (12)

and T is slowly reduced at each step (e.g. by 5% of its value).
In this way starting from a very large T , we obtain a sequence
of samples converging in probability to the point x where the
maximum of log P .xjy/ is achieved (Azencott 1988).

3 Numerical Experiment

In order to assess the effectiveness of the presented Bayesian
approach, which is able to consider also qualitative geolog-
ical information, two simple experiments are carried out.
They consist in recovering the mass density distribution
of 3D synthetic models from their gravitational field. The
density of each voxel is assumed to be equal to the mean

density of the associated geological unit and moreover the
model is assumed constant along one planar direction, i.e.
all the vertical cross sections in this direction are equal.
From this reference model the two inputs of the inversion
algorithm, i.e. the gravitational signal and the approximate
geological model, are simulated. In particular the latter is
obtained by slightly modifying the labels of the reference
model. The inversion algorithm is therefore applied and the
result is compared with the reference model in a closed-loop
test.

In this work we will present two numerical examples:
the first simulates the recovering of a bathymetry, while the
second consists in recovering the shape of a salt dome.

In the bathymetry model only two geological units
are considered, water and bedrock, defined by �w D
1;000 kg m�3, �w D 5 kg m�3 and �b D 2;900 kg m�3,
�b D 50 kg m�3 respectively. The investigated area is a
square of 30 km side and has a depth of 5 km. A vertical cross
section of the synthetic model, displayed in terms of “labels”,
is represented in Fig. 2a. The volume is modelled by means
of 1,200 rectangular prisms, each of them of dimensions
1:5 km (x) � 5:0 km (y) � 0:5 km (z) and its gravitational
observations are simulated by means of Nagy equations
(see Nagy 1966) in a noiseless scenario. In particular the
observations are generated on a regular grid at an altitude of
250 m and with a spatial resolution of 1 km, thus simulating
the result of an aerogravimetric flight. As explained above,
the geological model is simulated by slightly modifying the
reference model as shown in Fig. 2b. The two parameters
� and � are empirically set to the values of 0:833 and
0:733 respectively and finally the values of the labels are
randomly initialized from a uniform distribution (i.e. drawn
with an infinite temperature in the simulating annealing). The
solution is obtained in about 5;000 iterations and about 4 h
on a common personal computer. A vertical cross section of
the resulting synthetic model is depicted in Fig. 2c showing
how the error in the geological model is properly corrected.
In fact 86% of the wrong labels are corrected and the error
on density has a standard deviation of 216 kg m�3.

In the salt dome experiment three geological units are
considered: salt dome (�dome D 2;000 kg m�3, �dome D
50 kg m�3), salt (�salt D 2;700 kg m�3, �salt D 50 kg m�3)
and sediments (�sed D 3;000 kg m�3, �sed D 50 kg m�3).
The volume is modelled by means of 2,400 voxels, each of
them with size of 0:4 km (x) � 0:1 km (y) � 0:3 km (z). The
investigated area has a planar size of 3 km � 2 km and has a
depth of 6 km. The geological units of a vertical cross section
of the synthetic model are shown in Fig. 3a. The gravitational
signal is simulated using point masses into a white noise
scenario (noise standard deviation ��g D 1 mGal). The sim-
ulated geological model is shown in Fig. 3b. In Fig. 4 three
examples of the prior distribution are depicted, thus showing
its dependence from the function s2 and q2 defined in (8)
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(a) (b)

(c)

Fig. 2 Vertical cross sections representing the geological units (“labels”) of the bathymetry test. (a) reference model; (b) geological model;
(c) solution

Fig. 3 Vertical cross sections
representing the geological units
(“labels”) of inputs to the salt
dome test. (a) reference model;
(b) geological model
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(b)

(a)

(c)

Fig. 4 Vertical cross sections representing the relative frequency of
each geological unit (“labels”) obtained from 2,000 realizations of the
prior distribution. Each row is computed assuming different values of
the prior parameters. (a) � D 0:6, � D 0:03, s2 D f0; 1; 10g 8 i and

q2 D f0; 1; 10g 8 i; j ; (b) � D 0:6, � D 0:03, s2 D f0; 0:5; 5g 8 i and
q2 D f0; 0:5; 5g 8 i; j ; (c) � D 0:6, � D 0:03, s2 D f0; 0:01; 0:1g 8 i

and q2 D f0; 0:5; 2g 8 i; j
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(a) (b)

Fig. 5 Vertical cross sections representing the solution of the salt dome test. (a) geological units; (b) density

and (9). These sample distributions are obtained by counting
the occurrences of each geological unit for each voxel and
then computing the corresponding relative frequencies over
2;000 samples. From these three examples it can be noticed
that the s2 function controls the “certainty” of the geological
unit of each voxel (the closer are the numerical values of the
parameters ˛ and ˇ in (8), the more non-informative is the
prior), while q2 is related to the “certainty” of the geological
unit boundaries (the closer are the numerical values of a, b

and c in (9), the more unreliable are the boundaries). As for �

and � , they are constants that practically controls the relative
weight in the prior (2) between the density information and
the geometrical one.

The solution is carried out by computing the prior fixing
� D 0:03, � D 0:6, ˛ D 1, ˇ D 10, a D 0, b D 1

and c D 10, see Fig. 4a, in about 2 h and 200 iterations
and it is shown in Fig. 5. In this case the algorithm is able
to recover about 60% of the wrong voxels and the error on
density has a standard deviation of 244 kg m�3. It can be
seen from the salt dome experience that the algorithm is
able to properly recover the shallowest part of the investi-
gated volume, while the deepest one still present uncorrect
features. This is probably due to the fact that the functions
s2 and q2 are defined in the same way for the whole region,
while a dependence at least on the vertical coordinate should
be included.

4 Conclusions and FutureWorks

In the present paper a Bayesian approach to invert gravity
data with the support of a given geological model has
been studied. The method works properly at least in the
performed preliminary test scenarios. Actually, the two main
limiting factors are the choice of all the parameters playing
a role in the formulation of the a-priori probability and the
computational time.

In this respect it would be useful, in order to limit the
impact of user decisions on the solution, to implement a
semi-automatic determination of the optimal numerical val-

ues of the s2 and q2 functions and of the � and � parameters.
These parameters in fact can modulate how close/far the final
solution is from the geological model and from the gravity
observations.

The order of magnitude of these parameters, as seen
from the numerical experiments, is strongly linked with the
extension of the investigated volume, with the total number
of voxels and with the “certainty” of the geological model. A
further foreseen improvement is to consider possible depen-
dences of s2 and q2 from the voxel position, thus allowing
the prior to be more informative where the geological model
is considered more reliable (e.g. in presence of borehole
logging).

Last but not least, the algorithm needs to be numerically
optimized in order to increase the model resolution. This step
will imply a relevant growth of the total number of variables,
thus increasing the total computational burden.
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