Numerical Computation of Point Values,
Derivatives, and Integrals of Associated
Legendre Function of the First Kind and Point
Values and Derivatives of Oblate Spheroidal
Harmonics of the Second Kind of High Degree
and Order

Toshio Fukushima

Abstract

This article reviews the recent works of the author on the numerical computation of the point
values, the derivatives, and the integrals of the associated Legendre function (ALF) of the
first kind as well as the point values and the derivatives of the oblate spheroidal harmonics
of the second kind (Fukushima T, 2012a, J. Geodesy, 86, 271; ibid., 2012b, J. Geodesy, 86,
745; ibid., 2012c, J. Geodesy, 86, 1019; ibid., 2012d, Comp. Geosci., 49, 1; ibid., 2013,
J. Geodesy, 87, 303; ibid., 2014, Comp. Geosci., 63,17. First, a sort of exponent extension
of the floating point numbers, named the X-number formulation, resolved the underflow
problem in the computation of the point values of the fully-normalized ALF of the first
kind of high degree and order such as 216 000 or more. Similarly, the formulation precisely
computes their derivatives and integrals. Second, a dynamic switch from the X-number
to the ordinary floating point number during the fixed-order increasing-degree recursions
significantly reduces the increase in the CPU time caused by the exponent extension.
Third, the sectorial integrals obtained by the forward recursion cause no troubles in the
subsequent non-sectorial recursions. Fourth, the fixed-order increasing-degree recursions
can be accelerated on PCs with multiple or many cores by the folded parallel computation,
namely by the parallel computation the load balance of which is equalized by pairing the
recursion of orders m and M —m, where M is the maximum order to be computed. Finally,
a recursive formulation is developed to compute the point values and the derivatives of the
oblate spheroidal harmonics of the second kind, i.e. the unnormalized ALF of the second
kind with a pure imaginary argument. The relating Fortran programs as well as the output
examples are available at the author’s WEB page in ResearchGate:
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1 Introduction

The spherical and the oblate spheroidal'! harmonic
expansions are widely used in geodesy and geophysics
(Heiskanen and Moritz 1967; Maus 2010; Pavlis et al.

'We reserve the word ‘ellipsoidal’ for an ellipsoid with three different
axes (Lowes and Winch 2012; Wang and Yang 2013).
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2012; Lowes and Winch 2012). However, their numerical
computations face with some obstacles when degree/order
is high. One problem in the spherical case (Holmes and
Featherstone 2002) is an underflow during the computation
of an(t), the 4 fully-normalized Associated Legendre
Function (ALF) of the first kind (Heiskanen and Moritz
1967, Sect. 1-14). Here t = cos 6 while 6 is the geocentric
colatitude. Additional issue in the oblate spheroidal case
(Sona 1995) is the difficulty in computing Q,,,(ix), the
unnormalized ALF of the second kind with a pure imaginary
argument (Olver et al. 2010, Sect. 14.2). This article reviews
recent solutions to these problems and related issues
(Fukushima 2012a,b,c,d, 2013, 2014).

2 X-Number Formulation

An underflow occurs in the forward sectorial recursion of
P,m(t) since it is a sequence of multiplications of small
factors. For example, when 8§ = 60°, an underflow happens
when m > 1030 in the double precision environment of
the IEEE 754 standard (IEEE 2008) where the minimum
representable number is 27192 ~ 1.1 x 1073%, Once an
underflow occurs, all the subsequent sectorial values are
regarded as exact zeros in the computers. This ruins the non-
sectorial recursions of P, (¢) starting from them, which
would recover the diminished ALFs to the level of the order
of unity if the sectorial values remain to be non-zero even
if they are extremely tiny. Thus, the underflow results a
significant loss of precision in the computation of not only
the point values when the maximum order M is as high
as 2700 (Fukushima 2012a, Fig.5) but also the low-order
derivatives and the integrals (Fukushima 2014, Fig. 1).

This trouble is solved by the so-called X-number formu-
lation (Fukushima 2012a) or other similar devices (Wittwer
et al. 2008; Nesvadba 2008). The X-number formulation
represents a real number X by a pair of a floating point
number (termed F-number) x and a signed integer iy such
that X = xB' where B is a power of 2. If (1) x is an
IEEE 754 double precision F-number, (2) ix is a 32 bit
signed integer, and (3) B = 2°%°, the minimum representable
number becomes as tiny as ~1.2 x 10762¥19" (Fukushima
2014, §1). As a result, almost no underflow occurs in the
computation of P (t). Thus, the formulation enables the
correct computation of not only the point values of the ALF
but also their low-order derivatives and integrals of high
degree and order such as 216 000 or more (Fukushima
2012a,c,2014).

As an illustration, some sample values of them for the case
n = 216 000, m = 108 000, 6; = 60°, and 8, = 30° are
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listed below:

P (1) = —3.105 584 633 08(1 662), (1)

[d P,n/d0] (1) = —6.327 420 821 20(2 954) x 10%, (2)

[d*Pun/d6%] (1) = +6.287 479 684 91(0 149) x 10°,

3)
“)
where the erroneous digits, determined from the comparison

with the quadruple precision X-number computation, are
shown in parentheses.

Tom (1, 12) = +4.839 192 555 12(2 765) x 1072,

3 Acceleration of ALF Computation

In general, the X-number formulation results an increase in
the CPU time of a factor 2-3. As already reported in Jekeli et
al. (2007), P, (t) starts to oscillate with respect to n when
n is sufficiently larger than m (Fukushima 2014, Fig.?2).
This suggests a possible switch from the X- to F-number
computations during the recursion. The switch is dynami-
cally conducted when both P, 1.m(t) and F,,_z,m (t) can be
regarded as F-numbers, namely when both iy of F,,_Lm (1)
and iy of Fn_zym (t) are 0. This device reduces significantly
the CPU time increase (Fukushima 2014, Fig. 6).

Another technique to accelerate the computation of ALFs
is the folded parallel computation (Fukushima 2012d). A
pairing of the fixed-order increasing-degree recursions of
order m and M — m, where M is the maximum order,
equalizes the computational load of different-order recur-
sions conducted in parallel at multiple processor units. Con-
sequently, its simple implementation by the OpenMP archi-
tecture (OpenMP ARB 2011) achieves the acceleration factor
being the same as the number of processor units (Fukushima
20124, Fig. 1).

4 Effect of Underflow of Sectorial
Integrals on Non-sectorial Integrals

During the investigation of the computation of the integral
of the ALF of the first kind, Ty (f1.22) = /> Pum(t)d1,
it is noticed that an underflow, which might occur during
the forward recursion of the sectorial integrals (Fukushima
2014, Eq. (A.10)), causes no problem in the subsequent non-
sectorial computation (Fukushima 2014).

The reason of this phenomenon becomes clear by exam-
ining the dependence of the non-sectorial integral on the
sectorial one. The fixed-order increasing-degree recurrence
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formulas of 7,,,, are expressed (Fukushima 2014, Egs. (A.2)
and (A.8)) as

7m+1,m = _7m+l,m7 7nm = fann—Z,m _7nm7 (n = m+2)

_ - %)
where (1) J,,, is a partial integral computed from P, at the
two end points of the integration interval as

=\ m)(n —m) nt 1

S \/ (2n+ D@ - 1) <u§m (12) =P (zl)) |

(6)

while u = sin 0, (2) f,,, is a numerical constant defined as

n
fnmzn—i—l

)

-2 /1Cn+1)n+m—-1)n—-—m-—1)
2n—-3)(n +m)(n —m)

(n>=m+2>2) (7)

and (3) the arguments #; and f#, are omitted where no
confusion is introduced.

Thus, 7,,, is a linear function of 7,,, and a group of
Py (t;) wherem+1 <€ <nandj = land2.Ifn —mis
odd, T,,, does not depend on 1 um at all. Meanwhile, if n—m
is even, 1, linearly depends on T With a product of fy,

as its proportional coefficient. Namely

87m+2k—1,m -0
37)11 m P ’

A ok £
= = ntajm. (K >1
( T, )P [T fus2jm- Ge=1)

=1

®)

The coefficient is less than unity since 0 < f,,, < 1 when
n > m + 2 > 2. This means that the absolute error of
the sectorial integral contributes to a smaller absolute error
of the non-sectorial one. In other words, not the relative
error but the absolute error must be worried in the sectorial
integral computation. For this purpose, the simple forward
recursion (Fukushima 2014, Eq. (A.2)) is sufficient. At any
rate, this fact enables one to avoid the existing complicated
approach to obtain the sectorial integrals by the backward
recursion starting from the two seed values computed by
the hypergeometric series (Paul 1978; Gerstl 1980; Gleason
1985).

When |t, —#1| is small, the direct evaluation of T am
suffers from a heavy cancellation, and therefore results a
precision loss of 1 ,m. This is eminent when n and m are
rather small, say less than 30 or so (Fukushima 2012b,
Figs. 1 and 2). In that case, a computing method based on
the cancellation-error-free evaluation of the finite differences
is effective (Fukushima 2012b).
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5 Recursive Computation of Oblate
Spheroidal Harmonics of the Second
Kind

In addition to the problem of ?nm(t) computation, another
type of problem arises in the computation of oblate
spheroidal harmonic expansion. The non-angular component
of the expansion is a ratio of Q,,,(ix), the ALF of the second
kind with a pure imaginary argument (Heiskanen and Moritz
1967). The computational difficulty of Q,,,(ix) is caused
by the fact that it is the minimal solution of a second-order
difference equation (Gil and Segura 1998). As a result, the
increasing-degree recursion to obtain Q,,(ix) is fragile
against the contamination of the initially tiny but rapidly
inflating component, P,,,(ix), and therefore becomes quite
erroneous (Sona 1995).

Thus, a various forms of hypergeometric functions have
been developed instead. However, except that used in
Martinec and Graferend (1997), all other forms (Hobson
1931; Jekeli 1988; Petrovskaya and Vershkov 2000;
Vershkov 2002; Sebera et al. 2012; Petrovskaya and
Vershkov 2013) are inappropriate for high degree and/or
order (Fukushima 2013, Fig.1) due to the cancellation
problems. Meanwhile, a method using the backward
recursion already exists (Gil and Segura 1998). It uses the
Wronskian relation to obtain the seed values of Q,,(ix)
from the values of P,,,(ix) computed by the forward
recursion. However, this method faces the overflow problem
in the recursive computation of P,,(ix) (Gil and Segura
1998, Tables 1 and 2).

In order to overcome this situation, a new method based
on the backward recursion is developed (Fukushima 2013).
The key point of the new method is the usage of a hypergeo-
metric series to evaluate Q,,, (i x) developed by Petrovskaya
and Vershkov (2000). Although it is not suitable for general
values of n and m, it rapidly converges when m is sufficiently
small, say m = 0 and 1. Thus, it can be used in obtaining
the three seed values of the backward recursion. Also, the
derivative computation is achieved by recursion. As a result,
the new method is sufficiently precise and yet much faster
than the existing method in the computation of the point
values and low-order derivatives of the ratio of Q,,(ix)
(Fukushima 2013, Fig. 2).

Sample values of the ratio, g, , (x) = Qum(ix)/ Qum(x0),
and its low-order derivatives with respect to x for the case
n = 216 000, m = 108 000, xo = b/E,and x = (b + 0.1
km)/ E, while b and E = ae are those of the GRS80 system,
are listed below:

Gum(x) = +3.392 092 979 84(8 901) x 1072, (9)
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dqum(x)/dx = —5.989 743 102 88(4 788) x 10%, (10)
d*qun(x)/dx* = +1.057 671 120 81(9 206) x 107. (11)

6 Summary and Future Issues

The so-called X-number formulation (Fukushima 2012a,c,
2014) resolves not only the underflow problem but also the
overflow problem in any kind of computation. For example,
the unnormalized ALF of the first kind, P,,,(t) or P,,,(ix),
can be computed by this formulation without suffering from
the overflow problem.

The formulation is significantly accelerated by the
dynamic switch from X- to F-numbers during the fixed-order
increased-degree recursions of P, (¢). Also, if a suitable
parallel computing environment is available, a further speed-
up is achieved by the folded parallel execution of fixed-order
recursions (Fukushima 2012d).

Consequently, the formulation realizes an accurate, pre-
cise, and fast computation of the point values, the derivatives,
and the integrals of the ALF of the first kind. This enables us
to conduct not only the spherical harmonic synthesis but also
the spherical harmonic analysis of high degree and order as
216 000 or more.

On the other hand, a backward recursive formulation
computes the point values of Q,,,(ix) precisely and quickly
(Fukushima 2013). This has lowered the computational diffi-
culty of the oblate spheroidal harmonic synthesis to the level
of the popular spherical harmonic synthesis. Thus, the next
problem to be investigated is the oblate spheroidal harmonic
analysis (Wang and Yang 2013). If that is completed, there
will be ‘nothing to fear from oblate spheroidal harmonics’
(Nesvadba 2011).

The Fortran 77/90 programs of these computations as well
as output examples are available from the following website:

https://www.researchgate.net/profile/Toshio_Fukushima/
The author appreciates many valuable suggestions by Dr. J.
Sebera and two anonymous referees.
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