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Abstract

An ensemble Kalman filter approach for improving the WaterGAP Global Hydrology
Model (WGHM) has been developed, which assimilates Gravity Recovery And Climate
Experiment (GRACE) data and calibrates the model parameters, simultaneously. The
method uses the model-derived states and satellite measurements and their error information
to determine updated water storage states. However, due to the fact that hydrological models
do not provide any error information, an empirical covariance matrix needs to be calculated.
In this paper, therefore, we analyse the combined state and parameter covariance matrix of
WGHM. We found that high correlations of up to 0.75 exist between calibration parameters
and storage compartments, and that these allow for an efficient calibration. In addition, a
sensitivity analysis is performed to identify those parameters that the water compartments
are most sensitive to. The performed analysis is important, since GRACE cannot observe
the model parameters directly. We found that those parameters, which the water storage is
most sensitive to, differ not only regionally, but also with respect to the water compartments.
Not unexpected, some climate input multipliers implemented in our model version have an
overall strong influence. We also found that the degree of sensitivity changes temporally,
e.g. between 0 (in summer) and 0.5 (in winter) for the snow storage.
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1 Introduction

The global water cycle is one of the most important pro-
cesses that ensure life on Earth. Modelling of continental
hydrology contributes to its understanding and quantifica-
tion. A global representation of the terrestrial water cycle
is, e.g. provided by the WaterGAP Global Hydrology Model
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(WGHM), which models the vertical and horizontal water
fluxes on a 0.5ı grid over the land area. A detailed description
of the model can be found e.g. in Döll et al. (2003) and
Müller Schmied et al. (2014). However, the degree of a
successful representation of the reality is limited due to
the simplified representation of hydrological processes and
due to the uncertainties of input data, e.g. empirical model
parameters, climate forcing and water use data. On the
other hand, the Gravity Recovery And Climate Experiment
(GRACE) satellite mission (Tapley et al. 2004) observes
the Earth’s time variable gravity field and methods have
been developed that allow one to separate the column-
integrated sum of the terrestrial water storage from the total
mass signal. Therefore, these measurements can be used to
improve hydrological models by calibrating their parameters
or adjusting their states to the observations.
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Two main approaches exist so far for the improvement of a
hydrological model by using GRACE measurements. Werth
and Günthner (2009) used filtered basin means of GRACE
total water storage (TWS) changes to improve WGHM.
Their aim was the calibration of the model parameters.
Zaitchik et al. (2008) used the same kind of observations to
improve NASA’s catchment land surface model (CLSM) by
assimilating GRACE data into it. To this end, they used an
ensemble Kalman smoother method.

An ensemble Kalman filter (EnKF) that simultaneously
calibrates the parameters of WGHM and assimilates GRACE
data into it has been proposed in Schumacher (2012). In
contrast to the previous studies, the approach presented
here uses TWS changes from GRACE defined on a grid
for the calibration and assimilation. Furthermore, the full
spatio-temporal GRACE TWS changes error information
was considered in the method. For implementing a Kalman
filter approach, an empirical model covariance matrix of
WGHM has to be determined. This is due to the fact that
hydrological models do not provide error information by
default. A detailed description of the method is given by
Eicker et al. (2014) in which investigations on the Kalman
filter gain matrix are presented.

In this paper, we focus on the analysis of the combined
model parameter-state covariance matrix to identify those
parameters that the water compartments are most sensitive
to. The results are presented with respect to the Mississippi
River Basin. In addition, a detailed sensitivity analysis was
performed with the aim (a) to assess the results of the local
model covariance matrix and (b) to identify those parameters
with the highest model sensitivity for the 33 largest river
basins in the world. These results are compared to those
in Werth and Günthner (2009). Additionally, we carried
out investigations on the water compartments and on the
evolution of sensitivity over time.

2 Data

2.1 WGHM

Within the EnKF approach, the modeled water storages
of canopy, snow, soil, river, surface water bodies and
groundwater from the current WaterGAP version 2.2 (Müller
Schmied et al. 2014) are integrated with the observed TWS
changes from GRACE. To determine improved water storage
values, the error information of model and measurements
are weighted against each other (Schumacher 2012). Since
WGHM does not provide error information, an empirical
model covariance matrix has to be determined. Here, the
influence of the empirical model input parameters on
the modeled water storages is considered. Some of these
parameters describe physio-geographic characteristics, e.g.

Table 1 Calibration parameters of WGHM with identification num-
ber (IN) and original value

IN Calibration parameter Value

1* Root depth multiplier 1

2* River roughness coefficient multiplier 1
3 Lake depth 5 m

4 Wetland depth 2 m

5 Surface water outflow coefficient 0.01/day

6* Net radiation multiplier 1

7 Priestley-Taylor coefficient (humid) 1.26
8 Priestley-Taylor coefficient (arid) 1.74

9 Max. daily potential evapotranspiration 15 mm/day

10 Max. canopy water height per leaf area 0.3 mm

11* Specific leaf area multiplier 1

12 Snow freeze temperature 0ıC
13 Snow melt temperature 0ıC

14* Degree day factor multiplier 1

15 Temperature gradient 0.006ıC/m

16* Groundwater factor multiplier 1

17* Max. groundwater recharge multiplier 1
18 Critical precipitation for groundwater recharge 10 mm/day

19 Groundwater outflow coefficient 0.01/day

20* Net abstraction surface water multiplier 1

21* Net abstraction groundwater multiplier 1

22* Precipitation multiplier 1

Parameters, marked with (*), are not integrated in the original
WaterGAP 2.2 version, but are extra parameters within the adapted
version used here

the lake depth. Other parameters are conceptual, such
as the groundwater outflow coefficient. Whereas it is
common that only one parameter associated with the soil
compartment (runoff coefficient � ) is used for calibration
to fit mean annual discharge to observed one (Döll et al.
2003), Werth and Günthner (2009) used the six to eight most
sensitive ones per river basin. Those calibration parameters,
which are considered in our EnKF approach, are listed in
Table 1.

2.2 GRACE TWS Changes

For the calibration and assimilation approach the ITG-
GRACE2010 monthly GRACE solutions were used for
which the full error information is available (http://www.
igg.uni-bonn.de/apmg/index.php?id=itg-grace2010). 0.5ı�
0.5ı TWS grids are derived following Wahr et al. (1998).
The full monthly covariances of potential coefficients were
propagated to TWS. A suitable filter technique and an
approach to account for leakage effects due to filtering
are under investigations and will be reported in future work.
However, these choices do not affect the results presented
here.

http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
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3 Method

3.1 Empirical Model CovarianceMatrix

To estimate a combined empirical covariance matrix of
the states and parameters, first of all, a priori probability
density functions (PDF) have been chosen based on literature
(Kaspar 2004) and our own experience of more than 10 years
of model development for the model parameters. One of
the parameters was assumed to be uniformly distributed,
the others were assumed to have a triangular distribution,
which can be symmetric or asymmetric. An ensemble of
N D 60 calibration parameter sets was generated by
using a Monte Carlo approach taking into consideration
the above mentioned PDFs. For each ensemble member,
the model was run globally from 2002 to 2009 for which
ITG-GRACE2010 solutions are also available. Identical start
values of the cell water storage compartments were used
for each run. Time series of monthly averaged water storage
states corresponding to each grid cell were obtained as model
output for each ensemble member. The monthly regional
empirical covariance matrix Ce for one specific river basin
was calculated by using the parameter p and model state s
ensembles (e.g., Evensen 2009)

Ce D 1

N � 1
X0.X0/T : (1)

The mean reduced model prediction matrix X0 contains the
storage in all compartments for each grid cell in the specific
basin and the calibration parameter values for each of the
ensemble members in its columns. The covariance matrix
consists of three blocks

Ce D
�

Ce.s�; s�/ Ce.s�; p�/

Ce.p�; s�/ Ce.p�; p�/

�
: (2)

The first block Ce.s�; s�/ contains the error information
with respect to the predicted model states, the second block
Ce.p�; p�/ is related to the parameters. The last block
Ce.s�; p�/ contains the relation between the model states
and parameters. To determine those parameters, which the
model compartments are most sensitive to, the correlations
between each parameter and the basin averaged water
compartments were calculated. Since GRACE does not
observe the parameters directly, the correlations justify
whether the observations will contribute in calibrating the
model parameters.

3.2 Sensitivity Analysis

Another possibility to identify those conceptual parame-
ters that relate to large model sensitivities can be derived

by performing a sensitivity analysis (e.g., Hamby 1994).
Here, the sensitivity index (SI), which is a simple approach,
and the Spearman’s rank correlation coefficient (SRCC),
which was used in Güntner et al. (2007), are chosen as
a measure of sensitivity. To determine the SI, first reali-
sations of a single model parameter are generated while
considering the others as constant. The SI measures the
influence of one single input parameter on the model output.
Therefore, the interpretation of the SI is straight forward:
It corresponds to a model covariance matrix for which
only one calibration parameter set is introduced while the
others are constant (not shown here). Note that in con-
trast, ensembles of all model parameters were generated
simultaneously when using the SRCC for assessment of
sensitivity. Here, the correlations of the model parameters
are considered. This corresponds to the information in the
empirical model covariance matrix, which is calculated after
running the model with an ensemble of all input parameters
(Sect. 1).

3.2.1 Sensitivity Index
The SI is a measure that reflects the relative difference
between the minimum and maximum model outputs Smin

and Smax when generating an ensemble of one model input
parameter with the others being constant (Hoffman and
Gardner 1983). SI is calculated by scaling the difference
between the minimum and maximum water storage output
within the ensemble as

SI D Smax � Smin

Smax
: (3)

Although SI is a simple approach to identify parameters,
which the water compartments are most sensitive to, its
disadvantage is that it does not take the correlations between
parameters into account.

3.2.2 Spearman’s Rank Correlation Coefficient
Unlike SI, the SRCC also considers the correlations between
the calibration parameters. Further, it allows one to account
for nonlinear model equations by performing a rank trans-
formation of the parameters and states (Iman and Conover
1979). To apply this approach, sets of all parameters were
generated by using their given PDFs simultaneously. The
calibration parameter values and model output are sorted in
ascending order by their values leading to their ranks. Finally,
the Pearson’s correlation coefficient is determined with the
exception that the ranks of the i -th parameter RPi and the
water states RS are used instead of their values (Hamby
1994)

�i D
PN

nD1.RPin � RPi /.RSn � RS /qPN
nD1.RPin � RPi /

2
PN

nD1.RSn � RS /2

: (4)
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The results of the sensitivity analyses can be used
to verify the parameter-state correlations, which are
empirically determined as entries of the model covariance
matrix.

4 Results and Discussion

The analysis of the model covariance matrix and the sen-
sitivity analysis has been performed for all water com-
partments in the Mississippi River Basin. The results are
shown for the snow and soil compartment to provide an
example.

4.1 Correlations BetweenModel States
and Parameters

The correlations between the 22 calibration parameters and
the snow water storage for each grid cell in the Mississippi
River Basin were determined for the winter (Fig. 1a) and
the summer season (Fig. 1b). During winter, a high positive
correlation was identified with two of the parameters and
in most of the cells. Negative correlations were identified
between a few parameters and some of the cells. During
summer, nearly no correlations were found, since there is
usually no snow in the Mississippi Basin. To identify those
parameters, which the water compartments are most sensitive
to, the empirical covariance matrices were calculated for
each month of 2008 considered as the start of the integration
of GRACE data. Then a basin mean of the water compart-
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Fig. 1 Correlations between the 22 model parameters and the snow
storage in each cell of the Mississippi River Basin for the (a) winter and
(b) summer season. See Table 1 for parameter names. In (a) the plus
and minus signs indicate whether the correlation is positive or negative

ments was determined. The time evolution of the correlations
between the parameters and the averaged snow and soil
compartment are shown in Fig. 2. Between the snow com-
partment and the snow melt temperature, precipitation mul-
tiplier, and groundwater factor multiplier, high correlations
exist during winter (Fig. 2a). The precipitation multiplier
represents a calibration factor applied to the observed daily
precipitation values. Scaled precipitation, which was stored
as snow, melts when the actual temperature is higher than the
snow melt temperature. The groundwater factor multiplier
represents a scaling factor for the calculated groundwater
recharge. Between the soil compartment and the root depth
multiplier, a calibration factor for the average root depth
of plants, and two parameters to determine the potential
evapotranspiration, high correlations were found all over the
year (Fig. 2b). In the original model version all multipliers
are one, i.e. the factors are now introduced for model cali-
bration. Note that regarding Fig. 2a, one observes almost no
ensemble spread over the months 4–10, since there is usually
no snow in the Basin (see Fig. 1b). This means that these
parameters can only be updated during winter. In contrast,
the parameters with respect to the soil compartment can
be calibrated during all seasons. This indicates nicely that
the influence of GRACE differs in each month, since the
degree of sensitivity changes over time. In addition, these
results suggest that the parameters have to be calibrated
at least for a full year, since the determination of e.g., an
updated snow melt or freeze temperature during summer is
not possible.

4.2 Regional Sensitivity Analysis

By using the SI, the high correlation between the snow stor-
age and the snow melt temperature, and precipitation multi-
plier respectively was confirmed (Fig. 2c). We found, how-
ever, that the groundwater factor multiplier has no impact on
the snow storage when measured by the SI. The magnitude
of the correlations, when evaluating the model covariance
matrix or the SI, is different: e.g. the maximum correla-
tion value concerning the snow melt temperature is 0.5
(Fig. 2a) or 0.8 (Fig. 2c) respectively. This is mainly due
to the fact that in case of the first method sets of all
parameters were generated, while only a set of one param-
eter is generated in case of the SI. However, the inter-
pretation of both approaches is the same: The snow melt
temperature is the most important parameter with respect
to the snow compartment. In summer, it is not possible to
update parameters that are directly associated with the snow
storage, since no correlations exist. For the soil compart-
ment, the parameters, which were identified by analysing the
covariance matrix, were also confirmed by evaluating the SI
(Fig. 2d).
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Fig. 2 Time evolution of the correlations between the 22 model param-
eters and the basin mean of the (a, c) snow and (b, d) soil compartment
evaluating the empirical model covariance matrix (a, b) and using
the sensitivity index (c, d). The parameters, which have the highest

correlations regarding the averaged compartment states, are listed in the
legend. The gray lines belong to the other parameters. See Table 1 for
parameter names

Considering the SRCC, all parameters with high correla-
tions for the snow and soil compartment were confirmed (not
shown here). This includes even the groundwater factor mul-
tiplier for the snow. It appears this correlation is introduced
through joint dependence on the other perturbed parameters,
and thus invisible for the SI.

In the developed EnKF approach, the empirical model
covariance matrix, which is computed by first generating
an ensemble of all model input parameters, is used in
order to determine the updated model states and calibration
parameters. This allows the consideration of the parameter,
state, and parameter-state correlations in the assimilation and
calibration procedure.

4.3 Global Sensitivity Analysis

In addition to the regional analysis, we also performed a
global sensitivity analysis to identify the parameters with the
highest model sensitivity for the 33 largest river basins in the

world. Here, the SRCC was calculated between the calibra-
tion parameters and the mean TWS. Different parameters,
which the modeled TWS output is most sensitive to, were
found for the basins (Figs. 3 and 4). For example, the TWS
in the Mississippi River Basin reacts the most sensitive to
the net radiation multiplier, as in numerous of the basins.
It seems that this calibration parameter has, along with the
river roughness coefficient and precipitation multiplier, an
overall strong influence. To make the results comparable to
the studies of Güntner et al. (2007) and Werth and Günthner
(2009), the SRCC was also determined between the calibra-
tion parameters and the mean annual amplitude of TWS as a
measure for sensitivity (not shown here). Our results confirm
some of those parameters with large model sensitivity in the
world’s largest river basins that were found in these studies,
e.g. the root depth multiplier and snow melt temperature
regarding the Mississippi River Basin. In contrast to these
studies, in which neither a net radiation nor a precipitation
multiplier were introduced, a strong dependence of the TWS
on the climate input was found here.
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1-Amazon: 6, 2, 1

25-Orinoco: 6, 2, 4

28-Tocantins: 6, 4, 22

26-Parana: 6, 2, 22

32-Yukon:
4, 2, 22 15-Mackenzie: 4, 22, 6

19-Nelson: 4, 22, 6

27-St. Lawrence:
5, 6, 22

17-Mississippi: 6, 2, 22

6-Colorado: 6, 13, 22

20-Niger: 4, 6, 22
21-Nile:
6, 22, 27-Congo: 6, 22, 2

33-Zambeze: 6, 22, 923-Okavango:
6, 4, 22

24-Orange: 6, 22, 2

11-Eyre: 4, 2, 9

18-Murray: 6, 22, 9

4-Bramaputra:
4, 2, 15

8-Danube: 6, 13, 2

9-Dnieper: 13, 6, 22

5-Volga: 6, 13, 22 22-Ob:
6, 4, 2

31-Yenisey:
6, 22, 2

14-Lena: 6, 2, 22

2-Amur: 6, 22, 2

10-Euphrates: 22, 6, 20

16-Mekong: 6, 2, 4

29-Yangtze: 6, 2, 4

3-Amu Darya: 22, 13, 20

13-Indus: 21, 2, 9

12-Ganges:
21, 2, 9

30-Yellow: 6, 21, 2

Fig. 3 The three parameters, which the monthly mean TWS output
of WGHM is most sensitive to, in the 33 largest river basins of the
world. See Table 1 for parameter names. The in the adapted model

version introduced river roughness coefficient (2), net radiation (6) and
precipitation (22) multipliers have, overall, a strong influence
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Fig. 4 Spearman’s rank correlation coefficient between the calibration
parameters and the mean TWS in the 33 largest river basins of the world.
See Table 1 for parameter and Fig. 3 for basin names. The correlation
between the mean TWS and the humid (7) and arid (8) Priestley-Taylor
coefficient is shown for humid and arid regions, respectively

5 Conclusions and Outlook

The analysis of the combined model covariance matrix, as
well as the performed sensitivity analysis, indicates that
the correlations between the model states and parameters
enable the parameter calibration by GRACE measurements.
Moreover, these investigations could confirm some param-
eters which were identified to be most sensitive in pre-
vious studies (Güntner et al. 2007; Werth and Günthner
2009). Based on the global sensitivity analysis, a basin-
wise parameter calibration seems appropriate. By performing

the regional analysis, we found that the compartments are
sensitive to different model parameters. The time evolution
of the parameter-state correlations indicates that the impact
of GRACE changes over time. We plan to validate our
calibration results by performing a calibration run for 1 year.
Afterwards, the model will run for the following year, both
with the standard model parameters and the calibrated values.
The model states of both versions will then be compared to
the GRACE observations. One can also consider independent
data sets, e.g. discharge measurements, for validation. Along
with the parameter uncertainties, the uncertainties of climate
forcing and water use data will be included to obtain a
more realistic representation of the model covariance matrix.
Model improvement may also be affected by errors of the
background models for other Earth system components that
are used for separating TWS from the total mass signal
observed by GRACE (see e.g., Forootan et al. 2014). Inves-
tigations regarding these errors will be conducted in further
work.
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