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Abstract

In general, any national or regional height reference system is related to an individual
vertical datum, defined by one or several tide gauges. The discrepancies of these local
vertical datums cause height datum offsets in a range of about +1-2m at a global scale.
For the purpose of height system unification, global geopotential models derived from
homogeneous satellite data provide an important contribution. However, to achieve a
unification of high precision, the use of local terrestrial gravity data in the framework
of a Geodetic Boundary Value Problem (GBVP) is required. By solving the GBVP at
GNSS/leveling benchmarks, the unknown height datum offsets can be estimated in a least
squares adjustment. In contrast to previous studies, related to the scalar free GBVP based
on gravity anomalies, this paper discusses the alternative use and benefit of the fixed GBVP.
This modern formulation of the GBVP is related to gravity disturbances, using the surface
of the Earth as boundary surface. In contrast to gravity anomalies, gravity disturbances are
not affected by the discrepancies of the local height datum. Therefore, in comparison to
a scalar free GBVP approach, the proposed method is not affected by indirect bias terms,
which will simplify a height system unification. In this paper, the theory of the fixed GBVP
approach is developed and formulas in spherical approximation are derived. Moreover, the
method is validated using a closed loop simulation based on the global geopotential model
EGM?2008, showing mm-accuracy of the estimated height datum offsets.
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are utilized that refer to a physically defined reference sur-
face linked to the Earth’s gravity potential W'.
The ellipsoidal height 4(P) of a point P on the Earth’s

In geodesy, there are two different types of height sys-
tems: geometrical and physical. In the former, geometrically
defined ellipsoidal heights are used, related to the orthogonal
distance to a reference ellipsoid. In the latter, physical heights
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surface can directly be measured using methods of GNSS
positioning (Global Navigation Satellite Systems). By
combining GNSS observations with other space techniques,
global three-dimensional terrestrial reference frames have
been established that provide sub-cm consistency in the
vertical component, e.g., ITRF2008 (Altamimi et al. 2011).
For physical (or national) height systems the situation
is quite different. Physical heights are determined by a
combination of spirit leveling and gravimetry with respect
to a fixed datum point Py. These observations are then used
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to derive geopotential numbers
C(P):= Wo—W(P), ey

representing the difference of the gravity potential value
between a leveling point P and the datum point P, i.e.,
Wo := W(Po). In that way, the equipotential surface passing
through Py is chosen as the reference level of the height
system. Dividing Eq. (1) by the mean normal gravity value
y along the normal plumb line, the geopotential number
C(P) is transformed to the (metric) normal height H(P)
(Heiskanen and Moritz 1967, p. 170 f.).

For the practical realization of a physical height system,
the height reference level is conventionally linked to the
mean sea level (MSL), observed at one or several tide
gauges, i.e., the datum point Py is selected such that the zero
level is fixed to the local MSL. As the leveling networks
of different national surveys mostly refer to individual tide
gauges, hundreds of different national height systems exist
worldwide that are realized by their own local vertical datum.
Due to the sea surface topography, different tide gauges
do not refer to the same equipotential surface. Therefore,
the reference levels of different physical height systems are
inconsistent by about £1-2m at a global scale (Heck 1990;
Gerlach and Rummel 2013).

On the other hand, many global and regional applications
such as monitoring of sea level change, ice sheet melting, or
post-glacial rebound require a high-precision and consistent
global physical height system. Moreover, this is also rele-
vant for establishing the Global Geodetic Observing System
(Ihde and Sanchez 2005). In order to overcome the problem
of height datum inconsistencies, different strategies and
approaches for height system unification have been discussed
and proposed in various publications (e.g., Colombo 1980;
Rapp 1988; Heck and Rummel 1990; Sansd and Venuti 2002;
Séanchez 2009).

Considering a local height datum zone o' that is linked
to the gravity potential value W/, the geopotential number in
Eq. (1) analogously reads

C'(P) = W] —W(P). )

Combining Eqgs. (1) and (2), the relation between the local
datum zone o’ and a global datum specified by the gravity
potential value W, is described by the height datum offset

_C(P)—Ci(P) _ Wy— W,
Y y o

SH' :

3)

For the determination of §H', observation points that
combine physical and geometrical height information are
of particular interest, i.e., GNSS/leveling benchmarks. For
these points, global geopotential models (GGM) can be used
to determine approximated values C(P) = Wy — Wgem(P),
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which can be inserted in Eq.(3). In this context, GGM
derived from recent gravity field satellite missions like
GRACE and GOCE provide an important contribution, as
they provide a homogeneous reference surface that is not
affected by a height datum offset (Rummel 2002; Gatti et al.
2013). Due to the limited resolution of the used GGM, such
an approach suffers from an omission error. Although this
error can be reduced, representing shorter wavelengths by
the high-resolution EGM2008 (Pavlis et al. 2012) or regional
geoid models, the expected accuracy for §H' is limited to
cm—dm level (Gruber et al. 2012; Riilke et al. 2012).

To achieve a unification at sub-cm level, the use of terres-
trial gravity data in a Geodetic Boundary Value Problem is
indispensable (GBVP, Heiskanen and Moritz 1967, p. 36 f.).
For this purpose, the solution of the GBVP is used to estimate
height datum offsets in a least squares approach (e.g., Heck
and Rummel 1990). In contrast to previous publications,
mostly related to the scalar free GBVP approach (Rummel
and Teunissen 1988; Xu 1992; Gerlach and Rummel 2013),
this paper discusses perspectives and benefits of the alter-
native use of a fixed GBVP approach for height system
unification. In order to reduce systematic errors, a combina-
tion with a GGM and topographic information in a remove-
compute-restore approach is advisable, as frequently used
in gravimetric (quasi-)geoid determination (Forsberg and
Tscherning 1997). However, such a combination is beyond
the scope of this article. Therefore, the presented formulas
will be restricted to the use of terrestrial gravity data.

The paper is organized as follows: in Sect. 2 the proposed
fixed GBVP approach is presented and formulas in spherical
approximation are derived. In order to validate the method
and analyze its accuracy, a closed loop simulation based
on EGM2008 is presented in Sect.3. Finally, in Sect.4, a
summary and an outlook to ongoing research are provided.

2 Fixed GBVP Approach

Let the Earth’s surface S be partitioned into # disjoint local
height datum zones ', i = 1,...,n,ie, S = J/_, o
with o/ (\o* = @ for i # k. Each datum zone is assumed
to be linked to an individual equipotential surface defined
by the gravity potential value W, . Furthermore, let each
datum zone o' contain m; GNSS/leveling benchmarks P]’f ,
j = 1,...,m;, where the (unbiased) ellipsoidal height &
and the (biased) normal height H' are known. For these
benchmarks, the (biased) height anomaly ¢/ = h — H' can
be calculated, which is linked to the disturbing potential 7' by
the generalized Bruns’ formula (Heiskanen and Moritz 1967,
p- 100):

T(P)) —(Wy —Us)  T(P))— AWy

¢(P)) = +8H', (4)
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where Uy denotes the constant normal gravity potential value
of the used reference ellipsoid, y is the normal gravity value
at the Earth’s surface, and

AW() = W()—U(). (5)

To determine the disturbing potential 7', the fixed GBVP
will be used that is based on gravity disturbances

aT
dg:=g(P)—y(P)~ s ©)
S

resulting from the difference between the measured gravity
g(P) and the normal gravity y(P), both defined at the
Earth’s surface point P € S. Here, d/dr denotes the partial
derivative with respect to the geocentric radius r. Consid-
ering the normal gravity formula (Heiskanen and Moritz
1967, p. 79), the ellipsoidal height A(P) of the gravity
measurement benchmark is required to obtain y(P). Thus,
in the case of the fixed GBVP, the geometry of the Earth’s
surface S is assumed to be known, e.g, by GNSS positioning.

Utilizing the analytical solution of the fixed GBVP,
the disturbing potential 7 can be obtained in constant
radius approximation by Hotine’s spherical integral formula
(Hotine 1969, p. 311 ff.; Heck 2011):

R
T =4 [[ e ) v @

where

H(y) = ®)

1 1
o (1 mem)
and v is the spherical distance between the position vectors
of the computation point P (r = R, ¢, A) and the running
integration point P’ (¢’, "), both located on the sphere with
radius R. The surface of the unit sphere is denoted by o with
the corresponding surface element do = cos ¢’dp’d)’.

Applying Eq. (7) to Eq. (4) leads to

AW, 4
O L SHI,  (9)

g(Pl) = %/fé’g-H(l/f)do—

which is the basic equation of the fixed GBVP approach that
can already be used for the estimation of the unknown height
datum offsets SH' at GNSS/leveling benchmarks P ;l
However, the lacking availability of globally distributed
gravity disturbances §g complicates the practical evaluation
of Eq.(9). Since for most (historical) gravity measurement
benchmarks of the pre-GNSS era the ellipsoidal height / has
not been determined, gravity disturbances §g according to
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Eq. (6) could not be compiled. Instead, gravity measurements
g have frequently been used to derive gravity anomalies Ag
that serve as boundary values for the traditional scalar free
GBVP. Taking into account the present situation, Eq. (9) will
be extended by considering the transformation of gravity
anomalies Ag to gravity disturbances §g.

2.1 Extension to Gravity Anomalies

Following the theory of Molodensky (Heiskanen and Moritz
1967, p. 291 ff.), gravity anomalies

aT 2
Agi=g(P) - y(0) ~ (—— — )

ar r (10

)

differ from gravity disturbances §g in the normal gravity
y(Q), evaluated at the telluroid X' > Q instead of the Earth’s
surface S. Considering that h(Q) = H'(P) (Heiskanen and
Moritz 1967, p. 293), the normal gravity value y(Q) depends
on the (biased) normal height. Thus, in contrast to gravity
disturbances, gravity anomalies are affected by the height
datum offset SH' of the local datum zone o! (Heck 1990).
This becomes clear when inserting Eq. (4) into Eq. (10):

. T 2. 2 2y
Ag' = (————T+ —AWo——ySH’)
r r

ar r an

)

Combining the boundary conditions of Eqs. (6) and (11),
the (unbiased) gravity disturbance §g can be expressed as a
function of the (biased) gravity anomaly Ag’ and the height
datum offset §H' using the linear approximation

+ Ogs.
s

12)

; 2 2 2 .
g = Ag' + (—T — =AW, + —yé’H’)
r r r

where dgg denotes the error induced by the different bound-
ary surfaces (S and X'), which is neglected in the following.
Splitting Eq. (12) into three components

.2 2 2 :
8go = Ag' + =T, 8g1:=——AW,, 8gr := —VSH’, (13)
r r r

and inserting them separately into Eq. (9) results in

AW, .
O 4 SH',

F(P)=+0+80— (14)

where

Em ::i//ng'H(I//)dU, m=20,1,2. (15)
4y
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Applying constant radius approximation, i.e., r = R, the
evaluation of Eq. (15) leads to

R ;L2
£ = m// (Ag +ET).H(1//)do, (16)
b =5 [[ 1@ = -T2 an
2wy 2my
:_ZAWO’ (17)
y
& = 1"

R /f H(y) do,

i=1

where in the case of {,, the (global) integral domain o is
decomposed into the disjoint height datum zones o .
Finally, inserting Eqgs. (16) — (18) into Eq. (14) results in

(P} =Co(Ag' . T)+8H + 8H' + > 8H* -G, (19)
k=1

where

3AW, ; 1
SHO = — 0 and G'j’k = 2—//H(1//)d0
7
o—k

(20)

4 P

In Eq. (19) different kinds of height datum offsets occur.
The height datum offset SH' represents the direct influence
of the datum zone o’ containing P ;l This offset, also occur-
ring in the basic Eq. (9), is frequently called direct bias term.

Moreover, Eq.(19) also comprises the height datum
offsets SH* (k = 1,...,n) of all datum zones, i.e.,
SH',... §H". These offsets are a consequence of the
global integration of biased gravity anomalies Ag’ and
are named indirect bias terms (Gerlach and Rummel 2013).
Particularly, the evaluation of the corresponding factors
G;fk in Eq.(20) is complicated, as the separate integration
requires the coordinates of the bounding polygon for
each datum zone. While the indirect bias terms amount
to about +1-2m, simulation studies for the scalar free
GBVP approach presented by Gerlach and Rummel (2013)
demonstrate that their influence can be reduced to a level
below 1cm, when a satellite-derived GGM 1is employed
for representing the long-wavelength parts of ;. However,
it is worthwhile mentioning that the basic approach in
Eq. (9) is not affected by the indirect bias terms. Therefore,
if gravity disturbances 6g become globally available,
the indirect bias terms can be avoided, demonstrating
the advantage of the fixed GBVP approach in future
applications.
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The parameter §H° in Eq. (19) comprises AW, defining
the reference level of the global datum. As this global offset
cannot be uniquely estimated within this approach, W is
assumed to be equal to Uy, i.e., AWy in Eq.(5) and SHO
in Eq. (20) are set to zero. By this procedure, an “absolute”
vertical datum is defined by convention (e.g., Heck 2004).

2.2 Least Squares Adjustment
Using Eq. (19) with §H® = 0, the observation equation for
least squares adjustment (LSA) is provided by

L} =¢ —¢(Ag'.T)

=8H' + ) SH*-G}*. (1)

j o
k=1

i
P;

where Ag' are the observed (biased) gravity anomalies and
T the (unbiased) disturbing potential values, derived from an
a priori model (e.g., EGM2008). The quantities on the left
hand side of Eq.(21) are the known observations and those
on the right hand side contain the unknowns to be estimated.
The functional model according to Eq. (21) is specified by

1l + vl 1+G;' G2 G" 1
1,1 1,2 1.n

) + v) 1+6;" G G EZ )

: _ : SH3
ped |7 @t @i @ [T

: : SH™
o+l Gnl G2 o 1+Gyt ) T

14+v A

where 1 is the observation vector, v the inconsistency vector,
and x the vector of unknowns. The design matrix A contains
the partial derivatives of the observations with respect to the
unknowns. Using a standard LSA, the unknown height datum
offsets are estimated by
£=N1.ATP.1, (22)
where N = ATPA is the normal matrix and P is the weight

matrix of the observations, which can be specified by an
additional stochastic model.

3 Closed Loop Simulation

Using the presented fixed GBVP approach, a closed loop

simulation is performed following a four-step sequence:

1. Definition of eight height datum zones ¢’ with individual
height datum offsets SH' (i = 1,...,8).

2. Addition of §H' to EGM2008-derived observations.
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Fig. 1 Visualization of the 90 T T
height datum zones o' and their
assumed height datum offsets
8H' used for the closed loop
simulation
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Table 1 Specification of the height datum zones o, their assumed
height datum offsets §H', and the error values &' according to Eq. (24)
for the scenarios (a) — (d)

Error values & [mm]

§H'[m] (@ (b © (@

Datum zone o'

i

1 Asia 1.7 —0.2 1.3 —199 —0.6
2 North America 1.0 —0.4 1.5 —177.8 —4.1
3 Europe —-1.2 0.3 1.7 22.0 2.1
4 Africa 2.0 0.3 1.7 —24.4 2.2
5 South America —0.4 =27 —0.9 10.6 —0.7
6  Australia 0.5 —0.5 2.2 10.1 2.2
7  Antarctica —1.5 2.4 4.5 —25.7 3.8
8  Ocean 0.0 0.0 -—=2.7 -2.1 =25

3. Estimation of X by Eq. (22) with P = I (identity matrix).
4. Comparison of estimated and reference values.

As illustrated in Fig.1 and specified by Table 1, the
Earth’s continents and oceans are utilized as height datum
zones o', where height datum offsets § ' are assumed that
cover the range of =1-2m. Using EGM2008 to degree and
order 2190, global grids of consistent height anomalies {gom
(5° x 5°), gravity anomalies Agggm (5’ X 5) and disturbing
potential values Tggm (5 x 5') are generated on a sphere
with radius R = 6,371 km and normal gravity y = y =
9.81 ms™2. Applying the height datum offsets §H', simu-
lated observations according to Eq. (21) are calculated by

: : 2y .

LY = fgam + 8H' —Lo(Ageom — %517’, Teom)| - (23)
—f—’zi —_—

Ag!

100 140 180

Longitude [deg]

where the integration is performed by Gauss—-Legendre qua-
drature (e.g., Schwarz 1989, p. 361 {f.).

To analyze the impact of the global distribution of the
used benchmarks P ]’ , four different scenarios (a) — (d)
are considered as displayed in Fig.2. In scenario (a), all
2,592 observations L; of the 5° x 5° global grid are used
in the LSA. In scenario (b), observations are restricted to
continental areas (879 benchmarks), while in scenario (c¢)
only observations in Europe, South America, and Australia
are included (161 benchmarks). Scenario (d) is similar to (c),
but additionally at least one benchmark is included in each
datum zone (166 benchmarks). In each scenario, the height
datum offsets of all datum zones are estimated.

In Table 1 the numerical results for the scenarios (a) — (d)
are presented in terms of error values

e =8H — %', (24)
where the estimated height datum offsets are denoted by £/,
i.e., the components of X. Moreover, to quantify the stability
of the LSA, Table 2 specifies the spectral condition number
k> of the normal matrix N, i.e., the ratio of the largest to the
smallest eigenvalue of the matrix (Schwarz 1989, p. 24f.).

In the ideal scenario (a), the error values attain a sub-
mm level, only in South America and Antarctica slightly
larger values occur. Excluding the observations of the oceans,
scenario (b) produces error values at lower mm level. Going
a step further towards a realistic scenario, case (c) demon-
strates that the error values are increased to cm level or even
dm level in North America. In contrast to the other scenarios,
the large condition number of (c¢) indicates the instability of
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Fig. 2 Visualization of the global distribution of benchmarks P; used in the scenarios (a) — (d). Each dot represents the value of an observation

equation L’}- according to Eq. (23)

Table 2 Spectral condition number «; of the normal matrix N, quan-
tifying the stability of the LSA for the scenarios (a) — (d)
Scenario (a) (b) (©) (@)

Condition number &, (N) 221 404 118480 246

the LSA. Concerning scenario (d), it is demonstrated that if
at least one observation is added in each datum zone, this
instability can be mitigated. Thus, scenario (d) provides an
error level comparable to (b), showing that mm-accuracy
can be achieved in principle. However, these accuracy values
are quite optimistic and must be seen in the context of the
assumed error-free observation data of the closed loop simu-
lation. To obtain realistic values for practical applications, a
formal error propagation procedure would have to be taken
into account.

4 Summary and Outlook
In contrast to geometrically defined global terrestrial refer-

ence systems, physical height systems suffer from discrep-
ancies of about =1-2m due to the individual definition of

their local vertical datum. In order to realize a comparison of
physical heights, a height system unification is required.

In this paper, a method based on the solution of a fixed
GBVP has been presented, where height datum offsets are
estimated in a least squares adjustment. In contrast to previ-
ous approaches using the traditional scalar free GBVP, the
formulation of the proposed method is based on (unbiased)
gravity disturbances that do not cause indirect bias terms.
Therefore, the fixed GBVP approach simplifies the esti-
mation of height datum offsets, when gravity disturbances
become globally available in the future. However, consider-
ing the current situation of the global gravity data base, the
approach is extended by a transformation of gravity anoma-
lies to gravity disturbances also comprising indirect bias
terms. By conducting a closed loop simulation based on eight
height datum zones and EGM2008-derived observations, the
fixed GBVP approach has been validated, showing a mm-
accuracy of the estimated height datum offsets. Furthermore,
the stability of the adjustment has been analyzed showing a
dependency on the global distribution of the observations; at
least one observation should be located in each datum zone.

As future work, the impact of approximation errors on
the presented spherical solution will be analyzed and taken
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into account by suitable reductions. First results concerning
the fixed GBVP are presented by Miifile et al. (2014). In
addition, the combination of terrestrial gravity data with a
GGM and topographic information will be investigated as
well as a modification of Hotine’s integral kernel to restrict
the global integration area (Featherstone 2013).
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