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Poly(lactic acid) Controlled Drug Delivery

Jiannan Li, Jianxun Ding, Tongjun Liu, Jessica F. Liu, Lesan Yan,

and Xuesi Chen

Abstract Various drug delivery systems are being rapidly developed for con-

trolled drug release, improved efficacy, and reduced side effects with the goal of

improving quality of life for patients and curing disease. Poly(lactic acid) (PLA)

possesses numerous advantages compared with other polymers, including biocom-

patibility, biodegradability, low cost, environmental friendliness, and easily mod-

ified mechanical properties. These properties make PLA a promising polymer for

biomedical applications. This review introduces the specific characteristics of PLA

that enable its application for controlled drug delivery and describes different forms

of PLA used for drug delivery, including nanoparticles, microspheres, hydrogels,

electrospun fibers, and scaffolds. Previous work is summarized and future devel-

opment is discussed.
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1 Introduction

There are serious problems associated with the therapeutic use of small molecule

drugs (SMDs), including insolubility, instability (e.g., rapid degradation in physi-

ological environments), sequestration within the blood space by endothelial bar-

riers, and poor uptake by tissues and cells [1–3]. A wide variety of drug delivery

systems (DDSs) have been designed to overcome these challenges, which are of

crucial importance in healthcare and clinical applications [3–7]. Drug delivery is a

process, by which specific drugs are delivered to a target area in the organism (i.e.,

animals or humans) to achieve a therapeutic effect [8]. Controlled DDSs can be

specially designed to increase the solubility of SMDs, improve stability by

preventing SMD degradation under physiological conditions, reduce side effects

by targeting the lesion regions without affecting healthy sites, and maintain

sustained drug release at optimal doses [9, 10]. Moreover, the use of DDSs removes

the need for frequent administration, which is the primary cause of various degrees

of bodily injury. As a result, DDSs have shown significant efficacy in improving

quality of life in patients. Packaging an existing clinically approved drug into an

effective delivery system as an advanced formulation can also reduce the economic

cost and time required for new drug development.

In controlled DDSs, the carriers are as important as the bioactive drugs. Suc-

cessful delivery of drugs to target tissues requires that the carriers sustain good

stability during administration. Additionally, these carriers should be biocompati-

ble. A variety of polymers, including natural and synthetic polymers, can serve as

drug carriers, but few can meet the requirements of acceptable biocompatibility,

biodegradability, and absorbability [9, 11]. Recently, the field has begun to pay

more attention to the use of biodegradable polymers as drug carriers because of

their extraordinary performance [9, 12]. Many forms of carriers, including

nanoparticles (NPs), microspheres, hydrogels, electrospun fibers, and scaffolds,

have been investigated for the delivery of different types of drugs or for adaptation

to different situations in in vivo microenvironments.

Among the numerous biodegradable polymers that have been used as drug

carriers, poly(lactic acid) (PLA) is one of the most promising candidates (Fig. 1).
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PLA can be fabricated into various forms for controlled drug release, including NPs

[13, 14], microspheres [15], hydrogels [16], electrospun fibers [17], and scaffolds

[18]. Its various advantages include being environmentally friendly, existing in

multiple forms, exhibiting good biocompatibility and biodegradability, sustaining

long drug retention times, having easily modified mechanical properties, and being

low cost [19, 20].

PLA is derived from renewable sources, such as sugar, maize, potato, sugarcane,

and beet [21]. It is prepared by different polymerizations of lactic acid, which is in

turn typically produced by bacterial fermentation [22] or glycolysis [23], with little

environmental pollution. Furthermore, lactic acid, the degradation product of PLA,

can be removed completely in vivo. Therefore, PLA is a green biomaterial.

Lactic acid is a chiral molecule existing as L and D isomers (Fig. 2). PLA exists

primarily in three forms: poly(L-lactic acid) (PLLA), poly(D-lactic acid) (PDLA),

and poly(D,L-lactic acid) (PDLLA) [22, 24, 25]. Of these, PLLA has attracted the

most attention in DDSs as a result of its favorable mechanical properties. However,

Fig. 1 PLA-based carriers for controlled drug delivery. (a) TEM image of PLA nanoparticles

[13]. (b–e) SEM images of (b) microspheres [15], (c) hydrogels [119], (d) electrospun fibers [17],

and (e) scaffolds [18]. Reproduced from [13] with permission of Springer, from [15, 119] with

permission of Elsevier, from [17] with permission of American Chemical Society, and from [18]

with permission of John Wiley and Sons, respectively
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because PLLA has a long degradation time and is therefore likely to cause inflam-

matory responses in vivo, it is often used in combination with polymerization of D,

L-lactide monomers [22, 26].

Biocompatibility is a highly desirable trait in DDSs and has been the focus of

much research. PLA is biodegradable with high biocompatibility and does not

circulate in vivo for extended periods of time. Although PLA is hydrophobic, it

can undergo scission, primarily by hydrolysis, to monomeric units of lactic acid

in vivo even in the absence of enzymes [21]. This degradation process leaves no

foreign or toxic substances because lactic acid is a natural intermediate of carbo-

hydrate metabolism [27, 28]. As a result, PLA is highly biocompatible, biodegrad-

able, and bioresorbable in vivo.

Another advantage of biodegradable PLA DDSs is their long retention time.

Compared with other polymers, PLA possesses better biodegradability, which is

relatively moderate and can be properly controlled. This biodegradability mainly

relies on the crystallinity, morphology, and relative molecular mass of the polymer

[20]. PLA tends to be crystalline when the PLLA content is higher than 90%,

whereas the less optically pure form is amorphous [22]. Auras et al. [29] reported

that the densities of solid PLLA, PDLLA, crystalline PLA, and amorphous PLA are

1.36, 1.33, 1.36, and 1.25 g cm�3, respectively. PLA of low molecular weight is

preferred for use as a drug carrier because it has a shorter degradation time, giving

better release properties [30]. For drug carriers composed of nondegradable poly-

mers, the drug release rate slows gradually with a reduction in the amount of

encapsulated drug. PLA systems avoid this problem because the structure of PLA

gradually loosens with continued degradation in vivo. As a result, the resistance to

drug diffusion out of the PLA carrier is reduced, and the drug release rate is

Fig. 2 Chemical structures

of L-lactic acid, D-lactic

acid, L-lactide, D-lactide,

PLLA, and PDLA
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upregulated. Because the increased drug release rate counteracts the reduced drug

concentration, a long-term constant release of drug from the carrier can be

achieved [31].

The chemical and physical properties of PLA, especially its biocompatibility and

biodegradability, are easily influenced by adding different surfactants or changing

the molecular weight, size, shape, temperature, and moisture [21, 22, 29]. This

enables the creation of desired DDSs under specific conditions with different

formulations [32–38]. It is also possible to control the distribution and release

behavior of drugs in the PLA devices. As a typical example, Fernandez et al. [39]

extracted proanthocyanidins from grapes and stabilized them with PDLA using an

emulsion-evaporation method. They evaluated three factors in the formulation:

sonication time for the emulsion process, loading of grape extracts, and concentra-

tion of stabilizing agent. They concluded that the extract load and stabilizer

concentration were closely related to the properties of this drug model. Wei et al.

[25] loaded oxaliplatin (OXA) into NP and compared the drug delivery character-

istics of poly(ethylene glycol) (PEG)�PLA NP with that of PLA-only NP. They

found that the OXA concentration in the tumor in the PEG�PLA NP group was

higher than that in the PLA NP group. Furthermore, less OXA accumulated in the

liver and lungs after PEG�PLA NP was administered. The results indicated that the

PEG-modified platform possessed good drug retention ability and could deliver

more drugs to the target sites. Many others have demonstrated that PEG can resist

nonspecific absorption of proteins in the blood [40–44]. However, PEG has some

limitations as a coating for PLA DDSs, particularly in achieving effective PEG

surface densities [45, 46]. To combat this problem, Deng et al. [47] applied

hyperbranched polyglycerol (HPG) as an alternative coating of PLA NP. They

found that the antitumor agent camptothecin (CPT) had a longer blood circulation

time, higher stability, less accumulation in the liver, and better therapeutic effec-

tiveness against tumors in the HPG�PLA NP group than that in the PEG�PLA NP

group. They concluded that HPG is a better surface coating for NPs than PEG for

applications in drug delivery. In a study performed by Yamakawa et al. [48],

neurotensin analogue-loaded PDLLA microspheres with different PLA molecular

weights were prepared. The authors found that when the molecular weight changed,

the rate of initial burst and the length of time, over which the drug was released,

varied. Zeng et al. [49] examined the influence of surfactants on the diameter of

electrospun PLLA fibers by adding cationic, anionic, and nonionic surfactants, that

is, triethyl benzyl ammonium chloride, sodium dodecyl sulfate, and aliphatic

PPO�PEO ether, respectively. Rifampin (RIF; a drug for tuberculosis) and pacli-

taxel (PTX; an anticancer drug) were used as model drugs and loaded into PLLA

fibers. It was revealed that the addition of each of the three types of surfactant could

reduce the diameter and narrow the distribution of electrospun fibers. Furthermore,

RIF contained in these fibrous mats could be released constantly with no burst

release behavior.

All the advantages of PLA make it a popular drug carrier matrix, and it has been

approved by the Food and Drug Administration (FDA) for in vivo applications in

humans [21]. The next section gives details on different forms of PLA for
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controlled drug delivery, including NPs, microspheres, hydrogels, electrospun

fibers, and scaffolds.

2 PLA-Based Carriers for Drug Delivery

With the assistance of DDSs, it is possible to achieve a much greater therapeutic

effect for many clinical applications, including a reduced pain burden and improved

quality of life. It is also possible to limit side effects by controlling drug release rate

and specifically transporting drugs to target sites [50]. A variety of advanced

delivery systems have been developed to achieve high efficiency and safety in

drug delivery and overcome the disadvantages of traditional formulations

[24, 25]. The biomedical applications of PLA-based drug carriers discussed in

this section are summarized in Table 1.

2.1 Nanoparticles

NPs are spherical skeletons composed of polymer matrix, with diameters ranging

from 1 to 500 nm.

2.1.1 Properties

Of the various categories of drug carrier systems, NPs have attracted the most

attention because of their unique properties [34, 51]. NPs have many advantages

compared with other DDS formulations. First, NPs have a high drug retention rate,

which can prevent inactivation in vivo; second, NPs allow well-controlled drug

distribution by delivering drugs to disease sites with few side effects in other areas;

and third, NPs allow long-term drug release [52, 53]. A variety of biocompatible

and biodegradable biomaterials, especially PLA, have been used as raw materials

for NPs, thereby increasing their clinical utility.

2.1.2 Applications

PLA NPs have been the subject of much interest as DDSs to access the central

nervous system (CNS) [54]. The blood–brain barrier (BBB) is a significant chal-

lenge for drug delivery to the CNS, because it is composed of special endothelial

cells that form tight junctions, blocking drug transport into the CNS [34, 52]. Drugs

are typically unable to pass through the BBB in free form [34]. However, by

varying the molecular weight of PLA and using surfactants or surface modifica-

tions, the PLA NPs loaded with different drugs can be successfully delivered to the

CNS. For example, Liu et al. [13] prepared the breviscapine (BVP)-loaded PDLLA

NPs of different sizes and investigated the distribution of BVP in rats. The mean
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Table 1 PLA-based carriers for drug delivery

Category Polymer Drug Application Reference

NPs PDLLA BVP Penetrating BBB [13]

PLLA Ritonavir (RIT) Penetrating BBB [55]

PLA MTX Intranasal

delivery

[61]

PLA Endostar Cancer therapy [63]

PEG�PDLLA IFF Cancer diagnosis [64]

PEG�PDLLA PTX and RAP Cancer therapy [65]

PLA BF2dbmPLA Cell imaging [72]

PEG�PLA TNFα Inflammatory

bowel disease

[73]

PEG�PLA TNFα Inflammatory

bowel disease

[73]

PLA TC Antibacterial [74]

PEG�PLA Minocycline (MC) Periodontitis [44]

PLA/PLGA TC Periodontitis [76]

PLA Bone morphogenic

protein 2 (BMP-2)

Bone repair [77]

PLA Betamethasone phos-

phate (BMS)

Autoimmune

uveoretinitis

[79]

PEG�PLA Bis-triazole DO870 Chagas disease [80]

Microspheres PLLA�PEG�PLLA MTX Cancer therapy [97]

Dextran/

PLGA�PLA

rIL-2 Cancer therapy [98]

PDLLA Epirubicin (EPI) Cancer therapy [99]

PLLA 5-FU Cancer therapy [100]

PDLLA CDDP Cancer therapy [101]

PLLA PTX Cancer therapy [103]

PLA 5-FU Cancer therapy [104]

PLA 5-FU Cancer therapy [106]

PEG–PLA Amphotericin B

(AmB)

Local antibiotic

delivery

[108]

PLA Gentamicin (GEN) Local antibiotic

delivery

[109]

PLA Piroxicam (PIR) Anti-

inflammation

[112]

PLA IL-1β Vaccine [113]

PLA TV and FEP proteins Vaccine [114]

PLA/PLGA IFN-γ Vaccine [116]

PLLA HBsAg Vaccine [117]

Hydrogels PEG�PLCPHA CEF Antibacterial [125]

PLA/PEO/PLA Bovine serum albu-

min (BSA) and fibrin-

ogen (Fib)

Drug release [126]

PEG�PLA CDDP Drug release [128]

PLEOF Stromal derived fac-

tor-1α (SDF-1α)
Tissue

engineering

[127]

(continued)
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Table 1 (continued)

Category Polymer Drug Application Reference

PLA�L64�PLA DTX and LL-37

peptide

Colorectal perito-

neal

carcinomatosis

[129]

PLA�DX�PEG siRNA Bone repair [130]

PLA FGF and IGF-1 Cardivascular

engineering

[131]

Electrospun

fibers

PLLA 5-FU Cancer therapy [140]

PLLA DOX Cancer therapy [137]

PEG�PLA/PLGA Cefoxitin (CFX) Adhesion

prevention

[142]

PLLA Silver NP Antibacterial and

anti-adhesion

[144]

PLLA IBU Anti-inflamma-

tion and anti-

adhesion

[145]

PELA Celecoxib (CEL) Adhesion

prevention

[146]

PELA IBU Adhesion

prevention

[147]

PLLA bFGF Adhesion

prevention

[148]

PLLA Bone marrow MSCs Vascular tissue

engineering

[149]

PLLA TGF Annulus fibrosus

repair and

regeneration

[152]

PDLLA 2,3-

Dihydroxybenzoic

acid (DBC)

Antibacterial [153]

PLA Polybiguanide (PBG) Antibacterial [154]

PLA/PCL KGF Wound healing [158]

PLA/PGA IBU Wound healing [159]

Scaffolds PLA VEGF Bone repair [163]

Chitosan/PLLA BMP-2-derived

peptide

Bone repair [165]

PLLA Tranilast (TRA) Local drug

delivery

[167]

PLA EGF Nerve

engineering

[168]

PLLA Retinoic acid (RA) Nerve

engineering

[171]

PLLA β-Tricalcium phos-

phate (β-TCP)
Bone repair [170]

PLLA ALK Wound healing [172]

PLA CUR Wound healing [173]

PLA/PCL KGF Wound healing [158]

PLA IBU, ALK, and CUR Wound healing [174]
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diameters of these NPs were 177 and 319 nm. The BVP-loaded PDLLA NPs could

not only avoid capture by the reticuloendothelial system (RES), but also penetrated

the BBB and enhanced accumulation of BVP in the brain. Additionally, a larger NP

could deliver more BVP to the CNS. In another study, the PLLA NP loaded with

ritonavir (a protease inhibitor) was attached to a trans-activating transcriptional

activator (TAT) peptide [55]. The results indicated that TAT increased the transport

of NPs across the BBB. In addition, the TAT-conjugated NPs were able to maintain

a therapeutic drug level in the brain, which could be effective in controlling viral

replication in the CNS. In a recent study, Sun et al. [56] demonstrated that the

coating was necessary for drug delivery across the BBB. Compared with the

modified PLA NP, the unmodified platform was able to deliver only a small amount

of drug to the brain [34, 57–59]. However, in all cases, less than 1% of the

administered dose reached the CNS, far less than enough to achieve a significant

therapeutic effect.

By-passing the BBB is another efficient way of achieving drug delivery for CNS

diseases. Intranasal delivery is one such method for circumventing the BBB and not

only provides rapid access to the CNS, but also avoids first-pass hepatic clearance

and tends to avoid systemic side effects [60]. Unfortunately, the brain concentration

of drugs delivered intranasally is often still too low to achieve a desired therapeutic

effect. NPs may help to solve this problem: loading drugs into NPs can protect them

from degradation in the nasal enzymatic microenvironment. For example, Jain et al.

[61] delivered methotrexate (MTX) by designing the thermosensitive PLA NP that

exhibited enhanced residence time in the nasal cavity and by-passed the BBB. The

results indicated that more NP was detected in the brain than free drug. Xia et al.

[62] applied low molecular weight protamine (LMWP) to decorate the surface of

methoxy poly(ethylene glycol) (mPEG)�PLA NP and determined the percentage

of drug delivered to the brain after intranasal administration. Their results showed

that the LMWP-modified mPEG�PLA NP could be more effectively delivered to

the CNS than the unmodified one.

PLA NPs are also widely used for the diagnosis and treatment of cancers. Li

et al. [63] first fabricated PLA NP encapsulating Endostar, then conjugated the

near-infrared (NIR) dye IRDye 800CW and GX1 peptide onto NP (IGPNE). With

NIR, fluorescence molecular imaging, and bioluminescence imaging, they were

able to use this composite to attain a real-time image of U87MG tumor. Further-

more, IGPNE accumulated in the tumor site and had an antiangiogenic therapeutic

effect. Miller et al. [64] incorporated dechloro-4-iodo-fenofibrate (IFF) into the

core of PEGylated PDLLA (PEG�PDLLA) micelle and investigated its effect on

tumor targeting, as shown in Fig. 3a. The results showed that the separation process

of the drug from the carrier was extremely fast and that the drug accumulated more

in the tumor than did the carrier (Fig. 3b, c). Mishra et al. [65] investigated the

angiogenesis inhibition effect of mPEG-b-PDLLA micelle loaded with PTX and

rapamycin (RAP). The results indicated that the PTX�RAP dual drug micelle had

an enhanced antiangiogenesis effect that was promising for cancer chemotherapy.

Other studies have also reported the anticancer effects of PLA DDSs loaded with

chemotherapy drugs [66–71].
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PLA NPs also play an important role in other areas, such as live cell imaging and

treatment, and diagnosis of various other diseases. For instance, Contreras et al. [72]

prepared the PLANP based on difluoroboron dibenzoylmethane dye (BF2dbmPLA).

They found that the BF2dbmPLA NP could be internalized into cultured HeLa cells

by endocytosis and that the NP retained its fluorescence property, suggesting that

the unique optical property of this complex could be harnessed for live cell imaging.

In another study, the Fab0-bearing siRNA tumor necrosis factor α (TNFα)-loaded
PEG�PLA NP was prepared and studied for use in inflammatory bowel disease

[73]. The in vivo experiment indicated that colitis was inhibited efficiently as

the TNFα-siRNA-loaded NP was released to and accumulated in the diseased

area. Babak et al. [74] prepared PLA DDSs for long-term antibacterial applications.

They designed the composite platforms of poly(ε-caprolactone) (PCL) with differ-

ent concentrations of the triclosan (TC)-loaded PLA NPs and investigated their

drug release properties and antibacterial effects. Because of the advantages of

PLA, including its higher glass transition temperature (Tg) and lower flexibility,

Fig. 3 Micelle composition and metabolism in vivo [64]. (a) The core component consists of

PDLLA, which hosts the radioactively labeled drug 131IFF or 125IFF. The particle shell is covered

with PEG. The surfaces show a mixture of 111In-DOTA-HN-PEG and H3CO-PEG. (b)

Biodistribution (%ID) of polymer carrier and (c) IFF drug payload (%ID). All statistical data are

presented as mean � standard deviation (SD; n ¼ 3). Reproduced from [64] with permission of

Elsevier
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this biocomposite showed reduced burst release of TC and an antibacterial effect

that lasted approximately 2 years.

Various other studies have shown the therapeutic effect of drugs loaded into

PLA NPs against many diseases, including hearing loss by cisplatin (CDDP)

chemotherapy [75], periodontitis [44, 76], colitis [73], acute hepatic failure [73],

bone fracture [77], dermatitis [78], autoimmune uveoretinitis [79], and Chagas

disease [80].

2.2 Microspheres

Microspheres are another kind of fine particle dispersion system in which drug

molecules are dispersed or adsorbed. The diameters of microspheres range from

1 to 250 μm, and the main difference between NPs and microspheres is their size

[81]. Because microspheres are larger than NPs in size, they are unlikely to cross

biological barriers. Furthermore, microspheres tend to stay in place if injected into

certain tissues. Additionally, microspheres can be only taken up by phagocytosis,

whereas NPs can be taken up by both phagocytosis and pinocytosis [81]. For these

reasons, microspheres are most widely used in cancer treatment as DDSs. However,

NPs can be applied in many medical areas, as discussed in Sect. 2.1.

2.2.1 Properties

The drug-loaded microspheres can disperse specifically to target tissues in vivo,

improving local drug concentrations and reducing systemic side effects. As a result

of their excellent biocompatibility and biodegradability, PLA and its copolymers

are the most frequently used polymers for DDSs. However, discovering which

factors affect the rate of microsphere degradation and achieving more appropriate

degradation behaviors is extremely important. Previous studies have found that the

degradation of microspheres is associated with molecular weight, polymer crystal-

linity, microsphere size, and the presence of drugs [82]. Li et al. [83] found that a

copolymer with 50% lactic acid and 50% glycolic acid (50:50 PLGA) has a shorter

half-life period than 75:25 PLGA, and degrades faster than PLA.

The PLA-based microspheres loaded with different drugs are primarily deliv-

ered by intravascular injection, subcutaneous injection, in situ injection, and oral

administration. Various types of drugs have been loaded into microspheres for

medical applications, including anticancer drugs, antibiotics, antituberculosis

drugs, antiparasitic drugs, asthma drugs, and vaccines. Of these, anticancer thera-

peutics have been most studied.

The microspheres composed of biocompatible and biodegradable polymers like

PLA can also increase the stability and bioavailability of drugs, reduce gastroin-

testinal irritation, prolong the duration of drug release, and deliver drugs to target

sites [84, 85]. Guan et al. [86] formulated the PLA microspheres loaded with
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lovastatin (LVT) for oral administration, and evaluated the in vitro and in vivo

characteristics of the microspheres. They concluded that PLA microspheres could

significantly prolong the circulation time of LVT in vivo and also significantly

increase the relative bioavailability of LVT. Ding et al. [15] evaluated the drug

loading ability and drug release behavior of amorphous calcium phosphate (ACP)

microspheres containing mPEG–PDLLA. The ACP porous hollow microspheres

were found to have a high docetaxel (DTX) loading capacity, thus causing more

damage to tumor cells. Lu et al. [87] prepared the RIF-loaded PLA microspheres

using the electrospray technique and showed that drug release from the micro-

spheres lasted for more than 60 h in vitro. In another study, Chen et al. [88]

formulated the emodin (ED)-loaded PLA microspheres and studied their lung-

targeting effect. Apart from determining the optimal parameters for formulation

and sustained drug release, this research also indicated that ED was mainly deliv-

ered to lung tissue without causing toxicity to the liver and kidneys. Mirella et al.

[89] compared PLLA microspheres with poly(lactide-co-glycolide) (PLGA) micro-

spheres prepared by the same technique. They concluded that the PLLA micro-

spheres had the best physical properties, the highest drug loading content, and the

most efficient drug release behavior without any burst effect. Other studies have

similarly shown that PLA microspheres increase drug release time, stability, and

bioactivity, all of which increase their medical applicability [90–96].

2.2.2 Applications

PLA microspheres are primarily used for delivering anticancer drugs to target sites.

In a study conducted by Chen et al. [97], the in vitro and in vivo antitumor efficacy

of magnetic composite microspheres of the MTX-loaded Fe3O4-PLLA-PEG-PLLA

(MMCMs) was investigated. The results from experiments at the cellular, molec-

ular, and integrated level indicated that MMCMs with magnetic induction possess

the ability to accumulate MTX in tumor tissue, leading to apoptosis of the tumor

cells. Zhao et al. [98] investigated the antitumor efficacy of dextran/PLGA�PLA

core/shell microspheres loaded with recombinant interleukin-2 (rIL-2), as depicted

in Fig. 4. They injected a single dose of microspheres intratumorally in a subcuta-

neous colon carcinoma BALB/c mouse model and demonstrated that the antitumor

effect of the microspheres was promising. Tumor growth was significantly

suppressed in the rIL-2-loaded microsphere group (Fig. 4). Zhou et al. [99] explored

the use of epirubicin (EPI)-loaded PDLLA microspheres for treating hepatocellular

carcinoma (HCC) in mice. Compared with the blank microsphere group and the

normal saline control group, the group treated with the EPI-loaded PDLLA micro-

spheres had the longest survival time, which indicated that the PLA microspheres

combined with EPI are highly effective in treating HCC in mice. In another study,

the PLLA microspheres containing 5-fluorouracil (5-FU) were prepared [100]. The

authors found that the microspheres were primarily located in the liver and were

more efficient than free 5-FU in prolonging the survival time of rats with liver

tumors. In a study performed by Kuang et al. [101], the PDLLA microspheres
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loaded with CDDP were injected into mammary tumors in rats. These microspheres

had a similar antitumor effect as aqueous CDDP solution in that the tumor became

significantly smaller or disappeared 16 days after treatment. Fascinatingly, the

CDDP-loaded PDLLA microspheres showed less nephrotoxicity than the aqueous

CDDP solution. Other studies have also revealed the anticancer effects of drug-

loaded PLA microspheres and provided an experimental basis for further therapies

[102–106].

In addition to anticancer drugs, other kinds of drugs, including antibiotics [107–

109], anti-TB drugs [110], asthma drugs [111, 112], and vaccines [113–118] have

been loaded into PLA microspheres. Consequently, PLA microspheres are another

widely used DDS for medical applications.

Fig. 4 Properties and antitumor efficacy of rIL-2-loaded dextran/PLGA�PLA core/shell micro-

sphere [98]. (a) SEM image of drug-loaded microsphere. (b) In vitro cumulative rlL-2 release

profile of loading microsphere in phosphate-buffered saline (PBS) of pH 7.4 at 37 �C. Error bars
represent the SD (n ¼ 3). (c–f) In vivo antitumor efficacy of rlL-2-loaded dextran/PLGA�PLA

core/shell microsphere toward BALB/c mice bearing colon carcinoma. All mice were euthanized

on day 22, and tumors were stripped, weighed, and photographed. (c) Representative photographs

of tumors. (d) Representative photographs of BALB/c mice bearing tumors. (e) Tumor volumes in

the different groups (blank microsphere, rIL-2 solution, and rIL-2-loaded microsphere) as a

function of days post-treatment. Arrow represents the day that each formulation was administrated

for the first time. (f) Tumor weights after euthanizing on day 22. Data are expressed as mean� SD

(n ¼ 4). Reproduced from [98] with permission of Elsevier
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2.3 Hydrogels

Hydrogels, a type of three-dimensional (3D) polymer network containing signifi-

cant amounts of water [119, 120], have received increasing attention in the fields of

drug delivery and tissue engineering [121, 122].

2.3.1 Properties

The environmentally sensitive hydrogels are widely studied because of their bio-

compatibility and resemblance to biological tissues [123]. As a result of its bio-

compatibility, PLA has gained favor for the construction of hydrogels. The most

attractive feature of PLA hydrogels is their thermal sensitivity: the PLA copolymer

is soluble at room temperature and changes into a gel at body temperature. In

addition, PLA hydrogels have good controlled drug release properties and can

maintain drug release for over a month. However, crystallization and subsequent

precipitation in solution is a major challenge for PLA use in hydrogel fabrication.

To solve this problem, PLGA�PEG systems are often chosen. The PLGA�PEG

solution is liquid at room temperature and immediately forms a hydrogel at body

temperature. Furthermore, its mechanical properties are superior to those of

PLA-only hydrogels [124].

Compared with hydrophobic materials, hydrogels interact less strongly with

immobilized biomolecules. Because of the biocompatibility of PLA and the high

water content of hydrogels, the use of PLA hydrogels is ideal for sustained drug

release. Various studies have demonstrated this idea: for example, Lai et al. [125]

developed a thermosensitive methoxy poly(ethylene glycol)-co-poly(lactic acid-co-
aromatic anhydride) (mPEG�PLCPHA) hydrogel for cefazolin (CEF) delivery that

exhibited long-term antibacterial effects. Wang et al. [119] studied the safety of a

pH-sensitive hydrogel consisting of mPEG, PLA, and itaconic acid, and concluded

that it might be used as a safe method for drug delivery. Other studies have also

provided convincing evidence that PLA hydrogels can serve as efficient DDSs

[126–128].

2.3.2 Applications

PLA hydrogels have already shown great potential as DDSs for medical applica-

tions. In one study, researchers dispersed NPs of DTX and LL-37 peptide into a

PLA�L64�PLA thermosensitive hydrogel and evaluated the intraperitoneal effect

of this composite in a colorectal peritoneal carcinomatosis HCT116 model

[129]. They found that the hydrogel showed significant antitumor efficacy both

in vitro and in vivo. Manaka et al. [130] evaluated the bone formation effect of a

PDLLA�p-dioxanone�PEG hydrogel carrier for siRNA delivery. The hydrogel

was found to be safe and efficient for siRNA delivery, and could promote new bone
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formation (Fig. 5). Devin et al. [131] synthesized a degradable methacrylate PLA

hydrogel loaded with bioactive basic fibroblast growth factor (bFGF) and insulin-

like growth factor-1 (IGF-1). This hydrogel loaded with growth factors was injected

into infarcts in Lewis rats and found to improve cardiac function and geometry

compared with the saline control. The results indicated that PLA hydrogel can act

as a carrier of growth factors to influence cardiac remodeling. In another study, a

diblock hydrogel of mPEG�PLA was studied for adhesion prevention [122]. The

Fig. 5 Characterization of ectopic bone formation [130]. (a) Soft X-ray examination of newly

formed ectopic bone induced by hydrogel containing 2.5 mg rhBMP-2 without Noggin siRNA

[BMP(+)siRNA(�)] or with Noggin [BMP(+)siRNA(+)] for 2 weeks. (b) Bone mineral contents

of ossicles measured by dual-energy X-ray absorptiometry (DXA). *P < 0.05, compared with

control group. (c) Von Kossa and van Gieson staining of sections of undercalcified BMP-induced

ectopic bone without or with Noggin siRNA. Bone volume per tissue volume (BV/TV) is

expressed as mean. *P < 0.05 compared with control group. Reproduced from [130] with

permission of Elsevier
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results showed that the hydrogel system was equally effective compared with the

commercial anti-adhesion product. Furthermore, this hydrogel system could be

more promising for adhesion prevention if it were loaded with antifibrosis and

anti-inflammatory drugs.

Even though PLA hydrogels are not as widely used as PLA NPs and micro-

spheres, they still play an important role in controlled drug delivery.

2.4 Electrospun Fibers

Electrospinning is a facile and economic technique for producing nanoscale or

microscale fibers from different polymers. The fibers can then be used for a variety

of biomedical applications [132–137].

2.4.1 Properties

Electrospun fibers have attracted increasing attention as DDSs because of their

specific advantages, including a high surface to area ratio, which can lead to high

drug loading capacity, variable pore size, and mechanical flexibility [135, 136,

138]. Electrospinning is an efficient and simple method of rapidly and reproducibly

manufacturing fiber networks incorporating different kinds of drugs [139]. How-

ever, hydrophilic water-soluble drugs cannot be directly mixed into solutions of

PLA. Fortunately, the techniques of emulsion electrospinning and coaxial

electrospinning can be used to encapsulate hydrophilic drugs in the core of the

fibers to mitigate the initial burst release of drug [137]. Furthermore, the charac-

teristics of electrospun fibers as DDSs can be modified by biological, chemical,

optical, thermal, magnetic, and electric stimuli [139]. As a result, electrospun fibers

can be designed to achieve the desired drug transport properties for medical

application. PLA electrospun fibers play a significant role in this area.

2.4.2 Applications

Like other PLA DDSs, electrospun PLA fibers are widely used in cancer therapy.

Zhang et al. [140] manufactured the PLLA electrospun fibers loaded with 5-FU and

OXA for treatment of colorectal cancer. They found that the PLLA electrospun

fiber loaded with chemotherapy drugs significantly suppressed tumor growth and

prolonged mouse survival time. In another study (Fig. 6), researchers prepared the

electrospun PLLA fibers loaded with multiwalled carbon nanotubes (MWCNTs)

and doxorubicin (DOX) [141]. As demonstrated in Fig. 6, the combination of

photothermal therapy using MWCNTs and chemotherapy induced with DOX

greatly suppressed tumor growth, with less damage to nearby normal tissue.
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Fig. 6 Fabrication of DOX/MWCNT co-loaded electrospun PLA fibers for treatment of U14

cervical cancer in mice [141]. (A) SEM image of co-loaded fibers. (B) TEM of co-loaded fiber, and

fluorescence image of (a) PLA fiber, (b) MWCNT-loaded PLA fiber, and (c) co-loaded PLA fiber.

(C) Release profiles of DOX from co-loaded fiber in PBS at 37�C without or with NIR irradiation

of 2 W/cm2. The column zone indicates when the NIR irradiation was applied. (D) Temperature of

tumor region at different time points under NIR irradiation of 1.5 W/cm2. Control group: (a) tumor

surface, (b) 3 mm inside tumor. Fiber dressing group: (c) tumor surface, (d ) 3 mm inside tumor.

(E) Evolution of U14 tumor volumes of KM mice as a function of time. (F) Relative body weight

changes with time of U14 tumor-bearing mice. All the fibers were implanted only once in the

beginning at an equivalent DOX dose of 0.1 mg and MWCNT dose of 0.1 mg. In groups of M/laser

and DM/laser, tumor regions were exposed to NIR irradiation (1.5 W/cm2) for 10 min after fiber

dressing for 24 h. Reproduced from [141] with permission of Elsevier
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The electrospun PLA fibers loaded with various kinds of drugs are also used for

adhesion prevention [137]. Tissue adhesion is one of the most common postoper-

ative complications, in most cases requiring a second operation to remove the

adhesions [142]. Electrospun PLA membranes not only act as a physical barrier,

but can also be loaded with many kinds of drugs to prevent post-surgical adhesions.

Because of the excellent biocompatibility and biodegradability of PLA,

antibacterial drugs [142–144], anti-inflammatory drugs [145–147], drugs that facil-

itate healing [148], and synergistic combinations [149] have also been loaded into

electrospun PLA fibers.

Electrospun PLA fibers can be applied in many other medical fields, including

tissue engineering [150–152], antibiotic therapy [144, 153–155], bone repair

[156, 157], and wound healing [158, 159]. For example, Screerekha et al. [150]

developed a fibrin-based electrospun composite scaffold that provided a natural

environment for cell attachment, migration, and proliferation. The results indicated

that the electrospun-based composite was promising for myocardial tissue engi-

neering. In another study, Spasova et al. [155] prepared PLA stereocomplex fibers

using an amphiphilic block copolymer and demonstrated good antibacterial prop-

erties in experiments on blood cells and pathogenic microorganisms. Ni et al. [156]

developed an electrospun PEG/PLA fibrous scaffold to provide an interconnected

porous environment for attachment of mesenchymal stem cells (MSCs). The results

showed good cell response, excellent osteogenic ability, and outstanding biocom-

patibility of the electrospun PEG/PLA fibrous composite for bone repair. Kobsa

et al. [158] developed a PLA-based electrospun scaffold integrating nucleic acid

delivery and studied its effect in the treatment of full thickness wounds. They found

that the scaffold could serve as a protective barrier in the early stages of wound

healing, as well as induce cell migration and growth.

2.5 Scaffolds

Tissue engineering scaffolds, especially those prepared from biocompatible and

biodegradable polymers, are increasingly widely used. The scaffolds loaded with

different drugs are crucial for the regeneration of large defects.

2.5.1 Properties

PLA has also become a popular scaffold for tissue engineering, again due to its

outstanding biocompatibility and biodegradability. PLA scaffolds can be designed

to match the mechanical properties of native tissues [160]. Furthermore, because

the concentration of degradation products is reduced with increased porosity, PLA

is a favorable material for scaffold fabrication [160].

126 J. Li et al.



2.5.2 Applications

PLA is promising for tissue engineering applications, not only as a scaffold

material, but also for its drug delivery properties [24, 25, 161]. PLA scaffolds can

be implanted at injured sites to support injured tissues and enhance the repair

process. By loading drugs into the scaffolds, it is also possible to generate

multifunctional PLA scaffolds for various applications [162]. However, release

properties are important when scaffolds are also harnessed as DDSs. Many param-

eters, such as loading method, scaffold properties, and choice of polymer, can all

play an important role in the mechanism of drug release, which occurs primarily via

desorption, degradation, and diffusion in the electrospun PLA scaffolds [160].

The PLA scaffolds loaded with various agents have been the subject of much

research in bone, vascular, and other tissue engineering applications. As a typical

example, Zhou et al. [163] exploited a calcium phosphate�PLA composite as a

coating for a tantalum porous scaffold (Fig. 7). Vascular endothelial growth factor

(VEGF) and transforming growth factor (TGF) were loaded into the scaffold and

used for bone defect repair. Their results indicated that the scaffold provided

growth factors, physical support, structural guidance, and interfaces for new bone

growth, and was therefore useful to guide new bone regeneration. Other studies

have also reported the superior effects of various PLA scaffolds for tissue engi-

neering [158, 164–173]. For example, Hu et al. [166] fabricated a nanofibrous

PLLA scaffold for blood vessel regeneration. The results showed that the scaffold

preferentially supported the reconstruction of tissue-engineered vascular graft. In

another study, Niu et al. [165] developed a microencapsulated chitosan (CM),

nanohydroxyapatite/collagen (nHAC), and PLLA-based microsphere–scaffold

delivery system. Bone morphogenetic protein-2 (BMP-2)-derived synthetic peptide

Fig. 7 Strategy for preparation and bone defect repair application of porous tantalum scaffold

coated with a composite of calcium phosphate and PLA. Reproduced from [163] with permission

of Elsevier
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was incorporated into the synthesized composite. The results showed that the

CM/nHAC/PLLA composite can accelerate the regeneration of cancellous bone

defect with controlled release of the incorporated peptide. Haddad et al. [168]

developed a 3D PLA scaffold with polyallylamine to introduce amine groups,

followed by grafting of epidermal growth factor (EGF) onto the scaffold. They

found that neural stem-like cells were able to proliferate on the EGF-grafted sub-

strates and might be promising for repair of the CNS. The PLA scaffolds loaded

with drugs, such as ibuprofen IBU, alkannin ALK, and curcumin (CUR), are also

used for promoting cutaneous wound healing [160]. However, a detailed discussion

is beyond the scope of this review on DDSs.

3 Conclusions and Perspectives

This review introduces the characteristics of PLA as a promising matrix for DDSs

in its five most commonly used forms: NPs, microspheres, hydrogels, electrospun

fibers, and scaffolds. The PLA DDSs can effectively deliver drugs to the target

sites, reduce drug toxicity, and increase the therapeutic effect. In addition, PLA can

be modified to achieve various desired properties in DDSs. As a result, PLA has

great potential for DDS development.

The PLA DDSs loaded with different drugs can be used for the treatment of

many diseases. For example, the PLA DDSs loaded with anticancer agents like

PTX can directly deliver drugs to tumor sites, thereby increasing drug accumulation

and retention time in the tumor while reducing systemic side effects. Meanwhile,

the PLA DDSs loaded with different cytokines, such as BMP, can control drug

release via degradation and play an important role in bone repair. The PLA DDSs

loaded with other drugs, including anti-inflammatory agents [107, 108],

antihypotensors [174], painkillers [158], and vaccines [113, 114, 118], can also

be used for other medical applications.

With the development of biotechnology, peptide and protein drugs have become

increasingly prevalent. However, the short retention time of these drugs limits their

application, as continuous administration is often impractical. PLA DDSs may be

able to improve the application of peptide- and protein-based therapeutics. Further-

more, PLA DDSs can be engineered to be intelligent drug delivery vehicles. For

example, a smart PLA glucose monitor may be engineered to be inserted into body

tissue and release the proper dose of insulin according to glucose fluctuations.

Although some aspects of PLA DDSs still need to be improved, further research

will allow PLA to play an increasingly important role as a matrix promising

material for DDSs and provide more efficacious treatment methods for many

diseases.
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