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Many-Body Perturbation Theory (MBPT)

and Time-Dependent Density-Functional

Theory (TD-DFT): MBPT Insights About

What Is Missing In, and Corrections To,

the TD-DFT Adiabatic Approximation

Mark E. Casida and Miquel Huix-Rotllant

Abstract In their famous paper, Kohn and Sham formulated a formally exact

density-functional theory (DFT) for the ground-state energy and density of a system

of N interacting electrons, albeit limited at the time by certain troubling

representability questions. As no practical exact form of the exchange-correlation

(xc) energy functional was known, the xc-functional had to be approximated,

ideally by a local or semilocal functional. Nowadays, however, the realization

that Nature is not always so nearsighted has driven us up Perdew’s Jacob’s ladder
to find increasingly nonlocal density/wavefunction hybrid functionals. Time-

dependent (TD-) DFT is a younger development which allows DFT concepts to

be used to describe the temporal evolution of the density in the presence of a

perturbing field. Linear response (LR) theory then allows spectra and other infor-

mation about excited states to be extracted from TD-DFT. Once again the exact

TD-DFT xc-functional must be approximated in practical calculations and this has

historically been done using the TD-DFT adiabatic approximation (AA) which is to

TD-DFT very similar to what the local density approximation (LDA) is to conven-

tional ground-state DFT. Although some of the recent advances in TD-DFT focus

on what can be done within the AA, others explore ways around the AA. After giving

an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body

corrections to LR-TD-DFT as one way to build hybrid density-functional/
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wavefunction methodology for incorporating aspects of nonlocality in time not

present in the AA.
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1 Introduction

I have not included chemistry in my list [of the physical sciences] because, though

Dynamical Science is continually reclaiming large tracts of good ground from one side

of Chemistry, Chemistry is extending with still greater rapidity on the other side, into

regions where the dynamics of the present day must put her hand on her mouth. But

Chemistry is a Physical Science. . .
— James Clerk Maxwell, Encyclopaedia Britannica, ca. 1873 [1]

Much has changed since Maxwell first defended chemistry as a physical science.

The physics applied to chemical systems now involves as much, if not more,

quantum mechanics than classical dynamics. However, some things have not

changed. Chemistry still seems to extend too rapidly for first principles modeling

to keep up. Fortunately, density-functional theory (DFT) has established itself as a

computationally simple way to extend ab initio1 accuracy to larger systems than

1 The term ab initio is used here as it is typically used in quantum chemistry. That is, ab initio refers

to first-principles Hartree–Fock-based theory, excluding DFT. In contrast, the term ab initio used

in the solid state physics literature usually encompasses DFT.
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where ab initio quantum chemical methods can traditionally be applied. The

reluctance to use DFT for describing excited states has even given way as linear

response (LR-) time-dependent (TD-) DFT has become an established way to

calculate excited-state properties of medium size and large molecules. One of the

strengths of TD-DFT is that it is formally an exact theory. However, as in traditional

DFT, problems arise in practice because of the need to make approximations.

Of course, from the point of view of a developer of new methods, when people

are given a little then they immediately want more. As soon as LR-TD-DFT was

shown to give reasonably promising results in one context, many people in the

modeling community immediately wanted to apply LR-TD-DFT in a whole range

of more challenging contexts. It then became urgent to explore the limits of

applicability of approximate TD-DFT and to improve approximations in order to

extend these limits. Much work has been done on this problem and there are many

success stories to tell about LR-TD-DFT. Indeed, many of the chapters in this book

describe some of these challenging contexts where conventional LR-TD-DFT

approximations do work. In this chapter, however, we want to focus on the cutting

edge where LR-TD-DFT finds itself seriously challenged and yet progress is being

made. In particular, what we have in mind are photochemical applications where

interacting excited states of fundamentally different character need to be described

with similar accuracy and where bonds may be in the process of breaking or

forming. The approach we take is to introduce a hybrid method where many-

body perturbation theory (MBPT) corrections are added on top of LR-TD-DFT.

We also use the tools we have developed to gain some insight into what needs to be

included in the TD-DFT exchange-correlation (xc) functional in order for it to

describe photochemical problems better.

Applications of LR-TD-DFT to photochemistry are no longer rare. Perhaps the

earliest attempt to apply LR-TD-DFT to photochemistry was the demonstration that

avoided crossings between formaldehyde excited-state curves could indeed be

described with this method [2]. Further hope for photochemistry from LR-TD-

DFT was raised again only a few years later [3, 4], with an example application to

the photochemistry of oxirane appearing after another 5 years [5, 6]. Casida

et al. [7] provides a recent review of the present state of LR-TD-DFT applied to

photochemistry and where some of the difficulties lie.

Let us try to focus on some key problems. Photophenomena are frequently

divided into photophysics, when the photoprocess ends with the same molecules

with which it started, and photochemistry, when the photoprocess ends with

different molecules. This is illustrated by the cartoon in Fig. 1. An example of a

typical photophysical process would be beginning at one S0 minimum, exciting to

the singly-excited S1 state, and reverting to the same S0 minimum. In contrast, an

example of a typical photochemical process would be exciting from one S0 mini-

mum to an S1 excited state, followed by moving along the S1 surface, through

avoided crossings, conical intersections, and other photochemical funnels, to end up

finally at the other S0 minimum. State-of-the-art LR-TD-DFT does a reasonable job

modeling photophysical processes but has much more difficulty with photo-

chemical processes. The main reason is easily seen in Fig. 1 – namely, that
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photochemical processes often require an explicit treatment of doubly excited states

and these are beyond the scope of conventional LR-TD-DFT. There are several

ways to remedy this problem which have been discussed in a previous review

article [8]. In this chapter we concentrate on one way to explore and correct the

double excitation problem using a hybrid MBPT/LR-TD-DFT approach.

The rest of this chapter is organized as follows. The next section (Sect. 2)

provides a small review of the current state of DFT, TD-DFT, and LR-DFT.

Section 3 begins with an introduction to the key notions of MBPT needed to derive

corrections to approximate LR-TD-DFT and derives some basic equations. Sec-

tion 4 shows that these corrections can be used in practical applications through an

exploration of dressed LR-TD-DFT. Ideally it would be nice to be able to use these

corrections to improve the xc functional of TD-DFT. However, this involves an

additional localization step which is examined in Sect. 5. Section 6 sums up with

some perspectives.

2 Brief Review

This section reviews a few concepts which in some sense are very old: DFT is about

50 years old, TD-DFT is about 30 years old, and LR-TD-DFT (in the form of the

Casida equations) is about 20 years old. Thus many of the basic concepts are now

well known. However, this section is necessary to define some notation and because

some aspects of these subjects have continued to evolve and so need to be updated.

Fig. 1 Typical curves for

the singlet photochemical

isomerization of ethylene
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2.1 Density-Functional Theory (DFT)

Hohenberg and Kohn [9] and Kohn and Sham [10] defined DFT in the mid-1960s

when they gave formal rigor to earlier work by Thomas, Fermi, Dirac, Slater, and

others. This initial work has been nicely reviewed in well-known texts [11–13] and

so we do not dwell on details here but rather concentrate on what is essential in the

present context. Hartree atomic units (h ¼ me ¼ e ¼ 1) are used throughout unless

otherwise specified.

Kohn and Sham introduced orthonormal auxiliary functions (Kohn–Sham

orbitals) ψi(1) and corresponding occupation numbers ni which allow the density

to be expressed as

ρ 1ð Þ ¼
X
i

ni
��ψi 1ð Þ

��2 ; ð1Þ

and the electronic energy to be expressed as

E ¼
X
i

ni ψi

��t̂ s þ v
��ψi

� �
þ EH ρ½ � þ Exc ρ½ �: ð2Þ

Here we use a notation where i ¼ ri; σið Þ stands for the space ri and spin σi
coordinates of electron i, t̂ s ¼ � 1=2ð Þ∇2 is the noninteracting kinetic energy

operator, v is the external potential which represents the attraction of the electron

to the nuclei as well as any applied electric fields, EH ρ½ � ¼
ðð

ρ 1ð Þρ 2ð Þ=r12 d1d2 is

the Hartree (or Coulomb) energy, and Exc[ρ] is the xc-energy which includes

everything not included in the other terms (i.e., exchange, correlation, and the

difference between the interacting and noninteracting kinetic energies). Minimizing

the energy (2) subject to the constraint of orthonormal orbitals gives the Kohn–

Sham orbital equation:

ĥs ρ½ �ψi ¼ εiψi ; ð3Þ

where the Kohn–Sham Hamiltonian, ĥs[ρ](1), is the sum of t̂ s 1ð Þ þ v 1ð Þ, the

Hartree (or Coulomb) potential vH ρ½ � 1ð Þ ¼
ð
ρ 2ð Þ=r12d2, and the xc-potential

vxc ρ½ � 1ð Þ ¼ δExc ρ½ �=δρ 1ð Þ.
An important but subtle point is that the Kohn–Sham equation should be solved

self-consistently with lower energy orbitals filled before higher energy orbitals

(Aufbau principle) as befits a system of noninteracting electrons. If this can be

done with integer occupancy, then the system is said to be noninteracting v-
representable (NVR). Most programs try to enforce NVR, but it now seems likely

that NVR fails for many systems, even in exact Kohn–Sham DFT. The alternative is

to consider fractional occupation within an ensemble formalism. An important
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theorem then states that only the last occupied degenerate orbitals may be fraction-

ally occupied (see, e.g., [12] pp. 55–56). Suitable algorithms are rare, as

maintaining this condition can lead to degenerate orbitals having different occupa-

tion numbers which, in turn, may require minimizing the energy with respect to

unitary transformations within the space spanned by the degenerate occupied

orbitals with different occupation numbers. These points have been previously

discussed in somewhat greater detail in [8]. Most programs show at least an

effective failure of NVR when using approximate functionals, in particular around

regions of strong electron correlation, such as where bonds are being made or

broken (e.g., avoided crossing of the S0 surfaces in Fig. 1) which often shows up as

self-consistent field (SCF) convergence failures.

As no practical exact form of Exc is known, it must be approximated in practice.

In the original papers, Exc should depend only upon the charge density. However

our notation already reflects the modern tendency to allow a spin-dependence in Exc

(spin-DFT). This additional degree of freedom makes it easier to develop improved

density-functional approximations (DFAs). In recent years, this tendency to add

additional functional dependencies into Exc has led to generalized Kohn–Sham

theories corresponding to different levels of what Perdew has referred to as Jacob’s
ladder2 for functionals (Table 1). The LDA and GGA are pure DFAs. Higher levels

no longer fall within the pure DFT formalism [17] and, in particular, are subject to a

different interpretation of orbital energies.

Table 1 Jacob’s ladder for
functionals [14] (an updated

version is given in [15])

Quantum chemical heaven

Double-hybrid ρ(1), x(1), τ(1), ψi(1), ψa(1)
a

Hybrid ρ(1), x(1), τ(1), ψi(1)
b

mGGAc
ρ(1), x(1), τ(1)d, ∇2ρ 1ð Þe

GGAf ρ(1), x(1)g

LDAh ρ(1)

Hartree World
aUnoccupied orbitals
bOccupied orbitals
cMeta generalized gradient approximation
dThe local kinetic energy τ 1ð Þ ¼

X
p
n pψ p 1ð Þ∇2ψ p 1ð Þ

eThere is some indication that the local kinetic energy density

τ(1) and the Laplacian of the charge density ∇2ρ 1ð Þ contain

comparable information [16]
fGeneralized gradient approximation
gThe reduced gradient x 1ð Þ ¼

��∇ρ 1ð Þ
��=ρ4=3 1ð Þ

hLocal density approximation

2 “Jacob set out from Beersheba and went on his way towards Harran. He came to a certain place

and stopped there for the night, because the sun had set; and, taking one of the stones there, he

made it a pillow for his head and lay down to sleep. He dreamt that he saw a ladder, which rested

on the ground with its top reaching to heaven, and angels of God were going up and down it.” –

The Bible, Genesis 28:10–13
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Of particular importance to us is the hybrid level which incorporates some

Hartree–Fock exchange. Inspired by the adiabatic connection formalism in DFT

and seeking functionals with thermodynamic accuracy, Becke suggested a func-

tional of roughly the form [18]

Ehybrid
xc ¼ EGGA

x þ a EHF
x � EGGA

x

� �
þ EGGA

c : ð4Þ

The a parameter was initially determined semi-empirically but a choice of a ¼
0:25 was later justified on the basis of MBPT [19]. This is a global hybrid (GH), to

distinguish it from yet another type of hybrid, namely the range-separated hybrid

(RSH). Initially proposed by Savin [20], RSHs separate the 1/r12 interelectronic

repulsion into a short-range (SR) part to be treated by density-functional theory and

a long-range (LR) part to be treated by wavefunction methodology. A convenient

choice uses the complementary error function for the short-range part,

1=r12ð ÞSR ¼ erfc γr12ð Þ=r12, and the error function for the long-range part,

1=r12ð ÞLR ¼ er f γr12ð Þ=r12. In this case, γ ¼ 0 corresponds to pure DFT whereas

γ ¼ 1 corresponds to Hartree–Fock. See [21] for a recent review of one type

of RSH.

2.2 Time-Dependent (TD-) DFT

Conventional Hohenberg–Kohn–Sham DFT is limited to the ground stationary

state, but chemistry is also concerned with linear and nonlinear optics and mole-

cules in excited states. Time-dependent DFT has been developed to address these

issues. This section first reviews formal TD-DFT and then briefly discusses

TD-DFAs. There are now a number of review articles on TD-DFT (some of

which are cited in this chapter), two summer school multi-author texts [22, 23],

and now a single-author textbook [24]. Our review of formal TD-DFT follows [24],

which the reader may wish to consult for further details. Our comments about the

Frenkel–Dirac variational principle and TD-DFAs come from our own synthesis of

the subject.

A great deal of effort has been put into making formal TD-DFT as rigorous as

possible and firming up the formal underpinnings of TD-DFT remains an area of

active research. At the present time, formal TD-DFT is based upon two theorems,

namely the Runge–Gross theorem [25] and the van Leeuwen theorem [26]. They

remind one of us (MEC) of some wise words from his thesis director (John

E. Harriman) at the time of his (MECs) Ph.D. studies: “Mathematicians always

seem to know more than they can prove.”3 The Runge–Gross and van Leeuwen

3 This is formalized in mathematical logic theory by G€odel’s incompleteness theorem which

basically says that there are always more things that are true than can be proven to be true.
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theorems are true for specific cases where they can be proven, but we believe them

to hold more generally and efforts continue to find more general proofs.

2.2.1 Runge–Gross Theorem

This theorem states, with two caveats, that the time-dependent external potential

v(1) is determined up to an arbitrary function of time by the initial wavefunction

Ψ0 ¼ Ψ t0ð Þ at some time t0 and by the time-dependent charge density ρ(1). Here we
have enriched our notation to include time, i ¼ i; tið Þ ¼ ri; σi; tið Þ. The statement

that the external potential is only determined up to an arbitrary function of time

simply means that the phase of the associated wave function is only determined up

to a spatially-constant time-dependent constant. This is because two external

potentials differing by an additive function of time ev 1ð Þ ¼ v 1ð Þ þ c t1ð Þ lead to

associated wave functions eΨ tð Þ ¼ e�iα tð ÞΨ tð Þ where dα tð Þ=dt ¼ c tð Þ. A conse-

quence of the Runge–Gross theorem is that expectation values of observables Â(t)
are functionals of the initial wavefunction and of the time-dependent charge

density,

A ρ;Ψ0½ � tð Þ ¼ Ψ ρ;Ψ0½ � tð Þ
��Â tð Þ

��Ψ ρ;Ψ0½ � tð Þ
� �

: ð5Þ

The proof of the theorem assumes (caveat 1) that the external potential is

expandable in a Taylor series in time in order to show that the time-dependent

current density determines the time-dependent external potential up to an additive

function of time. The proof then goes on to make a second assumption (caveat 2)

that the external potential goes to zero at large r at least as fast as 1/r in order to

prove that the time-dependent charge density determines the time-dependent cur-

rent density.

2.2.2 van Leeuwen Theorem

Given a system with an electron–electron interaction w(1, 2), external potential
v(1), and initial wavefunction Ψ0, and another system with the same time-

dependent charge density ρ(1), possibly different electron–electron interactionew 1; 2ð Þ, and initial wavefunction eΨ0, then the external potential of the second

system ṽ(1) is uniquely determined up to an additive function of time. It should be

noted that we recover the Runge–Gross theorem when w 1; 2ð Þ ¼ ew 1; 2ð Þ and

Ψ0 ¼ eΨ0. However, the most interesting result is perhaps when ew 1; 2ð Þ ¼ 0because

this corresponds to a Kohn–Sham-like system of noninteracting electrons, showing

us that the external potential of such a system is unique and ultimately justifying the

time-dependent Kohn–Sham equation

8 M.E. Casida and M. Huix-Rotllant



ĥ ρ;Ψ0; eΨ0

h i
1ð Þψi 1ð Þ ¼ i

∂
∂t

ψi 1ð Þ; ð6Þ

where

ĥ ρ;Ψ0; eΨ0

h i
1ð Þ ¼ t̂ s þ v 1ð Þ þ vH ρ½ � 1ð Þ þ vxc ρ;Ψ0; eΨ0

h i
1ð Þ: ð7Þ

The proof of the theorem assumes (caveat 1) that the external potential is expand-

able in a Taylor series in time and (caveat 2) that the charge density is expandable in
a Taylor series in time. Work on removing these caveats is ongoing [27–30] ([24]

provides a brief, but dated, summary).

2.2.3 Frenkel–Dirac Action

This is a powerful and widespread action principle used to derive time-dependent

equations within approximate formalisms. Making the action

A ¼
ðt1
t0

Ψ t 0ð Þ
��i ∂
∂t 0

� Ĥ t 0ð Þ
��Ψ t 0ð Þ

� �
dt 0; ð8Þ

stationary subject to the conditions that δΨ t0ð Þ ¼ δΨ t1ð Þ ¼ 0 leads to the time-

dependent Schr€odinger equation Ĥ tð ÞΨ tð Þ ¼ i∂Ψ tð Þ=∂t. Runge and Gross initially

suggested that A ¼ A ρ;Ψ0½ � and used this to derive a more explicit formula for the

TD-DFT xc-potential as a functional derivative of an xc-action, but this led to

causality problems. A simple explanation and way around these contradictions was

presented by Vignale [31] who noted that, as the time-dependent Schr€odinger
equation is a first-order partial differential equation in time, Ψ(t1) is determined

by Ψ(t0) so that, whereas δΨ(t0) may be imposed, δΨ(t1) may not be imposed.

The proper Frenkel–Dirac–Vignale action principle is then

δA ¼ i Ψ t1ð Þ
��δΨ t1ð Þ

� �
: ð9Þ

In many cases, the original Frenkel–Dirac action principle gives the same results

as the more sophisticated Frenkel–Dirac–Vignale action principle. Messud

et al. [32] gives one example of where this action principle has been used to derive

an xc-potential within a TD-DFA. Other solutions to the Dirac–Frenkel causality

problem in TD-DFT may also be found in the literature [33–37].

2.2.4 Time-Dependent Density-Functional Approximations (TD-DFAs)

As the exact TD-DFT xc-functional is unknown, it must be approximated. In most

cases we can ignore the initial state dependences because we are treating a system

MBPT Insights About and Corrections to TD-DFT 9



initially in its ground stationary state exposed to a time-dependent perturbation.

This is because if the initial state is the ground stationary state, then, according to

the first Hohenberg–Kohn theorem of conventional DFT, Ψ0 ¼ Ψ0 ρ½ � andeΨ0 ¼ eΨ0 ρ½ �.
The simplest and most successful TD-DFA is the TD-DFT adiabatic approxi-

mation (AA) which states that the xc-potential reacts instantaneously and without

memory to any temporal change in the time-dependent density,

vAAxc ρ½ � 1ð Þ ¼
δExc ρt1 1ð Þ

	 

δρt1 1ð Þ : ð10Þ

The notation is a bit subtle here: ρt1 1ð Þ is ρ 1ð Þ ¼ ρ 1; t1ð Þ at a fixed value of time,

meaning thatρt1 1ð Þ is uniquely a function of the space and spin coordinates, albeit at
fixed time t1. The AA approximation has been remarkably successful and effec-

tively defines conventional TD-DFT.

Going beyond the TD-DFT AA is the subject of ongoing work. Defining new

Jacob’s ladders for TD-DFT may be helpful here. The first attempt to do so was the

definition by one of us (MEC) of a “Jacob’s jungle gym” consisting of parallel

Jacob’s ladders for Exc, vxc(1), f xc 1; 2ð Þ ¼ δvxc 1ð Þ=δρ 2ð Þ, etc. [3]. This permitted

the simultaneous use of different functionals on different ladders on the grounds

that accurate lower derivatives did not necessarily mean accurate higher deri-

vatives. Of course, being able to use a consistent level of approximation across

all ladders could be important for some types of applications (e.g., those involving

analytical derivatives). With this in mind, the authors recently suggested a new

Jacob’s ladder for TD-DFT (Table 2).

Table 2 Jacobs ladder for

memory functionals [14]
Quantum chemical heaven

TD-RDMTa γ(1, 2, t)b, θi(t)c

TD-OEPd ψi(1)
e

L-TD-DFTf Fluid position and deformation tensor

TD-CDFTg ρ(1), j(1)h

TD-DFT ρ(1)

Hartree World
aTD reduced-density-matrix theory
bTD reduced-density matrix
cNatural orbital phases
dTD optimized effective potential
eTD occupied orbitals
fLagrangian TD-DFT
gTD current-density-functional theory
hThe current density
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2.3 Linear Response (LR-) TD-DFT

As originally formulated, TD-DFT seems ideal for the calculation of nonlinear

optical (NLO) properties from the dynamical response of the molecular dipole

moment μ(t) to an applied electric field ε tð Þ ¼ ε cos ωtð Þ,

Δμ tð Þ ¼
ð
α t� t 0ð Þε t 0ð Þdt 0 þ HOT; ð11Þ

using real-time numerical integration of the TD Kohn–Sham equation, but it may

also be used to calculate electronic absorption spectra. This section explains how.

In (11) “HOT” stands for “higher-order terms” and the quantity α is the dynamic

dipole polarizability. After Fourier transforming, (11) becomes

Δμ ωð Þ ¼ α ωð Þε ωð Þ þ HOT; ð12Þ

If the applied field is sufficiently small then we are in the LR regime where we

may neglect the HOT and calculate the dipole polarizability as

αi, j ωð Þ ¼ Δμi ωð Þ=ε j ωð Þ. Electrical absorption spectra may be calculated from

this because of the sum-over-states theorem in optical physics,

α ωð Þ ¼
X
I 6¼0

f I
ω2
I � ω2

; ð13Þ

where α ¼ 1=3ð Þ αxx þ αyy þ αzz
� �

. Here

ωI ¼ EI � E0; ð14Þ

is the excitation energy4 and

f I ¼
2

3
ωI

�� 0��r��I� ���2; ð15Þ

is the corresponding oscillator strength. This sum-over-states theorem makes good

physical sense because we expect the response of the charge density and dipole

moment to become infinite (i.e., to jump suddenly) when the photon frequency

corresponds to an electronic excitation energy. Usually in real-time TD-DFT pro-

grams, the spectral function is calculated as

4 Remember that h¼ 1 in the atomic units used here.
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S ωð Þ ¼ 2ω

π
ℑα ωþ iηð Þ ; ð16Þ

which generates a Lorentzian broadened spectrum with broadening controlled by

the η parameter. The connection with the experimentally observed molar extinction

coefficient as a function of v ¼ ω= 2πð Þ is

ε vð Þ ¼ πNAe
2

mec 4πε0ð Þln 10ð Þ S 2πvð Þ ð17Þ

in SI units.

So far this is fine for calculating spectra but not for assigning and studying

individual states. For that, it is better to take another approach using the

susceptibility

χ 1; 2ð Þ ¼ δρ 1ð Þ
δvappl 2ð Þ ; ð18Þ

which describes the response of the density to the applied perturbation vappl,

δρ 1ð Þ ¼
ð
χ 1; 2ð Þδvappl 2ð Þd2 : ð19Þ

The response of the density of the Kohn–Sham fictitious system of

noninteracting electrons is identical but the potential is now the Kohn–Sham

single-particle potential,

δρ 1ð Þ ¼
ð
χs 1; 2ð Þδvs 2ð Þd2 : ð20Þ

In contrast to the interacting susceptibility of (18), the noninteracting

susceptibility,

χs 1; 2ð Þ ¼ δρ 1ð Þ
δvs 2ð Þ ; ð21Þ

is known exactly from MBPT. Of course the effective potential is the sum of the

applied potential and the potential produced by the response of the self-consistent

field, vHxc:

δvs 1ð Þ ¼ δvappl 1ð Þ þ
ð
fHxc 1; 2ð Þδρ 2ð Þd2 ; ð22Þ

where fHxc 1; 2ð Þ ¼ δvHxc 1ð Þ=δρ 2ð Þ is the functional derivative of the Hartree plus
exchange-correlation self-consistent field. Manipulating these equations is
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facilitated by a matrix representation in which the integration is interpreted as a sum

over a continuous index. Thus,

δρ ¼ χδvappl ¼ χ s δvappl þ fHxcδρ
� �

; ð23Þ

is easily manipulated to give a Bethe–Salpeter-like equation (Sect. 3),

χ ¼ χ s þ χ s fHxcχ ; ð24Þ

or, written out more explicitly,

χ 1; 4ð Þ ¼ χs 1; 4ð Þ þ
ð
χs 1; 2ð Þ fHxc 2; 3ð Þχ 3; 4ð Þd2d3 : ð25Þ

Equation (23) may be solved iteratively for δρ. Alternatively δρmay be obtained

by solving

χ�1
s � fHxc

� �
δρ ¼ δvappl ; ð26Þ

which typically involves iterative Krylov space techniques because of the large size

of the matrices involved.

This last equation may be manipulated to make the most common form of LR-

TD-DFT used in quantum chemistry [38].5 This is a pseudoeigenvalue problem,

A ωð Þ B ωð Þ
B* ωð Þ A* ωð Þ

� �
X

Y


 �
¼ ω

1 0

0 �1

� �
X

Y


 �
; ð27Þ

where

Aia, jb ωð Þ ¼ δi, jδa,bεa, i þ ia
�� fHxc ωð Þ

�� jb� �
Bia,b j ωð Þ ¼ ia

�� fHxc ωð Þ
��b j� �

: ð28Þ

Here,

pq
�� f ��rs� �

¼
ðð

ψ*
p 1ð Þψq 1ð Þ f 1; 2ð Þψ*

r 2ð Þψs 2ð Þd1d2 ; ð29Þ

is a two electron integral in Mulliken “charge-cloud” notation over the kernel

f which may be the Hartree kernel [ f H 1; 2ð Þ ¼ δσ1,σ2=r12 ], the xc-kernel, or the

sum of the two (Hxc). The index notation is i, j, . . . for occupied spin-orbitals, a,

5 This equation is not infrequently called the “Casida equation” in the TD-DFT literature (e.g., as

in [24], pp. 145–153.)
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b, . . . for virtual spin-orbitals, and p, q, . . . for unspecified spin-orbitals (either

occupied or unoccupied).6 We have also introduced the compact notation

εrs���,uv��� ¼ εr þ εs þ � � �ð Þ � εu þ εv þ � � �ð Þ : ð30Þ

Equation (28) has paired excitation and de-excitation solutions. Its eigenvalues

are (de-)excitation energies, the vectors X and Y providing information about

transition moments. In particular, the oscillator strength, of the transition with

excitation energy ωI may be calculated from XI and YI [38]. When the adiabatic

approximation (AA) to the xc-kernel is made, the A and B matrices become

independent of frequency. As a consequence, the number of solutions is equal to

the number of one-electron excitations, albeit dressed to include electron correla-

tion effects. Allowing the A and Bmatrices to have a frequency dependence allows

the explicit inclusion of two-electron (and higher) excited states.

The easiest way to understand what is missing in the AA is within the so-called

Tamm–Dancoff approximation (TDA). The usual AA TDA equation,

AX ¼ ωX ; ð31Þ

is restricted to single excitations. The configuration interaction (CI) equation [39],

H� E01ð ÞC ¼ ωC ; ð32Þ

which includes all excitations of the system, can be put into the form of (31), but

with a frequency-dependent A(ω) matrix. This can be simply done by partitioning

the full CI Hamiltonian into a singles excitations part (A1,1) and multiple-

excitations part (A2þ, 2þ) as

ACI
1,1 ACI

1,2þ
ACI

2þ, 1 ACI
2þ, 2þ

" #
C1

C2þ


 �
¼ ω

C1

C2þ


 �
; ð33Þ

provided we can ignore any coupling between the ground state and excited states.

Applying the standard L€owdin–Feshbach partitioning technique to (33) [40],

we obtain

ACI
1,1 þ ACI

1,2þ ω12þ, 2þ � ACI
2þ, 2þ

� ��1
ACI

2þ, 1

h i
C1 ¼ ωC1 ; ð34Þ

in which it is clearly seen that multiple-excitation states arise from a frequency-

dependent term missing in the AA xc-kernel [39].

6 Sometimes we call this the FORTRAN index convention in reference to the default variable

names for integers in that computer language.
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In the remainder of this chapter we first show how MBPT may be used to derive

expressions for theACI
1,2þ,A

CI
2þ, 1, andA

CI
2þ, 2þ blocks and show how this may be used

in the form of dressed TD-DFT to correct the AA. Then we discuss localization of

the terms beyond the AA in order to obtain some insight into the analytic behavior

of the xc-kernel.

3 Many-Body Perturbation Theory (MBPT)

This section elaborates on the polarization propagator (PP) approach. As the PP was

originally inspired by the Bethe–Salpeter equation (BSE) and as the BSE often

crops up in articles from the solid-state physics community which are concerned

with both TD-DFT and MBPT [41–47], we try to make the connection between the

PP and BSE approaches as clear as possible. Although the two MBPT approaches

are formally equivalent, differences emerge because the BSE approach emphasizes

the time representation whereas the PP approach emphasizes the frequency repre-

sentation. This can and typically does lead to different approximations. In parti-

cular, it seems to be easier to derive pole structure-conserving approximations

needed for treating two-electron and higher excitations in the frequency represent-

ation than in the time representation. This and prior experience with the PP

approach in the quantum chemistry community [48–53] have led us to favor the

PP approach. We make extensive use of diagrams in order to give an overview of

our manipulations. Whenever possible, more elaborate mathematical manipulations

are relegated to the appendix.

3.1 Green’s Functions

Perhaps the most common and arguably the most basic quantity in MBPT is the

one-electron Green’s function defined by

iG 1; 2ð Þ ¼ 0
��T ψ̂H 1ð Þψ̂{

H 2ð Þ
n o��0D E

: ð35Þ

Here, the subscript H indicates that the field operators are understood to be in the

Heisenberg representation. Also T is the usual time-ordering operator, which

includes anticommutation in our case (i.e., for fermions),

T ψ̂H 1ð Þψ̂{
H 2ð Þ

n o
¼ θ t1 � t2ð Þψ̂H 1ð Þψ̂{

H 2ð Þ � θ t2 � t1ð Þψ̂{
H 2ð Þψ̂H 1ð Þ : ð36Þ

The two-electron Green’s function is (see p. 116 of [54])
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G 1; 2; 3; 4ð Þ ¼ �ið Þ2 0
��T ψ̂H 1ð Þψ̂H 2ð Þψ̂{

H 4ð Þψ̂{
H 3ð Þ

n o��0D E
: ð37Þ

The usual MBPT approach to evaluating the susceptibility, χ, uses the fact that it
is the retarded form,

iχ 1; 2ð Þ ¼ θ t1 � t2ð Þ 0
�� eρH 1ð Þ,eρH 2ð Þ½ �

��0� �
; ð38Þ

of the time-ordered correlation function,

iχ 1; 2ð Þ ¼ 0
��T eρH 1ð ÞeρH 2ð Þf g

��0� �
; ð39Þ

where

eρH 1ð Þ ¼ ψ̂{
H 1ð Þψ̂H 1ð Þ � 0

��ψ̂{
H 1ð Þψ̂H 1ð Þ

��0D E
ð40Þ

is the density fluctuation operator. (See for example [54] pp. 151, 172–175.)

We will also need several generalizations of the susceptibility and the density

fluctuation operator. The first is the particle-hole (ph) propagator [52], which we

chose to write as

iL 1; 2; 3; 4ð Þ ¼ 0
��T eγ 1; 2ð Þeγ 4; 3ð Þf g

��0� �
; ð41Þ

where

eγ 1; 2ð Þ ¼ ψ̂{
H 2ð Þψ̂H 1ð Þ � 0

��T ψ̂{
H 2ð Þψ̂H 1ð Þ

n o��0D E
ð42Þ

is a sort of density matrix fluctuation operator (or would be if we constrained t1 ¼ t2
and t3 ¼ t4). It should be noted that the ph-propagator is a four-time quantity.

[It may be useful to try to place L in the context of other two-electron propaga-

tors. The particle-hole response function [52]

R 1; 2; 3; 4ð Þ ¼ G 1; 2; 3; 4ð Þ � G 1; 3ð ÞG 2; 4ð Þ : ð43Þ

Then L is related to R by the relation

L 1; 2; 3; 4ð Þ ¼ iR 1; 4; 2; 3ð Þ :� ð44Þ

We also need the polarization propagator (PP) which is the two-time quantity,

Π 1, 2; 3, 4; t� t 0ð Þ ¼ L 1t, 2t; 3t 0, 4t 0ð Þ : ð45Þ

Written out explicitly,
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iΠ 1, 2; 3, 4; t� t 0ð Þ
¼ 0

��T ψ̂{
H 2tþð Þψ̂H 1tð Þψ̂{

H 3t
0þ� �

ψ̂H 4t 0ð Þ
n o��0D E

� 0
��T ψ̂{

H 2tþð Þψ̂H 1tð Þ
n o��0D E

0
��T ψ̂{

H 3t
0þ� �

ψ̂H 4t 0ð Þ
n o��0D E

:

ð46Þ

The second term is often dropped in the definition of the PP. It is there to remove

ω ¼ 0 excitations in the Lehmann representation. (See for example pp. 559–560 of

[54].) The retarded version of the PP is the susceptibility describing the response of

the one-electron density matrix,

γ 1; 2; tð Þ ¼ 0
��ψ̂{ 2tð Þψ̂ 1tð Þ

��0� �
; ð47Þ

to a general (not necessarily local) applied perturbation,

Π 1, 2; 3, 4; t� t 0ð Þ ¼ δγ 1; 2; tð Þ
δwapplð3, 4; t 0Þ

; ð48Þ

which is a convolution. After Fourier transforming,

δγ 1; 2;ωð Þ ¼
ð
Π 1; 2; 3; 4;ωð Þδwappl 3; 4;ωð Þd3d4; ð49Þ

or

δγ ωð Þ ¼ Π ωð Þδwappl ωð Þ ð50Þ

in matrix form.

3.2 Diagram Rules

The representation of MBPT expansions in terms of diagrams is very convenient for

bookkeeping purposes. Indeed, certain ideas such as the linked-cluster theorem [55]

or the concept of a ladder approximation (see, e.g., [54] p. 136) are most naturally

expressed in terms of diagrams. Diagrams drawn according to systematic rules also

allow an easy way to check algebraic expressions. This is how we have used

diagrams in our research. However, we introduce diagrams here for a different

reason, namely because they provide a concise way to explain our work.

Several types of MBPT diagrams exist in the literature. These divide into four

main classes which we call Feynman, Abrikosov, Goldstone, and Hugenholtz. Such

diagrams can be distinguished by whether they are time-ordered (Goldstone and

Hugenholtz) or not (Feynman and Abrikosov) and by whether they treat the

electron repulsion interaction as a wavy or dotted line with an incoming and an
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outgoing arrow at each end (Feynman and Goldstone) or in a symmetrized way as a

point with two incoming and two outgoing arrows (Abrikosov and Hugenholtz).

These differences affect how they are to be translated into algebraic expressions as

does the nature of the quantity being expanded (wave function, one-electron

Green’s function, self-energy, polarization propagator, etc.). Given this plethora

of types of diagrams and the difficulty of finding a clear explanation of how to read

polarization propagator diagrams, we have chosen to present rules for how our

diagrams should be translated into algebraic expressions. This is necessary because,

whereas the usual practice in the solid-state literature is to use time-unordered

diagrams with electron repulsions represented as wavy or dotted lines (i.e., Feyn-

man diagrams), the usual practice in the quantum chemistry literature is using time-

ordered diagrams with electron repulsions represented as points (i.e., Hugenholtz

diagrams).

We limit ourselves to giving precise rules for the polarization propagator

(PP) because these rules are difficult to find in the literature. The PP expressed in

an orbital basis is

Π 1, 2, 3, 4; t� t 0ð Þ ¼
X

pqrs
Πsr,qp t� t 0ð Þψ*

r 2ð Þψs 1ð Þψ*
q 3ð Þψ p 4ð Þ; ð51Þ

where

Πsr,q p t� t 0ð Þ ¼ �iθ t� t 0ð Þ 0
��r̂ {

H tð Þŝ H tð Þq̂ {
H t 0ð Þ p̂ H t 0ð Þ

��0D E
� iθ t 0 � tð Þ 0

��q̂ {
H t 0ð Þ p̂ H t 0ð Þr̂ {

H tð Þŝ H tð Þ
��0D E

ð52Þ

This makes it clear that the PP is a two time particle-hole propagator which

either propagates forward in time or backward in time. To represent it we introduce

the following rules:

1. Time increases vertically from bottom to top. This is in contrast to a common

convention in the solid-state literature where time increases horizontally from

right to left.

2. A PP is a two time quantity. Each of these twice is indicated by a horizontal

dotted line. This is one type of “event” (representing the creation/destruction of

an excitation).

3. Time-ordered diagrams use directed lines (arrows). Down-going arrows corre-

spond to holes running backward in time, i.e., to occupied orbitals. Up-going

arrows correspond to particles running forward in time, i.e., to unoccupied

orbitals.

At this point, the PP diagrams resemble Fig. 2. Fourier transforming leads us

to the representation shown in Fig. 3. An additional rule has been introduced:

4. A downward ω arrow on the left indicates forward ph-propagation. An upward ω
arrow on the right indicates backward ph-propagation.
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Diagrams for the corresponding position space representation are shown in

Fig. 4. Usually the labels ( p, q, r, and s or 1, 2, 3, and 4) are suppressed. If the ω
arrows are also suppressed, then there is no information about time-ordering and

both diagrams may then be written as a single time-unordered diagram as in

Fig. 5. Typical Feynman diagrams are unordered in time.

Perturbation theory introduces certain denominators in the algebraic expres-

sions corresponding to the diagrams. These may be represented as cuts between

events:

5. Each horizontal cut between events contributes a factor

�ωþ
X

p
ε p �

X
h
εh

� ��1

, where
X

p

X
h

� �
stands for the sum over all

particle (hole) lines that are cut. The omega line only appears in the sum if it is

also cut. It enters with a + sign if it is directed upwards and with a � sign if it is

directed downwards.

6. There is also an overall sign given by the formula �1ð Þhþl
, where h is the number

of hole lines and l is the number of closed loops, including the horizontal dotted

event lines but ignoring the ω lines.

Diagrams are shown for the independent particle approximation in Fig. 6.

The first diagram reads

Πsr,qp(t; t′) = θ(t − t′) +θ(t − t′ )

r s

p q r s

p qFig. 2 Basic time-ordered

finite basis set

representation PP diagram

Πsr,qp(ω) = +

r s

p q

ω

r s

p q

ω

Fig. 3 Basic frequency and

finite basis set

representation PP diagram

Π(1 ; 2; 3; 4; ) = +

1 2

4 3

ω

1 2

4 3

ωω

Fig. 4 Basic frequency and

real space representation PP

diagram

Π(ω) =

Fig. 5 Time-unordered

representation PP diagram
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Πai,ai ωð Þ ¼ 1

ωþ εi � εa
: ð53Þ

The second diagram reads

Πia, ia ωð Þ ¼ 1

�ωþ εi � εa
¼ �1

ωþ εa � εi
: ð54Þ

These two equations are often condensed in the literature as

Π pq, rs ωð Þ ¼ δ p, rδq, s
nq � n p

ωþ εq � ε p
: ð55Þ

Let us now introduce one-electron perturbations in the form of M circles.

7. Each M circle in a diagram contributes a factor of p
��M̂ xc

��q� �
, where p is an

incoming arrow, q is an outgoing arrow, and M̂ xc is the “xc-mass operator”

which is the difference between the Hartree–Fock exchange self-energy and the

xc-potential – see (67). (Thus in
��M̂ xc

��out� �
.) For example, the term

corresponding to Fig. 7b contains a factor of a
��M̂ xc

��c� �
, whereas the term

corresponding to Fig. 7f contains a factor of k
��M̂ xc

��i� �
. This is a second type

of “event” (representing “collision” with the quantity Mxc).

For example, the term corresponding to Fig. 7j is

Πck,cb ωð Þ ¼
k
��M̂ xc

��b� �
ω� εk þ εcð Þ εk � εbð Þ : ð56Þ

This brings us to the slightly more difficult treatment of electron repulsions.

8. When electron repulsion integrals are represented by dotted lines (Feynman

and Goldstone diagrams), each end of the line corresponds to the labels

corresponding to the same spatial point. The dotted line representation may

be condensed into points (Abrikosov and Hugenholtz diagrams) as in Fig. 8. A

point with two incoming arrows, labeled r and s, and two outgoing arrows,

labeled p and q, contributes a factor of rs
���� pq� �

¼ r p
�� f H��sq� �

� rq
�� f H��s p� �

.

[Thus (in, in | | out, out)¼ (left in, right in | left in, right in) – (left in, right in |

left in, right in). The minus sign is not part of the diagram as it is taken into

account by other rules.] The integral notation is established in (29) and the

integral

Πsr,qp( ) = +i aω i aωω

Fig. 6 Zero-order PP

diagrams
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pq
����rs� �

¼
ð
ψ*

p 1ð Þψ*
r 2ð Þ 1

r12
1� P12ð Þψq 1ð Þψs 2ð Þd1d2: ð57Þ

9. To determine the number of loops and hence the overall sign of a diagram in

which electron repulsion integrals are expanded as dots, write each dot as a

dotted line (it does not matter which one of the two in Fig. 8 is chosen) and

apply rule 1. The order of indices in each integral rs
���� pq� �

should correspond to

the expanded diagrams. (When Goldstone diagrams are interpreted in this way,

we call them Brandow diagrams.)

Fig. 7 First-order time-ordered diagrams Hugenholtz for Π ωð Þ �Πs ωð Þ. a–i involve coupling

between the particle-hole space; g, h, m, and n involve coupling between particle-hole space and

particle-particle; i–l couple the particle-hole space with the hole-hole space
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10. An additional factor of 1/2 must be added for each pair of equivalent lines.

These are directed lines whose interchange, in the absence of further labeling,

leaves the Hugenholtz diagram unchanged.

For example, the term corresponding to Fig. 7a is

Πck,ai ωð Þ ¼ �
ka
����ic� �

�ωþ εk � εcð Þ �ωþ εi � εað Þ

¼
ak
����ic� �

�ωþ εk � εcð Þ �ωþ εi � εað Þ : ð58Þ

Additional information about Hugenholtz and other diagrams may be found,

for example, in [56].

3.3 Dyson’s Equation and the Bethe–Salpeter Equation
(BSE)

Two of the most basic equations of diagrammatic MBPT are Dyson’s equation for

the one-electron Green’s function and the BSE for the ph-propagator. Both require

the choice of a zero-order picture which we take here to be the exact or approximate

Kohn–Sham system of noninteracting electrons. We denote the zero-order quanti-

ties by the subscript s (for single particle).
Dyson’s equation relates the true one-electron Green’s function G to the zero-

order Green’s function Gs via the (proper) self-energy Σ,

G 1; 2ð Þ ¼ Gs 1; 2ð Þ þ
ð
Gs 1; 3ð ÞΣ 3; 4ð ÞG 4; 2ð Þd3d4 ; ð59Þ

or, more concisely,

G ¼ Gs þ GsΣG : ð60Þ

This is shown diagrammatically in Fig. 9. It is to be emphasized that these

diagrams are unordered in time as it is not possible to write a Dyson equation for

time-ordered diagrams. Also shown in Fig. 9 are typical low-order self-energy

approximations. Typical quantum chemistry approximations (Fig. 9b) involve

Fig. 8 Electron repulsion

integral diagrams
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explicit antisymmetrization of electron-repulsion integrals whereas solid-state

physics approximations (Fig. 9c) emphasize dynamical screening. Each approach

has its strength and its weaknesses and so far the two approaches have defied any

rigorous attempts at merger.

The BSE is “Dyson’s equation” for the ph-propagator,

L 1; 2; 7; 8ð Þ ¼ Ls 1; 2; 7; 8ð Þ

þ
ð
Ls 1; 2; 3; 4ð ÞΞHxc 3; 4; 5; 6ð ÞL 5; 6; 7; 8ð Þd3d4d5d6; ð61Þ

or

L ¼ Ls þ LsΞHxcL ; ð62Þ

in matrix notation. Here

iLs 1; 2; 3; 4ð Þ ¼ Gs 1; 3ð ÞGs 4; 2ð Þ ð63Þ

is the ph-propagator for the zero-order picture (in our case, the exact or approximate

Kohn–Sham fictitious system of noninteracting electrons), and the four-point quan-

tity,ΞHxc, may be deduced from a Feynman diagram expansion as the proper part of

the ph-response function “self-energy”. This is shown diagrammatically in Fig. 10.

Again, the quantum chemical approximations emphasize antisymmetrization of the

electron repulsion integrals which is needed for proper inclusion of double

Fig. 9 Time-unordered (Feynman and Abrikosov) one-electron Green’s function diagrams: (a)

Dyson’s equation; (b) second-order self-energy quantum chemistry approximation; (c) GW self-

energy solid-state physics approximation
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excitations whereas solid-state physics emphasizes use of a screened interaction.

Although no rigorous way is yet known for combining screening and antisymme-

trization, an interesting pragmatic suggestion may be found in [57].

3.4 Superoperator Equation-of-Motion (EOM) Polarization
Propagator (PP) Approach

We now concentrate on the PP and show how to obtain a “Casida-like” equation for

excitation energies and transition moments. This does not as yet give us correction

terms to AA LR-TD-DFT but it does give us some important tools to help us build

correction terms. The basic idea in this section is to take the exact or approximate

Kohn–Sham system of independent electrons as the zero-order picture,

Ĥ 0ð Þ ¼ ĥKS ; ð64Þ

to add the perturbation,

Fig. 10 Time-unordered (Feynman and Abrikosov) ph-propagator diagrams: (a) BSE; (b)

second-order self-energy quantum chemistry approximation; (c) GW self-energy solid-state phys-

ics approximation. Note in part (c) that the solid-state physics literature often turns the v and

w wiggly lines at right angles to each other to indicate the same thing that we have indicated here

by adding tab lines
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Ĥ 1ð Þ ¼ V̂ þ M̂xc: ð65Þ

and to do MBPT. Here, V̂ is the fluctuation operator,

V̂ ¼ 1

4

X
pqrs

pq
����rs� �

p̂ {r̂ {ŝ q̂ �
X
pqr

pr
����rq� �

p̂ {q̂ ; ð66Þ

M̂ xc ¼
X
pq

p
��Σ̂ HF

x � v̂ xc

��q� �
p̂ {q̂ ; ð67Þ

and Σ̂ HF
x is the HF exchange operator defined in terms of the occupied Kohn–Sham

orbitals. Heuristically this gives us a series of diagrams which we must resum

to have the proper analytic structure of the exact PP so we can take advantage

of this analytic structure to produce the desired “Casida-like” equation. Rigorously
we actually first begin with some exact equations in the superoperator equation-

of-motion (EOM) formalism to deduce the analytic structure of the PP. This

exact structure is then developed in a perturbation expansion so that we can

perform an order analysis of each of the terms entering into a basic “Casida-like”

equation. As we can see, not every diagram is generated by this procedure, either

because they are not needed or because of approximations which we have chosen

to make.

Our MBPT expansions are in terms of the bare electron repulsion (or more

exactly the “fluctuation potential” – see (66)), rather than the screened interaction

used in solid-state physics [41, 47]. The main advantage of working with the bare

interaction is a balanced treatment of direct and exchange diagrams, which is

especially important for treating two- and higher-electron excitations. Although

we automatically include what the solid state community refers to as vertex effects,

the disadvantage of our approach is that it is likely to break down in solids when

screening becomes important. The specific approach we take is the now well-

established second-order polarization propagator approximation (SOPPA) of Niel-

sen, Jørgensen, and Oddershede [48–51]. The usual presentation of the SOPPA

approach is based upon the superoperator equation-of-motion (EOM) approach

previously used by one of us [58]. However, the SOPPA approach is very similar

in many ways to the second-order algebraic diagrammatic construction [ADC(2)]

approach of Schirmer [52, 53] and we do not hesitate to refer to this approach as

needed (particularly with regard to the inclusion of various diagrammatic contri-

butions). The only thing really new here is the change from a Hartree–Fock to a

Kohn–Sham zero-order picture and the concomitant inclusion of (many) additional

terms. Nevertheless, it is seen that the final working expressions are fairly compact.

Before going into the details of the superoperator EOM approach, let us antici-

pate some of the results by looking at some of the diagrams which emerge from this

analysis. We have seen in (45) that the PP is just the restriction of the ph-propagator

to twice rather than four times. Thus, heuristically, it suffices to take the

ph-propagator diagrams, fix twice, and then take all possible time orderings.

MBPT Insights About and Corrections to TD-DFT 25



Defining order as the order in the number of times V̂ and/or M̂ xc appear, all of the

time-unordered first-order terms are shown in Fig. 11. Fixing twice and restricting

ourselves to an exchange-only theory gives the 14 time-ordered diagrams shown in

Fig. 7. As we can see below in a very precise mathematical way, dangling parts

below or above the horizontal dotted lines correspond respectively to Hugenholtz

diagrams for initial-time and final-time perturbed wavefunctions. (Two other first-

order Goldstone diagrams are found in [52] with the electron repulsion dot above or

below the two dotted lines; however a more detailed analysis shows that these terms

neatly cancel out in the final analysis.) The area between the dotted lines corre-

sponds to time propagation. In this case, there are only one-hole/one-particle

excitations between the two horizontal dotted lines. Our final results are in perfect

agreement with diagrams appearing in the exact exchange (EXX) theory as

obtained by Hirata et al. [59] which are equivalent to the more condensed form

given by G€orling [60].

Figure 12 shows all 13 second-order time-unordered diagrams. Although this

may not seem to be very many, our procedure generates about 140 time-ordered

Hugenholtz diagrams (and even more Feynman diagrams). A typical time-ordered

Hugenholtz diagram is shown in Fig. 13. The corresponding equation,

M M

Fig. 11 Topologically

different first-order time-

unordered Abrikosov

diagrams for the PP

Fig. 12 Second-order time-

unordered Abrikosov PP

diagrams. Not all of the

time-ordered Hugenholtz

diagrams are generated by

our procedure – only about

140 Hugenholtz diagrams
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Π diag
sr,q p ωð Þ ¼

X
a, b, c, i, k, l

pq
����ba� �

kl
����rs� �

εik,bc ω� εik,cað Þεil,ac
; ð68Þ

shows that this diagrams has poles at the double excitations εik,ca. Thus we see that
the polarization propagator does have poles at double excitations, but we are not

really ready to do calculations yet. There are two main reasons: (1) we need a more

sophisticated formalism which allows the single and double excitations to mix with

each other and (2) we would prefer a (pseudo)eigenvalue equation to solve. Thus

we still have to do quite a bit more work to arrive at a “Casida-like” equation with

explicit double excitations, but the basic idea is already present in what we have

done so far.

To do so, it is first convenient to express the PP in a molecular orbital basis as

Π 1, 2, 3, 4; t� t 0ð Þ ¼
X

pqrs
Πsr,qp t� t 0ð Þψ*

r 2ð Þψs 1ð Þψ*
q 3ð Þψ p 4ð Þ; ð69Þ

where

�Πsr,q p t� t 0ð Þ ¼ iθ t� t 0ð Þ 0
��r̂ {

H tð Þŝ H tð Þq̂ {
H t 0ð Þ p̂ H t 0ð Þ

��0D E
þ iθ t 0 � tð Þ 0

��q̂ {
H t 0ð Þ p̂ H t 0ð Þr̂ {

H tð Þŝ H tð Þ
��0D E

: ð70Þ

As explained in [54], this change of convention with respect to that of (46) turns out

to be more convenient. It should also be noted that, because the PP depends only

Fig. 13 An example of a

second-order time-ordered

Hugenholtz PP diagram
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upon the time difference, t� t 0, we can shift the origin of the time scale so that t 0 ¼ 0

without loss of generality.

Equation (70) can be more easily manipulated by making use of the

superoperator formalism. A (Liouville-space) superoperator X
^

is defined by its

action on a (Hilbert-space) operator Â as

X
^

Â ¼ X̂; Â
	 


¼ X̂ Â � Â X̂ : ð71Þ

When X
^

is the Hamiltonian operator, H
^

, one often speaks of the Liouvillian. An

exception is the identity superoperator, 1
^

, whose action is simply given by

1
^

Â ¼ Â : ð72Þ

The Heisenberg form of orbital creation and annihilation operators is easily

expressed in terms of the Liouvillian superoperator,

p̂ H tð Þ ¼ eiĤt p̂ e�iĤt ¼ eiH
^

t p̂ : ð73Þ

Then

�Πsr,q p tð Þ ¼ iθ tð Þ 0
�� eiH^t r̂ {ŝ

� �h i
q̂ { p̂

��0D E
þ iθ �tð Þ 0

��q̂ { p̂ eiH
^

t r̂ {ŝ
� �h i��0D E

: ð74Þ

Taking the Fourier transform (with appropriate convergence factors (not

shown)) gives,

�Πsr,q p ωð Þ ¼ p̂ {q̂
�� ω1

^

þ H
^

� ��1��r̂ {ŝ


 �
; ð75Þ

where we have introduced the superoperator metric,7

Â
��X^ ��B̂� �

¼ 0
�� Â{; X̂; B̂

	 
	 
��0� �
: ð76Þ

[It may be useful to note that

7 Technically this is not a metric, because the overlap matrix is symplectic rather than positive

definite. However, we will call it a metric as it can be used in much the same way as a true metric.
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�Πsr,q p ωð Þ ¼ Πrs, pq ωð Þ; ð77Þ

follows as an easy consequence of the above definitions. Moreover, because we

typically use real orbitals and a finite basis set, the PP is a real symmetric matrix.

This allows us simply to identify Π as the superoperator resolvant,

Π pq, rs ωð Þ ¼ p̂ {q̂
�� ω1

^

þ H
^

� ��1��r̂ {ŝ


 ��
: ð78Þ

Because matrix elements of a resolvant superoperator are harder to manipulate

than resolvants of a superoperator matrix, we transform (75) into the later form by

introducing a complete set of excitation operators. The complete set

T{� �
¼ T

{
1 ; T

{
2 ; . . .

n o
¼ â { î , î {â ; â { î b̂ { ĵ , î {â ĵ {b̂ ; . . .
� �

; ð79Þ

leads to the resolution of the identity (RI):

1
^

¼
��T{� T{

��T{� ��1�
T{
�� : ð80Þ

We have defined the operator space differently from the previous work of one of

us [38] to be more consistent with the literature on the field of PP calculations. The

difference is actually the commutation of two operators which introduces one sign

change. Insertion into (75) and use of the relation

T{
�� ω1

^

þ H
^

� ��1��T{

 �

¼ T{
��T{

� �
T{
��ω1^ þ H

^ ��T{
� ��1

T{
��T{

� �
ð81Þ

then gives

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{� �

T{
��ω1^ þ H

^ ��T{
� ��1

T{
��r̂ {ŝ

� �
: ð82Þ

This shows us the analytical form of the exact polarization propagator.

The corresponding “Casida-like” pseudoeigenvalue equation is

T{
��H^ ��T{

� �
ZI ¼ ωI T{

��T{� �
ZI ; ð83Þ

and with normalization

Z
{
I T{

��T{� �
ZJ ¼ δI,J : ð84Þ

Let us also seek a sum-over-states expression for the polarization propagator.

Spectral expansion tells us that

MBPT Insights About and Corrections to TD-DFT 29



Γ ωð Þ ¼ ω T{
��T{� �

þ T{
��H^ ��T{

� �
¼
X
I

T{
��T{� �

ZI ωþ ωIð ÞZ{
I T{

��T{� �
; ð85Þ

and

Γ�1 ωð Þ ¼ ω T{
��T{� �

þ T{
��H^ ��T{

� �h i�1

¼
X
I

ZI ωþ ωIð Þ�1
Z
{
I : ð86Þ

So (82) reads

�Πsr,q p ωð Þ ¼
X
I

p̂ {q̂
��T{� �

ZI ωþ ωIð Þ�1
Z
{
I T{

��r̂ {ŝ
� �

: ð87Þ

This means that the PP has poles given at the pseudoeigenvalues of (83) and that

the eigenvectors may be used to calculate oscillator strengths via (87).

As the “Casida-like” (83) is so important, let us rewrite it as

A B
B* A*

� �
X

Y


 �
¼ ω

SA,A SA,B

SB,A SB,B

� �
X

Y


 �
; ð88Þ

which is roughly

A B
B* A*

� �
X

Y


 �
¼ ω

1 0

0 �1

� �
X

Y


 �
: ð89Þ

The A and B matrices, as well as the X and Y, partition according to whether

they refer to one-electron excitations or two-electron excitations. In the Tamm–

Dancoff approximation the B matrices are neglected so we can write

A
0þ1þ2ð Þ
1,1 A

1ð Þ
1,2

A
1ð Þ
2,1 A2,2

" #
C1

C2


 �
¼ ω

C1

C2


 �
ð90Þ

Here X has been replaced by C as is traditional and to reflect the normalization

C{C ¼ 1.

The superscripts in (91) reflect a somewhat difficult order analysis which is

carried out in the Appendix. This analysis consists of expanding the polarization

propagator algebraically and then matching each term to a set of diagrams to see

what order of each EOM matrix is needed to get a given order of polarization

propagator.

The result in the case of the A matrices is
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A
0þ1þ2ð Þ
1,1

� �
kc, ia

¼ δi,kF
0þ1þ2ð Þ
a,c � δa,cF

0þ1þ2ð Þ
i,k þ ai

����kc� �
A

1ð Þ
2,1

� �
kc, jbia

¼ �δi,k bc
����a j� �

þ δ j,k bc
����ai� �

� δb,c ai
����k j� �

þ δk, j bi
����k j� �

A
0ð Þ
2,2

� �
ldkc, jbia

¼ δi,kδc,aδd,bεab, i j ;

ð91Þ

whereF 0þ1ð Þ
r, s ¼ δr, sεr þMxc

r, s is the matrix of the Hartree–Fock operator constructed

with Kohn–Sham orbitals and

F 0þ1þ2ð Þ
a,c ¼ F 0þ1ð Þ

a,c þ
X
l

Ml,aMl,c

εl,a
� 1

2

X
l,m, d

ld
����mc� �

dl
����am� �

εlm,ad

F
0þ1þ2ð Þ
i,k ¼ F

0þ1ð Þ
i,k þ

X
d

Mk,dMd, i

εi,d
� 1

2

X
l, d, e

le
����kd� �

dl
����ei� �

εim,de
;

ð92Þ

include second-order corrections. (Note that extra factors of 1/2 occur in these

expressions when spin is taken explicitly into account.) In practice, a zero-order

approximation to A2,2 is insufficient and we must use an expression correct through

first order:

A
0þ1ð Þ
2,2

� �
aibj,ckdl

¼ δi,kδ j,l δa,cF
0þ1ð Þ
b,d þδb,dF

0þ1ð Þ
a,c

� �
�δa,cδb,d δ j,lF

0þ1ð Þ
i,k �δi,kF

0þ1ð Þ
d,l

� �
�δa,c f i, j,k,l b;dð Þ�δb,d f i, j,k,l a;cð Þþδa,d f i, j,k,l b;cð Þþδb,c f i, j,k,l a;dð Þ
�δa,cδb,d k j

����li� �
�δ j,lδk,i ad

����bc� �
;

ð93Þ

where

f i, j,k, l p; qð Þ ¼ δi,k l j
���� pq� �

þ δ j, l ki
���� pq� �

� δk, j li
���� pq� �

� δi, l k j
���� pq� �

: ð94Þ

We refer to the resultant method as extended SOPPA/ADC(2). It is immediately

seen that truncating to first order recovers the usual configuration interaction singles

(CIS) equations in a noncanonical basis set. We now have the essential tools to

proceed with the rest of this chapter.

4 Dressed LR-TD-DFT

We now give one answer to the problem raised in the introduction – how to include

explicit double excitations in LR-TD-DFT. This answer goes by the name “dressed

LR-TD-DFT” and consists of a hybrid MBPT/AA LR-TD-DFT method. We first

give the basic idea and comment on some of the early developments. We then go
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into the practical details which are needed to make a useful implementation of

dressed LR-TD-DFT. Finally, we introduce the notion of Brillouin corrections

which are undoubtedly important for photochemistry.

4.1 Basic Idea

As emphasized in Sect. 2, simple counting arguments show that the AA limits LR-

TD-DFT to single excitations, albeit dressed to include some electron correlation.

However, explicit double excitations are sometimes needed when describing

excited states. This was discussed in the introduction in the context of photo-

chemistry (Fig. 1). It is well known in ab initio quantum chemistry that double

excitations can be important when describing vertical excitations and the best

known example is briefly discussed in the caption of Fig. 14.

At first this may seem a little perplexing because the fact that the oscillator

strength is the transition matrix element of a one-electron operator – see (15) –

means that the oscillator strength of a double excitation relative to a single-

determinantal ground-state wavefunction should be zero – that is, the doubly

excited state should be spectroscopically dark. What happens is easily explained

by the two-level model shown in Fig. 15, which is sufficient to give a first

explanation of the butadiene case, for example. (In the butadiene case, the singly-

excited state to be used is already a mixture of two different one-hole/one-particle

Fig. 14 Doubles contribution to the 1Ag excited state of butadiene. Beecause the obvious two

lowest singly-excited singlets 1(1bg, 2bg) and
1(1au, 2au) are quasidegenerate in energy, they mix

to form new singly-excited singlets
�
1=

ffiffiffi�q
2
��	1

1bg, 2bg
� �

�1 1au, 2auð Þ


. One of these is

quasidegenerate with the doubly-excited singlet dark state 1(1b2g, 2a
2
u). The resultant mixing

modifies the energy and intensity of the observed 1Ag excited state
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states.) Figure 15 shows a bright singly-excited state with excitation energy ωS and

oscillator strength f S ¼ 1 interacting with a dark doubly-excited state with exci-

tation energy ωD and oscillator strength f D ¼ 0 via a coupling matrix element x.
The CI problem is simply

ωS x
x ωD

� �
CS

CD


 �
¼ ω

CS

CD


 �
; ð95Þ

which can be formally solved, obtaining

ωS ¼ ωa cos
2θþ ωb sin

2θ

ωD ¼ ωa sin
2θþ ωb cos

2θ; ð96Þ

for some value of θ. It should be noted that the average excitation energy is

conserved in the coupled problem (ωa þ ωb ¼ ωS þ ωD) and that something similar

occurs with the oscillator strengths. This leads to the common interpretation that the

coupling “shatters the singly-excited peaks into two satellite peaks.”

Now let us see how this wavefunction theory compares with LR-TD-DFT and

how Maitra et al. [61] decided to combine the two into a hybrid method. Of course,

the proper comparison with CI is LR-TD-DFT within the TDA. Applying the

partitioning technique to (95), we obtain

ωS þ
x2

ω� ωD


 �
CS ¼ ωCS : ð97Þ

Comparing this with the diagonal TDA LR-TD-DFT within the two-orbital

model,

E

ωS

ωD

ωb

ωa

f

ωωS

1

ωD

f

ωωa

fa

fb

ωb

Fig. 15 Two-level model

used by Maitra et al. in their

heuristic derivation of

dressed TDDFT. See

explanation in text
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ω ¼ εa, i þ ia
�� fHxc ωð Þ

��ia� �
; ð98Þ

shows that

ia
�� fHxc ωð Þ

��ia� �
¼ ωS � εa, ið Þ þ x2

ω� ωD
: ð99Þ

Maitra et al. [61] interpreted the first term as the adiabatic part,

f AAHxc ¼ ωS � εa, i ; ð100Þ

and second term as the nonadiabatic correction,

fNAHxc ωð Þ ¼ x2

ω� ωD
: ð101Þ

Additionally, it is easy to show that

x2 ¼ ωSωD � ωaωb : ð102Þ

which is the form of the numerator used by Maitra et al. [61]. The suggestion of

Maitra et al., which defines dressed LR-TD-DFT, is to calculate the nonadiabatic

correction terms – see (101) – from MBPT [61]. Thus x and ωD in (95) are to be

calculated using MBPT rather than using DFT.

4.2 Practical Details and Applications

Applications of dressed LR-TD-DFT to the butadiene and related problems have

proven to be very encouraging [61–64]. Nevertheless, several things were missing

in these seminal papers. In the first place, they did not always use exactly the same

formalism for dressed LR-TD-DFT and not always the same DFAs. Moreover,

although the formalism showed encouraging results for a few molecules for those

excitations which were thought to be most affected by explicit inclusion of double

excitations, the same references failed to show that predominantly single exci-

tations were left largely unaffected by the dressing of AA LR-TD-DFT. These

questions were carefully addressed in [65], with some surprising answers.

The implementation of dressed LR-TD-DFT considered in [65] was to add just a

few double excitations to AA LR-TD-DFT and solve the TDA equation
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A
AAð Þ
1,1 A

1ð Þ
1,2

A
1ð Þ
2,1 A

0þ1ð Þ
2,2

" #
C1

C2


 �
¼ ω

C1

C2


 �
: ð103Þ

Thus the calculation of the A1,1 block, which is one of the most difficult to

calculate in the extended SOPPA/ADC(2) theory, is very much simplified by using

AA LR-TD-DFT. The A2,2 block must, however, be calculated through first order in

practice. It was confirmed that adding only a few (e.g., 100) double excitations led

to little difference in calculated eigenvalues unless the double excitations were

quasidegenerate with a single excitation. There is thus no significant problem in

practice with double counting electron correlation effects when using this hybrid

MBPT/LR-TD-DFT method. Tests were carried out on the test set of Schreiber

et al. consisting of 28 organic chromophores with 116 well-characterized singlet

excitation energies [66].

Note that the form of (103) was chosen instead of the form

A
AAð Þ
1,1 þ KNA

1,1 ωð Þ
� �

C1 ¼ ωC1

KNA
1,1 ωð Þ ¼ A

1ð Þ
1,2 ω1� A

0þ1ð Þ
2,2

� ��1

A
1ð Þ
2,1 ;

ð104Þ

for computational simplicity. However, (104) is the straightforward extension of

the dressed kernel given at the end of the previous section and is easy to generalize

to the full response theory case (i.e., without making the TDA).

We confirm the previous report that using the LDA for the AA LR-TD-DFT part

of the calculation often gives good agreement with vertical excitation energies

having significant double excitation contributions [67]. However, most excitations

are dominated by singles and these are significantly underestimated by the AA

LDA. Inclusion of double excitations tended to decrease the typically already too

low AA LDA excitation energy. The AA LR-TD-DFT block was then modified to

behave in the same way as a global hybrid functional with 20% Hartree–Fock

exchange. The excitations with significant doubles character were then found to be

overestimated but the addition of the doubles MBPT contribution again gave good

agreement with benchmark ab initio results. This was consistent with previous

experience with dressed LR-TD-DFT [61–64]. The real surprise was the discovery
that adding the MBPT to the hybrid functional made very little difference for the
majority of excitations which are dominated by single excitation character. It thus
seems that a dressed LR-TD-DFT requires the use of hybrid functional.

4.3 Brillouin Corrections

So far, dressed LR-TD-DFT allows us to include explicit double excitations and so

to describe photochemical funnels between excited states. However, a worrisome

point remains, namely how to include doubles contributions to the ground state in
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the same way that we include doubles contributions to excited states so that we may

describe, for example, the photochemical funnel between S1 and S0 in Fig. 1. It is

not clear how to do this in LR-TD-DFT where the excited-state potential energy

surfaces are just obtained by adding the excitation energies at each geometry to the

ground-state DFT energies. Not only does such a procedure lead to the excited

states inheriting the convergence difficulties of the ground state surface coming

from places with noninteracting v-representability difficulties, but also there is no

coupling between the ground state and singly excited states. This is similar to what

happens with Brillouin’s theorem in CIS calculations and leads to problems

describing conical intersections. However, adding in the missing nonzero terms

(which we call Brillouin corrections) to dressed LR-TD-DFT is easy in the TDA.

It is good to emphasize at this point that we are making an ad hoc correction,

albeit one which is eminently reasonable from a wavefunction point of view.

Formally correct approaches might include: (1) acknowledging that part of the

problem may lie in the fact that noninteracting v-representability in Kohn–Sham

DFT often breaks down at key places on ground-state potential energy surfaces

when bonds are formed or broken, so that conventional Kohn–Sham DFT may no

longer be a good starting point; (2) examining nonadiabatic xc-kernels which seem

to include some degree of multideterminantal ground-state character in their

response such as that of Maitra and Tempel [68]; (3) introducing explicit

multideterminantal character into the description of the Kohn–Sham DFT ground

state. We return to this in our final section, but for now we just try the ad hoc

approach of adding Brillouin corrections to TDA dressed LR-TD-DFT. Note that

this also has an indirect effect on interactions between excited states, though the

primary effect is between excited states and the ground state.

It is sufficient to add an extra column and row to the TDA problem to take into

account the ground-state determinant in hybrid DFT. This gives

0 A0,1 A0,2

A1,0 A
AAð Þ
1,1 A

1ð Þ
1,2

A2,0 A
1ð Þ
2,1 A

0þ1ð Þ
2,2

264
375 C0

C1

C2

0@ 1A ¼ ω
C0

C1

C2

0@ 1A : ð105Þ

where the extra matrix elements are calculated as

A0,1ð Þ jb ¼ j
��M̂ xc

��b� �
; ð106Þ

and

A0,2ð Þkcld ¼ 2 kc
����ld� �

� kd
����lc� �	 


: ð107Þ

Of course, we can also derive a corresponding nonadiabatic correction to the

xc-coupling matrix:
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A
AAð Þ
1,1 þ KNA

1,1 ωð Þ
� �

C1 ¼ ωC1

KNA
1,1 ωð Þ ¼ A1,0 A

1ð Þ
1,2

� � ω1 �A0,2

�A2,0 ω1� A
0þ1ð Þ
2,2

� ��1 A0,1

A
1ð Þ
2,1


 �
:

ð108Þ

The extension beyond the TDA is not obvious in this case.

4.3.1 Dissociation of Molecular Hydrogen

Molecular hydrogen dissociation is a prototypical case where doubly-excited con-

figurations are essential for describing the potential energy surfaces of the lowest-

lying excited states. The three lowest singlet states of Σþ
g symmetry can be

essentially described by three CI configurations, namely (1σ2g1σ
0
u2σ

0
g), (1σ

1
g1σ

0
u2σ

1
g),

and (1σ0g1σ
2
u2σ

0
g), referred to as ground, single, and double configuration,

respectively.

Obviously, the double configuration plays an essential role when a restricted

single-determinant is used as reference. On the one hand, the mixing of ground and

double configurations is necessary for describing the correct �1 Hartree dissoci-

ation energy of H2. On the other hand, the single and double configurations mix at

around 2.3 bohr, thus producing an avoided crossing. These features are shown in

Fig. 16, where we compare different flavors of TD-DFT with the CISD benchmark

(shown as solid lines in all graphs).

Adiabatic TD-DFT (shown in Fig. 16a) misses completely the double configu-

ration, and so neither the avoided crossing nor the dissociation limit is described

correctly. It should be noted, however, that CISD and adiabatic TD-DFT curves are

superimposed for states X 1Σþ
g and 1 1Σþ

g at distances lower than 2.3 bohr, where the

KS assumption is fully satisfied. At distances larger than 2.3 bohr, the 1 1Σþ
g state

corresponds to the CISD 2 1Σþ
g state. This is because the 1 1Σþ

g in TD-DFT is

Fig. 16 Potential energy surfaces of the ground and two lowest excited states of Σþ
g symmetry.

Comparison of CISD (solid lines) with adiabatic, dressed, and hybrid LR-TD-BH&HLYP/TDA

(dashed lines). All calculations have been performed with a cc-pVTZ basis set. All axes are in

Hartree atomic units (bohr for the x-axis and Hartree for the y-axis). Unlike the ethylene potential
energy curves (Fig. 17), no shift has been made in the potential energy curves
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diabatic, as it does not contain the doubly-excited configuration. The dissociation

limit is also overestimated as it is usual from RKS with common xc functionals.

Dressed TD-DFT (Fig. 16b) includes the double configuration. On the one hand,

the avoided crossing is represented correctly. However, the gap between the 11Σþ
g

and the 21Σþ
g is smaller than the CISD crossing. The dissociation limit, however, is

not correctly represented, as dressed TD-DFT does not include the ground- to

excited-state interaction. Therefore, the double configuration dissociates at the

same limit as the ground configuration.

Brillouin dressed TD-DFT (Fig. 16b) also includes the ground- and double

configuration mixture additional to the single- and double mixing of dressed

TD-DFT. On the one hand, the avoided crossing is represented more precisely,

with a gap closer to that of CISD. Now the dissociation limit is more correctly

described. Still there is a slight error in the dissociation energy limit, probably

because of the double counting of correlation. This could be alleviated by a

parameterization of the Brillouin-corrected dressed TD-DFT functional.

4.3.2 Ethylene Torsion

In Fig. 17 we show the potential energy surfaces of S0, S1, and S2 of ethylene along

the torsional coordinate. The static correlation of these three states can be essen-

tially represented by three configurations, namely the ground-state configuration

(π2π*,0), the singly-excited configuration (π1π*,1), and the doubly-excited configu-

ration (π0π*,2).
From the CASSCF(2,2)/MCQDPT2, we observe that the ground- and doubly-

excited configurations are heavily mixed at 90�, forming an avoided crossing. At

this angle, the S1 and S2 states are degenerate. These features are not captured by

adiabatic TD-DFT (Fig. 17a). Indeed, the doubly-excited configuration is missing,

Fig. 17 Potential energy cuts of the S0, S1, and S2 states of ethylene along the twisting coordinate:

x-axis in degrees, y-axis in eV. All the curves have been shifted so that the ground-state curve at

0� corresponds to 0 eV. The solid lines correspond to a CASSCF(2,2)/MCQDPT2 calculation, and

the dashed lines to the different models using the BH&HLYP functional and the Tamm–Dancoff

approximation. The 6-31++G(d,p) basis set have been employed in all calculations. (Note that

these curves are in good agreement with similar calculations previously reported in Fig. 7.3 of

Chap. 7 of [69], albeit with a different functional)
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and so the ground state features a cusp at the perpendicular conformation. The S1,

which is essentially represented by a single excitation, is virtually superimposed

with the CASSCF(2,2)/MCQDPT2 result. The dressed TD-DFT (Fig. 17b) includes

the double excitation, but the surfaces of S0 and S2 appear as diabatic states because

the ground- to excited-state coupling term is missing. This is largely fixed by

introducing the Brillouin corrections (Fig. 17c). The ground state is now in very

good agreement with the CASSCF(2,2)/MCQDPT2 S0 state, although the degen-

eracy of S1 and S2 at 90� is still not fully captured. Thus the picture given by

Brillouin-corrected LR-TD-DFT is qualitatively correct with respect to the multi-

reference results.

5 Effective Exchange-Correlation (xc) Kernel

We now have the tools to deduce an MBPT expression for the TD-DFT xc-kernel. It

should be emphasized that this is not a new exercise but that we seem to be the only

ones to do so within the PP formalism. We think this may have the advantage of

making a rather complicated subject more accessible to Quantum Chemists already

familiar with the PP formalism.

The problem of constructing xc-correlation objects such as the xc-potential vxc
and the xc-kernel fxc(ω) from MBPT for use in DFT has been termed “ab initio

DFT” by Bartlet [70, 71]. At the exchange-only level, the terms optimized effective

potential (OEP) [72, 73] or exact exchange [74, 75] are also used and OEP is also

used to include the correlated case [76, 77]. At first glance, nothing much is gained.

For example, the calculated excitation energies and oscillator strengths in ab initio

TD-DFT must be, by construction, exactly the same as those from MBPT. This

approach does not give explicit functionals of the density (though it may be thought

of as giving implicit functionals). However it does allow us to formulate expres-

sions for and to calculate purely (TD-) DFT objects and hence it can provide insight

into, and computational checks of, the behavior of illusive objects such as vxc and
fxc(ω).

Here we concentrate on the latter, namely the xc-kernel. Previous work along

these lines has been carried out for the kernel by directly taking the derivative of

the OEP energy expression with the constraint that the orbitals come from a

local potential. This was first done by G€orling in 1998 [60] for the full time-

dependent exchange-only problem. In 2002, Hirata et al. redid the derivation for

the static case [78]. Later, in 2006, a diagrammatic derivation of the static result was

given by Bokhan and Bartlett [71], and the functional derivative of the kernel gx
has been treated by Bokhan and Bartlett in the static exchange-only case [79].

In this section, we take a somewhat different and arguably more direct approach

than that used in the previously mentioned articles, in that we make direct use of the

fundamental relation
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χ 1; 2ð Þ ¼ L 1; 1þ; 2; 2þð Þ ¼ Π 1, 1, 2, 2, t1 � t2ð Þ ð109Þ

where iþ is infinitesimally later than i. This approach has been used by Totkatly,

Stubner, and Pankaratov to develop a diagrammatic expression for fxc(ω) [80, 81]. It
also leads to the “Nanoquanta approximation,” so named by Lucia Reining because

it was simultaneously derived by several different people [41–43, 46, 44] involved

in the so-called Nanoquanta group. (See also pp. 318–329 of [24].)

The work presented here differs from previous work in two respects, namely

(1) we make a direct connection with the PP formalism which is more common in

quantum chemistry than is the full BSE approach (they are formally equivalent but

differ in practice through the approximations used) and (2) we introduce a matrix

formulation based upon Harriman’s contraction Υ̂ and expansion operators Υ̂ {. This

allows us to introduce the concept of the localizer Λ(ω) which shows explicitly how
localization in space results requires the introduction of additional frequency

dependence. Finally, we recover the formulae of G€orling and Hirata et al. and

produce a rather trivial proof of the Gonze and Scheffler result [82] that this

additional frequency dependence “undoes” the spatial localization procedure in

particular cases.

We first seek a compact notation for (109). Harriman considered the relation

between the space of kernels of operators and the space of functions [83, 84].

In order to main consistency with the rest of this chapter, we generalize Harriman’s
notion from space-only to space and spin coordinates. Then the collapse operator is

defined by

Υ̂ A 1; 2ð Þ ¼ A 1; 1ð Þ ; ð110Þ

for an arbitrary operator kernel. The adjoint of the collapse operator is the so-called

expansion operator

Υ̂ { f 1ð Þ ¼ f 1ð Þδ 1� 2ð Þ ; ð111Þ

for an arbitrary function f(1). Clearly Υ̂ {Υ̂ A 1; 2ð Þ ¼ A 1; 1ð Þδ 1� 2ð Þ 6¼ A 1; 2ð Þ.
The ability to express these operators as matrices (Υ and Υ{) facilitates finite basis

set applications.

We may now rewrite (109) as

χ t1 � t2ð Þ ¼ ΥL t1; t
þ
1 ; t2; t

þ
2

� �
Υ{ ¼ ΥΠ t1 � t2ð ÞΥ{ ð112Þ

Comparing

χ t1 � t2ð Þ ¼ χ s t1 � t2ð Þ þ
ð
χ s t1 � t3ð Þ fHxc t3 � t4ð Þχ t4 � t2ð Þdt3dt4 ; ð113Þ

with the BSE
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L t1; t2; t3; t4ð Þ ¼ Ls t1; t2; t3; t4ð Þ

þ
ð
Ls t1; t2; t5; t6ð ÞΞHxc t5; t6; t7; t8ð ÞL t7; t8; t3; t4ð Þdt5dt6dt7dt8 ;

ð114Þ

or, more precisely, with

χ t1 � t2ð Þ ¼ ΥL t1; t
þ
1 ; t2; t

þ
2

� �
Υ{

¼ ΥLs t1; t
þ
1 ; t2; t

þ
2

� �
Υ{

þ
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
ΞHxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8

¼ χ s t1 � t2ð Þ
þ
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
ΞHxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8 ;

ð115Þ

then shows thatð
ΥL t1; t

þ
1 ; t3; t

þ
3

� �
Υ{ fHxc t3 � t4ð ÞΥL t4; t

þ
4 ; t2; t

þ
2

� �
Υ{ dt3dt4

¼
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
ΞHxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8 :

ð116Þ

If we take advantage of the Kohn–Sham reference giving us the exact density,

then the Hartree part cancels out so that we actually getð
ΥL t1; t

þ
1 ; t3; t

þ
3

� �
Υ{ fxc t3 � t4ð ÞΥL t4; t

þ
4 ; t2; t

þ
2

� �
Υ{ dt3dt4

¼
ð
ΥLs t1; t

þ
1 ; t5; t6

� �
Ξxc t5; t6; t7; t8ð ÞL t7; t8; t2; t

þ
2

� �
dt5dt6dt7dt8 :

ð117Þ

Although this is certainly a beautiful result, it is nevertheless plagued with four-

time quantities which may be eliminated by using the PP:

Π t1 � t2ð Þ ¼ Πs t1 � t2ð Þ þ
ð
Πs t1 � t3ð ÞKHxc t3 � t4ð ÞΠ t4 � t2ð Þdt3dt4 ; ð118Þ

where we have introduced the coupling matrix defined by

KHxc ¼ Π�1
s �Π�1: ð119Þ

The price we have to pay is that the coupling matrix cannot be easily expanded in

Feynman diagrams, but that in no way prevents us from determining appropriate

algebraic expressions for it. We may then write
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ð
ΥΠs t1 � t3ð ÞΥ{ fxc t3 � t4ð ÞΥΠ t4 � t2ð ÞΥ{ dt3dt4 ¼ð
ΥΠs t1 � t3ð ÞΥ{Kxc t3 � t4ð ÞΥΠ t4 � t2ð Þdt3dt4;

ð120Þ

which Fourier transforms to remove all the integrations,

ΥΠs ωð ÞΥ{ fxc ωð ÞΥΠ ωð ÞΥ{ ¼
ð
ΥΠs ωð ÞΥ{Kxc ωð ÞΥΠ ωð ÞΥ{ ð121Þ

5.1 Localizer

Evidently,

fxc ωð Þ ¼ Λs ωð ÞKxc ωð ÞΛ{ ωð Þ ; ð122Þ

where we have introduced the notion of noninteracting (Λs) and interacting (Λ)
localizers,

Λs ωð Þ ¼ ΥΠs ωð ÞΥ{
� ��1

ΥΠs ωð ÞΥ{

Λ ωð Þ ¼ ΥΠ ωð ÞΥ{
� ��1

ΥΠ ωð ÞΥ{:
ð123Þ

The localizer arises quite naturally in the context of the time-dependent OEP

problem. According to the Runge–Gross theory [25], the exact time-dependent

xc-potential vxc(t) is not only a functional of the density ρ(t) but also of an

initial condition which can be taken as the wavefunction Ψ(t0) at some prior time

t0. On the other hand, linear response theory begins with the static ground state case
where the first Hohenberg–Kohn theorem tells us that the wavefunction is a

functional of the density Ψ t0ð Þ ¼ Ψ ρt0
	 


. G€orling has pointed out that this greatly

simplifies the problem [60] because we can then show thatð
Πs 1; 1; 2; 2;ωð Þvx 2;ωð Þd2 ¼

ð
Πs 1; 1; 2; 3;ωð ÞΣx 2; 3ð Þd2d3 ; ð124Þ

where Σx is the Hartree–Fock exchange operator. Equivalently, this may be written as

ΥΠs ωð ÞΥ{vx ¼ ΥΠs ωð ÞΣx; ð125Þ

or Σx,

vx ωð Þ ¼ Λs ωð ÞΣx : ð126Þ

Equations (122) and (126) are telling us something of fundamental importance,

namely that the very act of spatially localizing the xc-coupling matrix involves

introducing additional frequency dependence.
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For the special case of noninteracting susceptibility, we can easily derive an

expression for the dynamic localizer. Because

Πs 1; 2; 3; 4;ωð Þ ¼
Xocc
i

Xvirt
a

ψi 1ð Þψ*
a 2ð Þψ*

i 3ð Þψa 4ð Þ
ω� εa, i

�
Xocc
i

Xvirt
a

ψa 1ð Þψ*
i 2ð Þψ*

a 3ð Þψi 4ð Þ
ωþ εa, i

;

ð127Þ

we can express the kernel of ΥΠs(ω) as

ΥΠsð Þ 1; 2; 3;ωð Þ ¼
Xocc
i

Xvirt
a

ψi 1ð Þψ*
a 1ð Þψ*

i 2ð Þψa 3ð Þ
ω� εa, i

�
Xocc
i

Xvirt
a

ψa 1ð Þψ*
i 1ð Þψ*

a 2ð Þψi 3ð Þ
ωþ εa, i

:

ð128Þ

Also, the kernel of ΥΠs(ω)Υ
{ is just

ΥΠsΥ
{

� �
1; 2;ωð Þ ¼

Xocc
i

Xvirt
a

ψi 1ð Þψ*
a 1ð Þψ*

i 2ð Þψa 2ð Þ
ω� εa, i

�
Xocc
i

Xvirt
a

ψa 1ð Þψ*
i 1ð Þψ*

a 2ð Þψi 2ð Þ
ωþ εa, i

:

ð129Þ

As with the susceptibility, the two operators have poles at the independent

particle excitation energies ω ¼ �εa, i ¼ � εa � εið Þ.
In order to construct the dynamic localizer, the kernel (125) has to be inverted. It

is not generally possible to do this analytically, though it can be done in a finite-

basis representation with great care. However, Gonze and Scheffler have noted that

exact inversion is possible in the special case of a frequency, ω ¼ εb, j, of a pole

well separated from the other poles [82]. Near this pole, the kernels, ΥΠs(ω) and
ΥΠs(ω)Υ

{, are each dominated by single terms

ΥΠsð Þ �
ψ j 1ð Þψ*

b 1ð Þψ*
j 2ð Þψb 3ð Þ

ω� εb, j

ΥΠsΥ
{

� �
1; 2;ωð Þ �

ψ j 1ð Þψ*
b 1ð Þψ*

j 2ð Þψb 2ð Þ
ω� εb, j

:

ð130Þ

Thus (125) becomes
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ψ j 1ð Þψ*
b 1ð Þ

ω� εb, j
ψb

��vx εb, j
� ���ψ j

D E
�

ψ j 1ð Þψ*
b 1ð Þ

ω� εb, j
ψb

��Σ̂ x

��ψ j

D E
; ð131Þ

with the approximation becoming increasingly exact as ω approaches εb,j. Hence,

ψb

��vx εb, j
� ���ψ j

D E
¼ ψb

��Σ̂ x

��ψ j

D E
: ð132Þ

More generally for an arbitrary dynamic kernel, K(1, 2;ω),

ψbψ
*
j

��Λ εb, j
� �

K εb, j
� �� �

¼ ψ j

��K εb, j
� ���ψb

� �
; ð133Þ

and we can do the same for �εb, j, obtaining

ψ jψ
*
b

��Λ �εb, j
� �

K �εb, j
� �� �

¼ ψ j

��K �εb, j
� ���ψb

� �
: ð134Þ

We refer to these last two equations as Gonze–Scheffler (GS) relations, because

they were first derived by these authors [82] and because we want to use them again.

These GS relations show that the dynamic localizer, Λs(ω), is pole free if the

excitation energies, εa,i, are discrete and nondegenerate and suggest that the

dynamic localizer may be a smoother function of ω than might at first be suspected.

Equation (132) is also very significant because we see that, at a particular fre-

quency, the matrix element of a local operator is the same as the matrix element

of a nonlocal operator. Generalization to the xc-kernel requires an approximation.

5.1.1 First Approximation

Equation (122) is difficult to solve because of the need to invert an expression

involving the correlated PP. However, it may instead be removed by using the

approximate expression

fxc ωð Þ ¼ Λs ωð ÞKxc ωð ÞΛþ
1=2 ωð Þ ; ð135Þ

where a localizer is used which is half way between the noninteracting and fully

interacting form,

Λ1=2 ωð Þ ¼ ΥΠs ωð ÞΥ{� ��1
ΥΠ ωð ÞΥ{ : ð136Þ

Equation (135) then becomes
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fxc ωð Þ ¼ ΥΠs ωð ÞΥ{� ��1
Π ωð Þ �Πs ωð Þð Þ ΥΠs ωð ÞΥ{� ��1

: ð137Þ

Such an approximation is expected to work well in the off-resonant regime. As

we can see, it does give G€orling’s exact exchange (EXX) kernel for TD-DFT

[60]. On the other hand, the poles of the kernel in this approximation are a priori

the poles of the exact and independent particle PPs – that is, the true and single-

particle excitation energies – unless well-balanced approximations lead to fortui-

tous cancellations.

We can now return to a particular aspect of Casida’s original PP approach [58]

which was failure to take proper account of the localizer. This problem is rectified

here. The importance of the localizer is made particularly clear by the GS relations

in the case of charge transfer excitations. The single-pole approximation to the i
! a excitation energy is

ω ¼ εa, i þ ia
��Λ εa, ið ÞKxc εa, ið ÞΛ{ εa, ið Þ

��ai� �
¼ εa, i þ aa

��Π�1
s εa, ið Þ � Π�1 εaið Þ

��ii� �
:

ð138Þ

Thus once again we see that the frequency dependence of the localizer has

transformed the matrix element of a spatially-local frequency-dependent operator

into the matrix element of a spatially-nonlocal operator. Had the localizer been

neglected, then we would have found, incorrectly, that

ω ¼ εa, i þ ia
��Π�1

s εaið Þ � Π�1 εa, ið Þ
��ai� �

: ð139Þ

Although the latter reduces to just εai for charge transfer excitations at a distance
(because ψiψa ¼ 0), the former does not [85]. However, for most excitations the

overlap is non-zero. In such cases, and around a well-separated pole, the localizer

can be completely neglected.

5.1.2 Exchange-Only Case

In order to apply (137) we need only the previously derived terms represented by

the diagrams in Fig. 7. The resultant expressions agree perfectly with the expanded

expressions of the TD-EXX kernel obtained by Hirata et al. [59], which are

equivalent to the more condensed form given by G€orling [60].

Use of the GS relation then leads to

ω ¼ εKSa, i þ f xc εKSa, i
� �

¼ εKSa, i þ a
��M̂ xc

��a� �
� i

��M̂ xc

��i� �
þ ai

����ia� �
¼ εHFa, i þ ai

����ia� �
;

ð140Þ

which is exactly the configuration interaction singles (CIS, i.e., TDHF Tamm–

Dancoff approximation) expression evaluated using Kohn–Sham orbitals.
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This agrees with a previous exact result obtained using G€orling–Levy perturbation

theory [82, 86, 87].

5.1.3 Second Approximation

A second approximation, equivalent to the PP Born approximation,

Π ωð Þ ¼ Πs ωð Þ þΠs ωð ÞKHxc ωð ÞΠs ωð Þ ; ð141Þ

is useful because of its potential for preserving as much as possible of the basic

algebraic structure of the exact equation at (122) although still remaining compu-

tationally tractable. This is our second approximation,

fHxc ωð Þ ¼ Λs ωð Þ Π�1
s ωð Þ �Π�1 ωð Þ

� �
Λ{
s ωð Þ: ð142Þ

Equation (142) simply reads that fHxc(ω) is a spatially localized form of KHxc(ω).
This is nothing but the PP analogue of the basic approximation (117) used in the

BSE approach on the way to the Nanoquanta approximation [41–46].

6 Conclusion and Perspectives

Time-dependent DFT has become part of the photochemical modeler’s toolbox, at
least in the FC region. However, extensions of TD-DFT are being made to answer

the photochemical challenge of describing photochemical funnel regions where

double and possibly higher excitations often need to be taken into account. This

chapter has presented the dressed TD-D FT approach of using MBPT corrections to

LR-TD-DFT in order to help address problems which are particularly hard for

conventional TD-DFT. Illustrations have been given for the dissociation of H2 and

for cis/trans isomerization of ethylene. We have also included a section deriving the

form of the TD-DFT xc-kernel from MBPT. This derivation makes it clear that

localization in space is compensated for in the exact kernel by including additional

frequency dependences. In the short run, it may be that such additional frequency

dependences are easier to model with hybrid MBPT/LR-TD-DFT approaches. Let

us mention in closing the very similar “configuration interaction-corrected Tamm–

Dancoff approximation” of Truhlar and coworkers [88]. Yet another approach,

similar in spirit, but different in detail is multiconfiguration TD-DFT based upon

range separation [89]. In the future, if progress continues to be made at the current

rate, we may very well be using some combination of these, including elements of

dressed LR-TD-DFT, as well as other tricks such as a Maitra–Tempel form of the

xc-kernel [68], constricted variational DFT for double excitations [90], DFT multi-

reference configuration interaction (DFT-MRCI) [91], spin-flip theory [92–102],

and restricted open-shell or spin-restricted ensemble-referenced Kohn–Sham
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theory [97, 100, 101, 103–105] to attack difficult photochemical problems on a

routine basis. Key elements to make this happen are the right balance between rigor

and practicality, ease of automation, and last but not least ease of use if many users

are going to try these techniques and if they can be routinely applied at every time

step of a photochemical dynamics simulation.
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Appendix: Order Analysis

We have presented the superoperator PP procedure as if we simply manipulated

Feynman diagrams. In reality we expanded the matrices using Wick’s theorem with

the help of a home-made FORTRAN program. The result was a series of algebraic

expressions which were subsequently analyzed by drawing the corresponding

Feynman diagrams. This leads to about 200 diagrams which we ultimately resum

to give a more compact expression. It is the generation of this expression that we

now wish to discuss.

Let us analyze this expression for the PP according to the order of excitation

operator. Following Casida [58], we partition the space as

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{

1

� �
p̂ {q̂

��T{
2þ

� �� �
Γ�1 ωð Þ

T
{
1

��r̂ {ŝ
� �
T
{
2þ
��r̂ {ŝ

� �0@ 1A ; ð143Þ

whereT
{
2þ corresponds to the operator space of two-electron and higher excitations

and

Γ�1 ωð Þ ¼ Γ1,1 ωð Þ Γ1,2þ
Γ2þ, 1 Γ2þ, 2þ ωð Þ

� ��1

; ð144Þ

has been blocked:
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Γ i, j ωð Þ ¼ T
{
i

��ω1^ þ H
^ ��T{

j


 �
: ð145Þ

Using the well-known expression for the inverse of a two-by-two block matrix

allows us to transform (143) into

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{

1

� �
� p̂ {q̂

��T{
2þ

� �
Γ�1
2þ, 2þ ωð ÞΓ2þ, 1

h i
� P�1 ωð Þ T{

1

��r̂ {ŝ
� �

� Γ1,2þΓ�1
2þ, 2þ ωð Þ T{

2þ
��r̂ {ŝ

� �h i
þ p̂ {q̂

��T{
2þ

� �
Γ�1
2þ, 2þ ωð Þ T{

2þ
��r̂ {ŝ

� �
;

ð146Þ

where

P ωð Þ ¼ Γ1,1 ωð Þ � Γ1,2þΓ
�1
2þ, 2þ ωð ÞΓ2þ, 1 : ð147Þ

Although (146) is somewhat complicated, it turns out that P(ω) plays much the

same role in the smaller T{
1 space that Γ(ω) plays in the full T{ space. To see how

this comes about, it is necessary to introduce the concept of order in the fluctuation

operator – see (67) – and inMxc – see (69). We can now perform an order-by-order

expansion of (146). Through second order only the T{
2 part ofT

{
2þ contributes, so we

need not consider higher than double excitation operators. However, we make some

additional approximations. In particular, we follow the usual practice and drop the

last term in (146) because it contributes only at second order and appears to be small

when calculating excitation energies and transitions moments using the Hartree–

Fock approximation as zero-order [52, 106–109]. For response functions such as

dynamic polarizabilities, their inclusion is more critical, improving the agreement

with experiments [49]. We also have no need to consider the second term in

p̂ {q̂
��T{

1

� �
� p̂ {q̂

��T{
2þ

� �
Γ�1
2þ, 2þ ωð ÞΓ2þ, 1 : ð148Þ

This means that for the purposes of this chapter we can treat the PP in the present

work as given by

�Πsr,q p ωð Þ ¼ p̂ {q̂
��T{

1

� �
P�1 ωð Þ T{

1

��r̂ {ŝ
� �

: ð149Þ

Comparing with (82) substantiates our earlier claim that P(ω) plays the

same role in the T{
1 space that Γ(ω) plays over the full T

{ space.
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First-Order Exchange-Correlation Kernel

We now turn to the first-order exchange-correlation kernel. Our main motivation

here is to verify that we obtain the same terms as in exact exchange (EXX)

calculations when we evaluate Π �Πs [59, 60]. Because our approach is in some

ways more general than previous approaches to the EXX kernel, this section may

also provide some new insight into the meaning of the EXX equations.

Because we are limited to first order, only zero- and first-order wavefunction

terms need be considered. This implies that all the contributions from theT
{
2þ space

(the space of double- and higher-excitations) are zero and substantiates our claim

that (149) is exact to first-order. An order-by-order expansion gives

�Π 0þ1ð Þ
sr,q p ωð Þ ¼ p̂ {q̂

��T{
1

� � 1ð Þ
P 0ð Þ,�1 ωð Þ T{

1

��r̂ {ŝ
� � 0ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 0ð Þ,�1 ωð Þ T{

1

��r̂ {ŝ
� � 1ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 1ð Þ,�1 ωð Þ T{

1

��r̂ {ŝ
� � 0ð Þ

� Π s
sr,q p ωð Þ;

ð150Þ

where

�Π s
sr,q p ωð Þ ¼ p̂ {q̂

��T{
1

� � 0ð Þ
T{
1

��ω1^ þ h
^

KS

��T{
1

� � 0ð Þ,�1

T{
1

��r̂ {ŝ
� � 0ð Þ

: ð151Þ

The evaluation of each of first-order block is straightforward using the basic

definitions and Wick’s theorem.

Let us first consider the P parts. The zeroth-order contribution is

P
0ð Þ
kc, ia ωð Þ ¼ ω� εi,að Þδikδac ð152Þ

P
0ð Þ
ck, ia ωð Þ ¼ 0 ; ð153Þ

and the first-order contribution gives

P
1ð Þ
kc, ia ¼ ai

����kc� �
þMacδik �Mikδac ð154Þ

P
1ð Þ
ck, ia ¼ ci

����ak� �
: ð155Þ

(It should be noted that Pkc,ia is part of the A block, whereas Pck,ia is part of the B

block.) The sum of P 0ð Þ þ P 1ð Þ gives the exact pole structure up to first-order in the

SOPPA approach.

The zero-order contribution,
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p̂ {q̂
��T{

1

� � 0ð Þ
¼ T

{
1

��T{
1

� �
; ð156Þ

and the first-order contributions are given by

p̂ {q̂
��T{

1

� �h i 1ð Þ

kc, ji
¼ �M jc

ε j,c
δik ð157Þ

p̂ {q̂
��T{

1

� �h i 1ð Þ

ck, ji
¼ Mic

εi,c
δk j ð158Þ

p̂ {q̂
��T{

1

� �h i 1ð Þ

kc,ba
¼ Mka

εk,a
δbc ð159Þ

p̂ {q̂
��T{

1

� �h i 1ð Þ

ck,ba
¼ �Mkb

εk,b
δca : ð160Þ

The PP Π(ω) is now easily constructed by simple matrix multiplication

according to (150). Applying the first approximation from Sect. 5 and expanding

Πs ωð Þ �Π ωð Þ through first order allows us to recover G€orling’s TD-EXX kernel

[30]. The most convenient way to do this is to expand P 1ð Þ,�1 using

T
{
1

��ω1^ þ H
^ ��T{

1

� ��1

� T
{
1

��ω1^ þ H
^ 0ð Þ��T{

1


 ��1

þ T
{
1

��ω1^ þ H
^ 0ð Þ��T{

1


 ��1

T
{
1

��H^ 1ð Þ��T{
1


 �
T
{
1

��ω1^ þ H
^ 0ð Þ��T{

1


 ��1

:

ð161Þ

The result is represented diagrammatically in Fig. 7. The corresponding expres-

sions agree perfectly with the expanded expressions of the TD-EXX kernel

obtained by Hirata et al. [59] which are equivalent to the more condensed form

given by G€orling [60]. The diagrammatic treatment makes clear the connection

with the BSE approach. There are in fact just three time-unordered diagrams, shown

in Fig. 11, whose various time orderings generate the diagrams in Fig. 7. However

the “hanging parts” above and below the horizontal dotted lines now have the

physical interpretation of initial and final state wave function correlation. Had we

applied the second approximation of Sect. 5, then only diagrams in Fig. 7a–f would

have survived.

Use of the Gonze–Scheffler relation (see further Sect. 5) then leads to

ω ¼ εKSa, i þ f xc εKSa, i
� �

¼ εKSa, i þ a
��M̂ xc

��a� �
� i

��M̂ xc

��i� �
þ ai

����ia� �
¼ εHF

a, i þ ai
����ia� �

;

ð162Þ
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which is exactly the configuration interaction singles (CIS, i.e., TDHF Tamm–

Dancoff approximation) expression evaluated using Kohn–Sham orbitals. This

agrees with a previous exact result obtained using G€orling–Levy perturbation

theory [82, 86, 87].

Second-Order Exchange-Correlation Kernel

Having verified some known results, let us go on to do the MBPT necessary to

obtain the pole structure of the xc-kernel through second order in the second

approximation. That is, we need to evaluate Π�1
s ωð Þ �Π�1 ωð Þ through second

order in such a way that its pole structure is evident. The SOPPA/ADC strategy for

this is to make a diagrammatic Πs ωð Þ �Π ωð Þ expansion of this quantity and then

resum the expansion in an order-consistent way having the form

Πs ωð Þ �Π ωð Þ½ � 0þ1þ...þnð Þ
rs,q p ¼

Xn
k¼0

Xk
i¼0

Xk�i

j¼0

p̂ {q̂
��T{

1

� � ið Þ
P jð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � k�i� jð Þ

;

when the Born approximation is applied to the P(ω) in the same way as in Sect. 5.

The number of diagrams contributing to this expansion is large and, for the sake of

simplicity, we only give the resumed expressions for each block. Evidently, after

the calculation of each block there is an additional step matrix inversion in order to

apply the second approximation to the xc-kernel.

It should be emphasized that although the treatment below may seem simple,

application of Wick’s theorem is complicated and has been carried out using an

in-house FORTRAN program written specifically for the purpose. The result before

resummation is roughly 200 diagrams, which have been included as supplementary

material.

It can be shown that the operator space may be truncated without loss of

generality in a second-order treatment to only one- and two-electron excitation

operators [52]. The wavefunction may also be truncated at second order. This

truncation breaks the orthonormality of the T
{
1 space:

T
{
1

��T{
1

� �
� T

{
1

��T{
1

� � 0ð Þ
þ T

{
1

��T{
1

� � 2ð Þ
6¼ 1 0

0 �1


 �
: ð163Þ

This complication is dealt with by orthonormalizing our operator space. The new

operator set expressed in terms of the original set contains only second-order

corrections:

MBPT Insights About and Corrections to TD-DFT 51



â { î
	 
 2ð Þ ¼

X
b

1

4

X
kld

kd
����lb� �

dk
����al� �

εkl,bdεkl,da
þ
X
k

MkbMka

εk,bεk,a

 !
b̂ { î

þ
X
j

1

4

X
mcd

md
���� jc� �

ci
����dm� �

εm j,cdεim,cd
þ
X
d

M jdMdi

ε j,dεi,d

 !
â { ĵ :

ð164Þ

(It should be noted that we have used the linked-cluster theorem to eliminate

contributions from disconnected diagrams. For a proof for the EOM of the one- and

two-particle the Green’s function, see [55].)
We may now proceed to calculate

�Π 2ð Þ
sr,q p ωð Þ ¼ p̂ {q̂

��T{
1

� � 1ð Þ
P 1ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 0ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 1ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 1ð Þ

þ p̂ {q̂
��T{

1

� � 1ð Þ
P 0ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 1ð Þ

þ p̂ {q̂
��T{

1

� � 0ð Þ
P 2ð Þ,�1 ωð Þ T

{
1

��r̂ {ŝ
� � 0ð Þ

:

ð165Þ

The only new contributions which arise at this level are from the block P(2),

which is given by

P 2ð Þ ¼ Γ 2ð Þ
1,1 � Γ 1ð Þ

1,2Γ
0ð Þ,�1
2,2 ωð ÞΓ 1ð Þ

2,1 : ð166Þ

(We are anticipating the ω-dependence of the various Γ-blocks which are

derived below.) Because the block Γ ð2Þ
1;1 is affected by the orthonormalization

procedure, it may be useful to provide a few more details. Expanding order-by-

order,
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Γ 2ð Þ
1,1 ¼ 0 1ð Þ�� T

{
1; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 1ð Þ
� �

þ 0 0ð Þ�� T
{
1; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 2ð Þ
� �

þ 0 2ð Þ�� T
{
1; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 0ð Þ
� �

þ 0 0ð Þ�� T
{ 2ð Þ
1 ; ω1

^

þ H
^ 0ð Þ

,T
{
1

� �� ���0 0ð Þ
� �

þ 0 0ð Þ�� T
{
1; ω1

^

þ H
^ 0ð Þ

,T
{ 2ð Þ
1

� �� ���0 0ð Þ
� �

þ 0 1ð Þ��	T{
1, Ĥ 1ð Þ;T{

1

h i��0 0ð Þ
D E

þ 0 0ð Þ��	T{
1, Ĥ 1ð Þ;T{

1

h i��0 1ð Þ
D E

;

ð167Þ

where T
{ ð2Þ
1 is the vector of second-order operators defined in (164). It is easily

shown that the first term cancels with the contributions coming from the second-

order operators, and that the contributions from second-order wave function are

exactly zero. Hence, that block is simply

Γ 2ð Þ
1,1 ¼ 0 1ð Þ��	T{

1, Ĥ 1ð Þ;T{
1

h i��0 0ð Þ
D E

þ 0 0ð Þ��	T{
1, Ĥ 1ð Þ;T{

1

h i��0 1ð Þ
D E

; ð168Þ

which makes it frequency-independent. Its calculation gives

Γ 2ð Þ
1,1

h i
kc, ia

¼ δac
X
d

MkdMdi

εi,d
þ δik

X
l

MlaMlc

εl,a
þ δac

2

X
lde

le
����kd� �

dl
����ei� �

εim,de

� δik
2

X
lmd

ld
����mc� �

dl
����ma� �

εlm,ad
; ð169Þ

Γ 2ð Þ
1,1

h i
ck, ia

¼ MakMid

εi,d
þMciMka

εk,a

þ 2
X
d

Mdk ad
����ci� �

εk,d
þ 2
X
l

Mlc lk
����ai� �

εl,c

�
X
md

ce
����ad� �

di
����em� �

εim,de
�
X
me

ce
����mi� �

ak
����me� �

εkm,ae

� 1

2

X
de

ce
����ad� �

dk
����ei� �

εik,de
� 1

2

X
ml

ik
����ml� �

ac
����ml� �

εlm,ac
:

ð170Þ

The block Γ1,2 and its adjoint is of at least first order because the space is

orthonormal. For that reason, it is not affected by the orthonormalization at this

level of approximation. Its calculation gives
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Γ 2ð Þ
2,1

h i
kc, jbia

¼ �δik bc
����a j� �

þ δ jk bc
����ai� �

� δbc ai
����k j� �

þ δac bi
����k j� �

Γ 2ð Þ
2,1

h i
ck, jbia

¼ 0 :
ð171Þ

Finally, the block Γ2,2(ω) gives

Γ 2ð Þ
2,2 ωð Þ

h i
ldkc, jbia

¼ ω� εi j,ab
� �

δ jlδikδcaδdb

Γ 2ð Þ
2,2 ωð Þ

h i
ckdl, jbia

¼ 0
ð172Þ

It should be noted that double excitations are treated only to zeroth-order in a

second-order approach. To obtain a consistent theory with first-order corrections to

double excitations, one should go at least to third order. This however becomes

computationally quite heavy.

It is interesting to speculate what would happen if we were to include the first-

order doubles correction within the present second-order theory. There are, in fact,

indications that this can lead to improved agreement between calculated and

experimental double excitations, though the quality of the single excitations is

simultaneously decreased because of an imbalanced treatment [110, 111].

We can now construct the PP necessary to construct the second approximation of

the xc-kernel (142) according to (149). Because the localizers of both left- and

right-sides are constructed from the noninteracting KS PP, we are only concerned

with ph and hp contributions. This means that the blocks involving pp or hh indices,

corresponding to density shift operators, can be ignored at this level of approxi-

mation. This simplifies the construction of P(ω) in (149), which, up to second order,
gives

Π 0þ1þ2ð Þ,�1 ωð Þ ¼ T{
1

��T{
1

� ��1

P 0þ1þ2ð Þ ωð Þ T{
1

��T{
1

� ��1

: ð173Þ

Separating ph and hp contributions, the PP takes the form of a 2� 2 block-matrix

in the same spirit as the LR-TD-DFT formulation of Casida,

Π 0þ1þ2ð Þ,�1 ωð Þ

¼
1 0

0 �1

0@ 1A P 0þ1þ2ð Þ ωð Þ P 0þ1þ2ð Þ ωð Þ
P 0þ1þ2ð Þ ωð Þ P 0þ1þ2ð Þ ωð Þ

0@ 1A 1 0

0 �1

0@ 1A
¼

P 0þ1þ2ð Þ ωð Þ �P 0þ1þ2ð Þ ωð Þ
�P 0þ1þ2ð Þ ωð Þ P 0þ1þ2ð Þ ωð Þ

0@ 1A :

ð174Þ

It follows that
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Π�1
s ωð Þ �Π 0þ1þ2ð Þ,�1 ωð Þ ¼

P 1þ2ð Þ ωð Þ �Γ 1þ2ð Þ
1,1

�Γ 1þ2ð Þ
1,1 P 1þ2ð Þ ωð Þ

0B@
1CA : ð175Þ

Note that the off-diagonal (ph,hp)- and (hp,ph)-blocks are frequency-

independent and that the diagonal blocks are given by (166). Ignoring localization

for the moment, we may now cast the present Kohn–Sham based second-order

polarization propagator approximation (SOPPA/KS) into the familiar form of

(27) with

Aia, jb ωð Þ ¼ δi, jδa,bεa, i þ P
1þ2ð Þ
ia, jb ωð Þ

Bia,b j ωð Þ ¼ � Γ 1þ2ð Þ
1,1

� �
ia,b j

:
ð176Þ

Localization – see (142) –complicates these formulae by mixing the P 1þ2ð Þ ωð Þ
and Γ 1þ2ð Þ

1,1 terms,

Aia, jb ωð Þ ¼ δi, jδa,b εa � εið Þ
þ Λsð Þhp,hp ωð ÞP 1þ2ð Þ ωð Þ Λ{

s

� �
hp,hp

ωð Þ
h i

ia, jb

þ Λsð Þhp,ph ωð ÞP 1þ2ð Þ ωð Þ Λ{
s

� �
ph,hp

ωð Þ
h i

ia, jb

� Λsð Þhp,ph ωð ÞΓ 1þ2ð Þ Λ{
s

� �
hp,hp

ωð Þ
h i

ia, jb

� Λsð Þhp,hp ωð ÞΓ 1þ2ð Þ Λ{
s

� �
ph,hp

ωð Þ
h i

ia, jb

Bia,b j ωð Þ ¼ Λsð Þhp,hpP 1þ2ð Þ ωð Þ Λ{
s

� �
hp,ph

h i
ia,b j

þ Λsð Þhp,phP 1þ2ð Þ ωð Þ Λ{
s

� �
ph,ph

h i
ia,b j

� Λsð Þhp,ph ωð ÞΓ 1þ2ð Þ Λ{
s

� �
hp,ph

ωð Þ
h i

ia,b j

� Λsð Þhp,hp ωð ÞΓ 1þ2ð Þ Λ{
s

� �
ph,ph

ωð Þ
h i

ia,b j
:

ð177Þ

Of course, this extra complication is unnecessary if all we want to do is to

calculate improved excitation energies and transition amplitudes by means of

DFT-based many-body perturbation theory. It is only needed when our goal is to

study the effect of localization on purely TDDFT quantities such as the xc-kernel

and the TDDFT vectors X and Y.
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exact exchange-correlation potential. Phys Rev A 51:2505

77. Casida ME (1999) Correlated optimized effective potential treatment of the derivative

discontinuity and of the highest occupied Kohn–Sham eigenvalue: a Janak-type theorem

for the optimized effective potential method. Phys Rev B 59:4694

78. Hirata S, Ivanov S, Grabowski I, Bartlett RJ (2002) Time-dependent density functional theory

employing optimized effective potentials. J Chem Phys 116:6468

79. Bokhan D, Barlett RJ (2007) Exact-exchange density functional theory for hyperpolariza-

bilities. J Chem Phys 127:174102

80. Tokatly IV, Pankratov O (2001) Many-body diagrammatic expansion in a Kohn–Sham basis:

implications for time-dependent density functional theory of excited states. Phys Rev Lett 86:

2078

81. Tokatly IV, Stubner R, Pankratov O (2002) Many-body diagrammatic expansion of the

exchange-correlation kernel in time-dependent density-functional theory. Phys Rev B 65:

113107

82. Gonze X, Scheffler M (1999) Exchange and correlation kernels at the resonance frequency:

implications for excitation energies in density-functional theory. Phys Rev Lett 82:4416

83. Harriman JE (1983) Geometry of density-matrices. 4. The relationship between density-

matrices and densities. Phys Rev A 27:632

84. Harriman JE (1986) Densities, operators, and basis sets. Phys Rev A 34:29

85. Heßelmann A, Ipatov A, G€orling A (2009) Charge-transfer excitation energies with a time-

dependent density-functional method suitable for orbital-dependent exchange-correlation

functionals. Phys Rev A 80:012507

86. Filippi C, Umrigar CJ, Gonze X (1997) Excitation energies from density functional pertur-

bation theory. J Chem Phys 107(23):9994

87. G€orling A (1996) Density-functional theory for excited states. Phys Rev A 54(5):3912

88. Li SL, Marenich AV, Xu X, Truhlar DG (2014) Configuration interaction-corrected Tamm-

Dancoff approximation: a time-dependent density functional method with the correct dimen-

sionality of conical intersections. J Chem Phys Lett 5:322

89. Fromager E, Knecht S, Jensen HJA (2013) Multi-configuration time-dependent density-

functional theory based upon range separation. J Chem Phys 138:084101

90. Seidu I, Krykunov M, Ziegler T (2014) The formulation of a constricted variational density

functional theory for double excitations. Mol Phys 112:661

91. B€ohm M, Tatchen J, Krügler D, Kleinermanns K, Nix MGD, LaGreve TA, Zwier TS,

Schmitt M (2009) High-resolution and dispersed fluorescence examination of vibronic bands

of tryptamine: spectroscopic signatures for La/Lb mixing near a conical intersection. J Phys

Chem A 113:2456

92. Minezawa N, Gordon MS (2009) Optimizing conical intersections by spin-flip density-

functional theory: application to ethylene. J Phys Chem A 113:12749

93. Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010)

Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent den-

sity-functional theory for the photochemical ring-opening of oxirane. Phys Chem Chem

Phys 12:12811

MBPT Insights About and Corrections to TD-DFT 59



94. Rinkevicius Z, Vahtras O,Ågren H (2010) Spin-flip time dependent density functional theory

applied to excited states with single, double, or mixed electron excitation character. J Chem

Phys 133:114104

95. Minezawa N, Gordon MS (2011) Photoisomerization of stilbene: a spin-flip density func-

tional theory approach. J Phys Chem A 115:7901

96. Casanova D (2012) Avoided crossings, conical intersections, and low-lying excited states

with a single reference method: the restricted active space spin-flip configuration interaction

approach. J Chem Phys 137:084105

97. Huix-Rotllant M, Filatov F, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) Assessment of
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