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Short-Range Cut-Off of the Summed-Up van

der Waals Series: Rare-Gas Dimers

Abhirup Patra, Bing Xiao, and John P. Perdew

Abstract van der Waals interactions are important in typical van der Waals-bound

systems such as noble gas, hydrocarbon, and alkaline earth dimers. The summed-up

van der Waals series of Perdew et al. 2012 works well and is asymptotically correct

at large separation between two atoms. However, as with the Hamaker 1937

expression, it has a strong singularity at short non-zero separation, where the two

atoms touch. In this work we remove that singularity (and most of the short-range

contribution) by evaluating the summed-up series at an effective distance between
the atom centers. Only one fitting parameter is introduced for this short-range

cut-off. The parameter in our model is optimized for each system, and a system-

averaged value is used to make the final binding energy curves. This method is

applied to different noble gas dimers such as Ar–Ar, Kr–Kr, Ar–Kr, Ar–Xe, Kr–Xe,

Xe–Xe, Ne–Ne, He–He, and also to the Be2 dimer. When this correction is added to

the binding energy curve from the semilocal density functional meta-GGA-MS2,

we get a vdW-corrected binding energy curve. These curves are compared with the

results of other vdW-corrected methods such as PBE-D2 and vdW-DF2, and found

to be typically better. Binding energy curves are in reasonable agreement with those

from experiment.
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1 Introduction

Theoretical prediction of matter and proper explanation of many physical, chemi-

cal, and biological processes require an accurate description of atomic and molec-

ular interactions. The only way to get a clear picture of these interactions at the

atomic and molecular level is to apply quantum mechanics. Much effort has been

made to develop quantum mechanical methods for this purpose. As a result there

are many wave-function-based ab initio quantum mechanical methods such as

Configuration Integration (CI), Many Body Perturbation Theory (MBPT), and

Quantum Monte Carlo (QMC) which are popular in the scientific community.

However, the Kohn–Sham (KS) [1] density functional theory (DFT) [2] has become

the most popular in condensed matter physics and in quantum chemistry, because of

its low computational cost and reasonable accuracy. It maps a many-electron wave-

function problem to a one-electron problem. The many-electron effects are in its

exchange-correlation part EXC. This exchange-correlation functional EXC is often

approximated through satisfaction of various physical constraints.

Among numerous exchange-correlation approximations, the local spin density

approximation (LSDA) [1–4], the Perdew-Burke-Ernzerhof (PBE) [5] generalized

gradient approximation (GGA), and the Becke-3-Lee-Yang-Parr (B3LYP) [6] and

HSE03 [7, 8] hybrid GGAs are especially popular in DFT [9] calculations for
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physical and chemical systems. LSDA and PBE are efficient local and semilocal

functionals widely used for extended systems, whereas PBE0 and HSE06 are hybrid

functionals which hybridize a GGA with the exact exchange energy. Another

hybrid functional B3LYP has a more complicated mixing of LDA and GGA

exchange functionals with HF exact exchange, and its correlation energy part is

also a mixing of LDA and GGA. These hybrid functionals are popular for calcu-

lations in both finite and extended systems. At the semilocal level, however, the

meta-GGA is the highest rung of the so-called Jacob’s ladder of DFT [10, 11] and

potentially the most accurate one [12].Meta-GGA can also serve as a better base for

hybridizing with the exact exchange energy.

At the semilocal level, the EXC of density functional theory can be written as [3,

4, 12–14]

Esl
XC n"; n#

� � ¼ ð
d3rnEslXC n", n#,∇n",∇n#, τ", τ#

� �
: ð1Þ

In this equation, n", n# are the electron densities of spin up and down σ", σ#
respectively, and the ∇n", ∇n# are the local gradients of the spin densities. The

kinetic energy densities are τσ ¼ 1=2
P

k

��∇ψ k;σ

��2 for the occupied KS orbitals ψkσ

of spin σ, and EslXC is the approximate exchange-correlation energy per electron.

LSDA uses only n", n# whereas GGAs use∇n",∇n# in addition.Meta-GGAs [15–
17] also use the kinetic energy density τσ as one of its ingredients. This τσ has

information about the shell structure. The τ-dependence of meta-GGAs has been
studied by Sun et al. [18, 19].Meta-GGAs can distinguish different orbital-overlap

regions by “α”, defined as α ¼ τ�τW

τunif where τ ¼
X

σ
τσ , τW ¼ 1

8

��∇n
��2=n and

τunif ¼ 3
10
3π2ð Þ2=3n5=3. Sun et al. [20] showed that different values of α recognize

three different typical regions: (1) α¼ 0 in the single-orbital regime with one- and

two-electron densities which characterize covalent single bonds, (2) α� 1 in the

slowly-varying density regime that characterizes the metallic bond, and (3) α� 1 in

the weakly-overlapped density region which characterizes a noncovalent bond.

In principle, DFT provides exact ground-state energies and densities, but in

practice there are many situations where DFT fails to give a physical result. The

long-range van der Waals interaction in rare gas dimers [21, 22], hydrocarbons, and

alkaline earth diatomics is one of them. There have been many tests of density

functional theory in rare gas dimers and alkaline earth dimers. Tao and Perdew [23]

observed that the GGA of Perdew, Burke, and Ernzerhof (PBE) [5], the meta-GGA
of Tao, Perdew, Staroverov, and Scuseria (TPSS) [11, 12], and its hybrid version

(TPSSh) [23] all give a satisfactory and reasonable description of the short-range

part of the van der Waals interaction in the van der Waals bound complexes which

have strong density overlap. The authors Tao and Perdew [23] concluded that these

functionals predict too-long bond lengths and too-small binding energies for the

rare gas dimers, which can be improved by long-range correction of the van der

Waals interaction. Ruzsinszky et al. [24] have tested non-empirical GGAs and

meta-GGAs and found that GGAs and meta-GGAs tend to overbind the diatomics
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with valence “s” electrons such as He2 and Be2 while underbinding the diatomics

with valence “p” electrons such as Ar2.

van der Waals interactions [25] are important for many material properties. The

source of this weak, long-range interaction between two objects is instantaneous

charge fluctuation. The van der Waals interaction is important in atomic and

molecular systems, where it has many implications such as heat of sublimation of

hydrocarbon molecules, chemical reaction precursor complexes, energy transfer

intermediates, protein folding, stacking of nucleobases, crystal packing, and self-

assembly of organic molecules. Long-range van der Waals interaction between two

distinct objects requires full density-functional non-locality. There are many long-

range correction methods [26–29] developed in the last few years which are good

for predicting van der Waals (vdW) interaction. These also include many post

Hartree–Fock (HF) methods [30–33]; see Klimeš and Michaelides [34] for an

overall review of DFT-based dispersion methods. Tao et al. [35] developed a

reliable approach to evaluate accurately the dynamic multipole polarizabilities

and higher order vdW coefficients from electron densities and static multipole

polarizabilities for spherical atoms or objects, without using any empirical fitting

parameter.

Perdew et al. [36, 37] have discussed the vdWinteraction. For two spherical

objects of radius R separated by a distance d, second-order perturbation theory

gives the attractive long-range van der Waals interaction [38]

EvdW ¼ �C6

d6
� C8

d8
� C10

d10
� . . . ð2Þ

The above expression is valid for d!1. Here C6 describes the dipole–dipole

interaction, C8 the dipole–quadrupole interaction, and C10 the quadrupole–quadru-

pole interaction and the dipole–octupole interaction. In Ruzsinszky et al. [39] these

coefficients are modeled accurately and analytically for classical solid-spheres

(nanoclusters) and shells (fullerenes) using the static dipole polarizability.

Furthermore, Perdew et al. [38] proved that the above asymptotic expansion can

be summed to all orders for two identical spherical shells. In that work a possible

two-parameter solution to the divergence problem in van der Waals interactions at

very short atomic separation has also been discussed. Such divergences (which

occur at d¼ 0 for any finite-order series but at d> 0 for the summed-up infinite

series) are normally removed by a damping function [40]. Inspired by Perdew

et al. [38], we suggest that a physical summation of the vdW series [35] can be

used for long-range correction of semilocal density functionals, which by them-

selves do not have any long-range vdW interaction correction.

In this chapter we discuss a simplified cut-off approach based on the summed-up

asymptotic series. This method uses only one parameter, optimized here for differ-

ent systems and averaged for all systems, which can usefully provide the long-range

part of the van der Waals interaction when added to the calculated binding energy

curves from the meta-GGA-MS2 [18, 20].
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2 Methods

2.1 Asymptotic van der Waals Series

The van der Waals interaction between two spherical-shell objects A and B (with

thickness “t”, radius “R”, and electron density “ρ”) can be found from (10) of

Perdew et al. [38] as the infinite series

E dð Þ ¼ �
ffiffiffiffiffiffiffiffi
4πρ

p X1
k¼3

ck t=Rð Þzk; ð3Þ

where d is the distance between the centers of the two objects, z ¼ 2R
d

� �2
, and all

equations are in atomic units. The reduced coefficient ck(t/R) is defined by

C2k ¼ ck t=Rð Þ ffiffiffiffiffiffiffiffi
4πρ

p
2Rð Þ2

h ik
. When the geometric series

X1
k¼1

zk ¼ 1� zð Þ�1

for 0� z< 1 is introduced and the approximation ck! c1 is used for k> 5, we

find that (3) can be summed up as [38]

Egeo dð Þ ¼ �
ffiffiffiffiffiffiffiffi
4πρ

p
c3

t

R

� 	
z3 þ c4

t

R

� 	
z4 þ c5

t

R

� 	
z5þ

h
c1 1� zð Þ�1 �

X5
k¼0

zk

( )
: ð4Þ

(See Appendices 1 and 2 for details; also see Table 1 for the values of ck(t/R¼ 1).)

The important message from Table 1 is that the reduced coefficients tend to a

constant value as k!1. This means that the higher-order terms of (3) can be

summed as a geometric series ~(1� z)�1, leading to an analytic closed-form

expression which sums up this asymptotic (d!1) series. The resulting expression

for Egeo(d) (4) approximately sums the asymptotic van der Waals series to all orders

in d�1, but diverges at very short atomic separation when the two spheres touch

Table 1 Values of reduced

van der Waals coefficients at

t/R¼ 1 (solid spheres)

Values of ck(t/R¼ 1)

Coefficient Values for t/R¼ 1

c3 0.006766 (0.006766)

c4 0.008842 (0.0101015)

c5 0.009599 (0.01217)

c6 0.009946

c10 0.010447

c20 0.010761

c40 0.010904

c80 0.010979

c1 0.011 (0.020)

Values from the Hamaker [41] expression are in parentheses. The

Hamaker expression has one adjustable parameter, chosen here to

make the lowest-order coefficients agree (from Perdew et al. [38])
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each other. The corresponding separation is d¼RA +RB for two non-identical

spheres and d¼ 2R for two identical spheres, but the true van der Waals interaction

energy remains finite there. Thus, the summed-up expression must be cut off at

small d while remaining unchanged to all orders in d�1 at large d. The simplest way

to do this is to replace d by d0, where the difference between d0 and d vanishes

exponentially as d!1. Perdew et al. [38] suggested a possible choice for d0:

d
0 ¼ d þ gexp � d � 2Rð Þ=h½ � ð5Þ

which ensures d0 > 2R for g> 0 and h> 0. In that work, Perdew et al. [38] have also

shown that reasonable parameters for C60–C60 are g¼ 10 and h¼ 2 atomic units.

These parameters are of course system-dependent. We assume that the summed-up

series is only valid when d is sufficiently greater than 2R. Each choice of g> 0 and

h> 0 defines a different asymptotic summation of (3) to all orders in d�1.

In this work we have chosen instead the simplest possible form:

y
0 ¼ yþ aexp �y

a

� 	
: ð6Þ

Here y
0 ¼ d

0

R , and y ¼ d
R. a> 2 is a parameter. It should be noted that y0 starts out as

a ¼ y2

2a at small y, then increases monotonically, approaching y exponentially at

large y. Moreover, a> 2 guarantees that the singularity is removed. (To establish

that y0 is monotonic in y for non-negative y, just compute dy
0

dy ¼ 1� exp �y
a

� � � 0.)

We have considered E(d0) as an additive correction to the binding energy curve of a
semilocal density functional such as GGA or meta-GGA. For each functional, we

adjust the parameter “a” to obtain the best overall fit to known accurate reference

binding energy curves. PBE GGA needs a smaller value of “a”, which more

significantly shortens the equilibrium bond length and strengthens the binding.

The meta-GGA Made Simple (MGGA-MS2), which captures more of the

intermediate-range vdW interaction, needs a larger value of “a”, providing a

correction which is less short-ranged and has less effect on the equilibrium bond

length and binding energy. It should be noted that the fitting is done only for the

range of d greater than or equal to the reference equilibrium bond length, because

we cannot expect any useful correction of short-range errors in the functional from

this approach. Here we present the vdW-corrected binding energy curves calculated

by MGGA-MS2, which should give us a proper insight into the summed-up series

expansion of the van der Waals interaction.

2.2 Physical Explanation of R

Let R¼ (RA +RB)/2 be the arithmetic average of the radii of the two spherical

objects A and B. If the objects are classical metallic spheres with uniform density

58 A. Patra et al.



inside and zero density outside a cutoff radius, then the radius of a sphere is

clearly the only relevant length scale for that sphere. One could find polarizability

radiiRA ¼ αA
1 0ð Þ� �1

3 andRB ¼ αB
1 0ð Þ� �1

3, where αA1 (0) and α
B
1 (0) are the static dipole

polarizabilities of A and B, or one could find the same radius R from R¼Rhbl¼ half

the equilibrium bond length of a dimer, because two such spheres would be

attracted to one another right up to the point where they touched. In this case,

there is no decay length for the density of a sphere (as in (6)), but the summed-up

van der Waals interaction must still be cut off to avoid a spurious divergence to

minus infinity when the spheres touch. This shows that RA is indeed the radius of

object A.

This gives us an insight: the infinite van der Waals series (2) is an asymptotic

series, valid only when the “aspect ratio” R/d is small enough. This series can be

summed to all orders, but that summation misses contributions which are important

when the aspect ratio is not small. Only when the objects are so far apart that each

“looks small” to the other is the summed-up van der Waals series accurate.

When we extend these ideas from pairs of classical metallic spheres to pairs of

atoms, we can no longer expect that Rpol¼Rhbl. We need to choose between these

two alternatives. Simple density functionals for R are not expected to work because

the static polarizability of a classical metallic sphere depends only on the radius,

and not on the density inside that sphere (e.g., Perdew et al. [38] and Ruzsinszky

et al. [39]). We have found empirically, for rare gas and alkaline earth dimers (Be2),

that we can obtain a reasonable long-range correction to the binding energy curve

of MGGA-MS2 [19] using a system-averaged value of the fitting parameter “a”
(see Table 2) along with

R ¼ max Rhbl, 1:37R pol
� �

: ð7Þ

This is Rhbl for all considered rare gas atoms, but 1.37Rpol for Be. This choice

guarantees that the singularity of the summed-up vdW series is removed for any

pair of spherical objects. It should be noted that this Rhbl is basically the half-bond

length of any homo-dimer (A2) and hetero-dimer (AB) which can be defined as

Rhbl
A ¼ RAA=2 ð8Þ

for homo- and

Table 2 Optimized values of the fitting parameter “a” for different rare-gas dimers

Optimized values of “a” from MGGA-MS2 + vdW[d0]
Fitting parameter Ar–Ar Kr–Kr Xe–Xe Ar–Kr Ar–Xe Kr–Xe System-averaged “a”.

a 2.19 2.14 2.00 2.00 2.125 2.09 2.09

Optimized values of “a” from MGGA-MS2 +H[d0]
a 2.86 2.52 2.14 2.46 2.45 2.33 2.46
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Rhbl
AB ¼ RAA þ RBBð Þ=2 ð9Þ

for hetero-dimers. We take RAA from the experimental binding energy curve.

3 Computational Details

3.1 Calculation of Dimer Binding Energy

The binding energies of different pairs of atom have been calculated in the projector

augmented wave approach (PAW) [42] implemented in the Vienna ab initio

simulation package (VASP) [43–45] within meta generalized gradient approxima-

tion (MGGA-MS2) for the exchange-correlation functional. In the calculations, the

kinetic energy cutoff is first set to be 600 eV, and a Γ centered 1� 1� 1 k-point
mesh in the BZ is used for the k-space integration. The total energy of the atomic

pairs has been calculated using a 10� 20� 10 rectangular super-cell. The PAW

scheme is utilized with the potentials taken from the VASP PBE library. The energy

of an isolated atom is calculated by a 10� 10� 10 cubic super-cell. The binding

energy is calculated in the following way:

ΔE ¼ � E Rdimerð Þ � 2� E RAtomð Þ½ �: ð10Þ

We have also used other van der Waals methods, PBE-D2 [27] and vdW-DF2 [46],

to perform this calculation. All these DFT methods are available in VASP. Our

long-range-corrected meta-GGA-MS2 seems to give better results than these two

vdW-corrected functionals.

3.2 Optimization of the Fitting Parameter

The average error (AE) calculation and the additive correction to the DFT results

have been made in computer codes. The inputs to these codes are the binding

energy curves calculated using DFT (EMGGA-MS2), static dipole polarizabilities, and

electron densities for each atom of the pair, and van der Waals coefficients C6, C8,

C10. Reference values for comparison are the experimental binding energy curves

[47, 48].

There is a strong singularity near d¼ 2R in the summed-up van der Waals series,

as discussed before. To remove it, we replace y and y0 in (6) by d/R and d0/R,
respectively, to get

d
0 ¼ d þ aRexp � d

aR


 �
ð11Þ
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with Rhbl for rare-gas dimers and R¼ 1.37Rpol for Be2. This d
0 is used to calculate

the summed-up E(d0). In this section, we use E(d0) from (14) below as the long-

range van der Waals correction to be added to the MGGA-MS2 binding energy

curve.

We have optimized the fitting parameter “a” by minimizing the error between

the binding energy curve from the vdW-corrected method and the experimental

binding energy curve over the set of d0s in the range dminÅ< d< 9 Å in steps of

0.1 Å for each dimer. Here dminÅ is the separation at the minimum in the

experimental binding energy curve. The fitting parameter “a” in (11) is varied in

the range 0.0< a< 10.0 in steps of 0.001 to maintain accuracy. The average error

(AE) at each value of “a” is calculated using

AE
��
a ¼

X9
d
0¼dmin

EMGGA-MS2þvdW d
0

� 	
� EEx p

��� ���
24 35= Total number of d

0
points

� 	
:

ð12Þ

Figure 1a shows the average error vs fitting parameter “a” plotted for the Ar2
dimer. Figure 1b shows a histogram plot of minimum average error (MAE) for

different rare gas dimers. MAE is the minimum of the average error at the

optimized value of “a” for each system. So this is a discrete-column graph where

each column gives the error at the minimizing value of “a”.

3.3 Calculation of the van der Waals Interaction Corrected
Binding Energy

To avoid the system dependence of the fitting parameter, the system-averaged value

of the fitting parameters “a” was used to recalculate all the binding energy curves.

Fig. 1 (a) Plot of average error vs fitting parameter “a” for Ar–Ar. (b) Plot of minimum average

error for different rare gas dimers
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We found that the system-averaged fitting parameter gives us even better correction

in most cases. In this work, all the binding energy curves are calculated using the

system-averaged fitting parameter “asys” (see Table 2). Replacing “a” with “asys”,
(11) becomes

d
0 ¼ d þ asysRexp � d

asysR

� 

: ð13Þ

Finally, the vdW-corrected energy is calculated by replacing E(d ) by E(d0). The
correction part is calculated using Hamaker’s expression EH(d ) as modified in

Perdew et al. [38]:

EvdW d
0

� 	
¼ �C6

d
06 �
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d
08 �
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d
010
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CH
1

� 

EH d

0
� 	

þ CH
6

d
06 þ CH

8

d
08 þ CH

10

d
010


 �
ð14Þ

and then added to the MGGA-MS2 result

EMGGA-MS2þvdW d
0� � ¼ EvdW d

0� �þ EMGGA-MS2 dð Þ
¼ �C6

d
06 �

C8

d
08 �

C10

d
010
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þ C1

CH
1

� 

EH d

0� �þ CH
6

d
06 þ CH

8

d
08 þ CH

10

d
010


 �
þEMGGA-MS2 dð Þ:

ð15Þ

It should be noted that by EH(d ) we mean Hamaker’s [41] classical expression for

the van der Waals interaction energy EH(RA, RB, d) between two spherical objects

of radii RA, and RB when the two centers are separated by a distance “d”. This
EH(RA, RB, d ) is given by the following equation:

EH RA;RB; dð Þ ¼ � π2β

6

2RARB

d2 � RA þ RBð Þ2 þ
2RARB

d2 � RA � RBð Þ2 þ ln
d2 � RA þ RBð Þ2
d2 � RA � RBð Þ2

" #( )
ð16Þ

whereβ ¼ c3 1ð Þ ffiffiffiffiffiffiffiffi
4πρ

p
3
4π

� �2
26 ¼ 0:006766

ffiffiffiffiffiffiffiffi
4πρ

p
3
4π

� �2
26 is evaluated using the value

of c3(1) from Table 1. The electron density is ρ ¼ N
4
3
πR3ð Þ for a sphere with radius R.

N is the total number of valence electrons (2 for He and 8 for the other rare gas

atoms). For non-identical spheres, we replace
ffiffiffi
ρ

p
by 2

ffiffiffiffiffiffi
ρA

p ffiffiffiffiffi
ρB

p
=

ffiffiffiffiffiffi
ρA

p þ ffiffiffiffiffi
ρB

p� �
.

The van der Waals coefficients (C6, C8, C10) used in the first part of the right-

hand side of (15) are taken from their tabulated values in the supporting informa-

tion of [35]. All these standard van der Waals coefficients are calculated by

time-dependent Hartree-Fock theory. The van der Waals coefficients from
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Hamaker’s formula (CH
6 ,C

H
8 ,C

H
10) in the second part of the right-hand side of the

same equation are evaluated by extracting the coefficients of d�6, d�8, and d�10

from the Taylor series expansion of the expression of EH(RA, RB, d) of (16) in
power of d�1:

EH RA ¼ RB ¼ R, dð Þ ¼ � π2β

6

32R3
AR

3
B

3d6
þ 32R3

AR
3
B R2

A þ R2
B

� �
d8

�
þ 64

�
5R7
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3
B þ 14R5

AR
5
B þ 5R3
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5d10



þ . . .

ð17Þ

For two identical spheres we can easily obtain the values of CH
6 ,C

H
8 ,C

H
10 from the

simpler expression EH R; dð Þ ¼ � π2β
6

32R6

3d6
þ 64R8

d8
þ 1536R10

5d10

� 	
þ . . ..

3.4 Calculation of Binding Energy Using the Unmodified
Hamaker Expression

Simpler than in (15), Hamaker’s [41] expression can be used without modification

as a long-range vdW additive correction to the DFT results. We have used

EMGGA-MS2þH d
0� �¼ EH d

0� �þ EMGGA-MS2 dð Þ

¼ � π2β

6

2RARB

d
02 � RA þ RBð Þ2

þ 2RARB

d
02 � RA � RBð Þ2

("

þln
d

02 � RA þ RBð Þ2
d

02 � RA � RBð Þ2

" #)#
þ EMGGA-MS2 dð Þ:

ð18Þ

Here β is calculated in the same way as is done for EH(RA, RB, d) as discussed in the
above section. (See Appendix 1 for an explanation of EH(d ).) In this version, no

input vdW coefficient is needed.

4 Results and Discussion

We believe MGGA-MS2 gives better result than other semilocal GGA and meta-
GGA functionals (PBE,TPSS) in our calculation because it uses “α” [18–20] which
can recognize and describe the intermediate-range vdW interaction [20].
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4.1 Ar–Ar Dimer

In Fig. 2 for Ar2, binding energy curves are calculated using MGGA-MS2, MGGA-

MS2+ vdW[d], MGGA-MS2+ vdW[d0], MGGA-MS2+H[d], MGGA-MS2+H

[d0], vdW-DF2, and PBE-D2, and are compared with the experimental results

[47]. The binding energy (ΔE in kcal/mol) and the equilibrium distance (Re in Å)
for different methods are tabulated in Table 3 along with the experimental results.

Figure 2a shows that the MGGA-MS2+ vdW[d0] is in very good agreement with the

experimental curve, whereas MGGA-MS2 binds slightly less than the experimental

curve. In this figure the MGGA-MS2 + vdW[d] curve is calculated by adding the

van der Waals correction part to the MGGA-MS2 result, but without using the

cut-off distance d0, and thus it clearly depicts the divergence near d¼ 2R. The
interesting thing about this graph is that MGGA-MS2 gives a comparatively good

intermediate-range part of the binding energy curve as expected [19, 20], slightly

overestimating the equilibrium bond length ~3.75 Å compared to the experimental

one at 3.76 Å. Figure 2a also shows that at larger atomic separation MGGA-MS2

significantly underbinds the experimental binding energy curve. Figure 2b shows

Fig. 2 Binding energy curves for the Ar–Ar dimer calculated from the vdW method combined

with MGGA-MS2 using the system-averaged a¼ 2.09. (a) Binding energy curves for MGGA-

MS2, MGGA-MS2 + vdW[d], MGGA-MS2 + vdW[d0], and experiment. (b) Binding energy

curves for MGGA-MS2, MGGA-MS2 +H[d], MGGA-MS2 +H[d0], and the experimental curve.

(c) Comparison of the vdW-DF2 [46] and PBE-D2 [27] curves with the experimental one
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that when the unmodified Hamaker (EH) expression is used, it also gives a very

good long-range part of the interaction potential, although MGGA-MS2 +H[d0]
slightly overbinds the experimental curve. The divergence in the additive correction

part (see MGGA-MS2 +H[d] curve) can be seen as for the vdW correction part in

Fig. 2a. We also calculated the binding energy curves of the Ar–Ar dimer with the

two popular van der Waals corrected methods vdW-DF2 [46] and PBE-D2

[27]. The binding energy curves from these calculations along with the MGGA-

MS2+ vdW[d0] and experimental results can be seen in Fig. 2c. Both vdW-DF2 and

PBE-D2 overbind the experimental binding energy curve in the range

3.3 Å�Re� 5.4 Å. Figure 3c also shows that MGGA-MS2+ vdW[d0], PBE-D2,
and vdW-DF2 almost overlap with the experimental curve beyond 5.10 Å.

Table 3 Binding energy (ΔЕ in kcal/mol) and equilibrium bond length (Re in Å) for the Ar–Ar
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔЕ 0.17206 0.34025 0.36057 0.38889 0.43207 0.28500

Re 3.85 3.75 3.72 3.80 3.80 3.76

Fig. 3 Binding energy curves of the He–He dimer. Here we have also used the cut-off distance d0

for long-range correction with the system-averaged a¼ 2.09. (a, b) Binding energy curves for

MGGA-MS2, MGGA-MS2+ vdW[d], MGGA-MS2 + vdW[d0], MGGA-MS2 +H[d], and MGGA-

MS2+H[d0]. (c) Comparison of the curves for vdW-DF2 [46] and PBE-D2 [27] with the exper-

imental curve
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4.2 He–He Dimer

Figure 3 shows the binding energy curves for He2 fromMGGA-MS2, MGGA-MS2

+ vdW[d], MGGA-MS2+ vdW[d0], MGGA-MS2+H[d], MGGA-MS2 +H[d0],
vdW-DF2, and PBE-D2 calculations, along with the experimental results [47]. As

predicted by Ruzsinszky et al. [24], nonempirical GGAs and meta-GGAs tend to

overbind van der Waals-bound diatomics that have valence “s” electrons, such as

He2. Figure 3a shows that MGGA-MS2 and MGGA-MS2 + vdW[d0] overbind the

experimental curve. When we plot MGGA-MS2+ vdW[d] we observe a divergence
similar to the one for the Ar dimer because, in this case, the cut-off d0 has not been
used to remove the singularity. This graph also shows very good long-range

behavior of MGGA-MS2 + vdW [d0]. Figure 3b shows an almost similar picture

where MGGA-MS2+H [d0] also overbinds the experimental curve. In this case, a

divergence in the Hamaker (EH) expression can be seen. From Table 4 we note that

the strong attractive nature of MGGA-MS2 yields a minimum at 2.73, 2.59, and

2.61 Å for MGGA+MS2, MGGA+MS2+ vdW[d0], and MGGA-MS2+H[d0],
respectively, which is quite different from the experimental one at 2.97 Å. From
Fig. 3c we can see that two other popular methods, PBE-D2 [27] and vdW-DF2

[46], overbind the experimental curve in the same way as MGGA-MS2+ vdW(d0),
but all these three curves almost overlap with the experimental curve in the very

long-range part beyond 4.00 Å, a significant success for the method.

4.3 Xe–Xe Dimer

In the Xe–Xe dimer, MGGA-MS2, MGGA-MS2 + vdW[d0], and MGGA-MS2+H

[d0] underbind the experimental curve, which can be seen in Fig. 4a, b. These two

graphs also show similar divergences for MGGA-MS2 + vdW[d] and MGGA-MS2

+H[d] because of the singularity near d¼ 2R in both the vdW correction part and in

the Hamaker expression. Figure 4c compares PBE-D2 [27], vdW-DF2 [46], and

MGGA-MS2 + vdW[d0] with the experimental curve. From these three figures, and

from Table 5, it can be said that, where PBE-D2 and vdW-DF2 overestimate the

binding energy, MGGA-MS2 + vdW[d0] and MGGA-MS2 +H[d0] underestimate

the same, but all these four methods give very different minima than the experi-

mental one.

Table 4 Binding energy (ΔЕ in kcal/mol) and equilibrium bond length (Re in Å) for the He–He
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔЕ 0.06849 0.13913 0.12038 0.10742 0.06214 0.02201

Re 2.73 2.59 2.61 2.60 2.80 2.97
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4.4 Kr–Kr Dimer

Figure 5a–c shows the binding energy curves for the Kr–Kr dimer for MGGA-MS2,

MGGA-MS2 + vdW[d], MGGA-MS2 + vdW[d0], MGGA-MS2 +H[d], MGGA-

MS2+H[d0], vdW-DF2, and PBE-D2 approaches. These curves show that both

MGGA-MS2 + vdW[d0] and MGGA-MS2+H[d0] give a very satisfactory long-

range part of the van der Waals interaction. It should be noted that these two curves

cross the experimental curve at R(Kr–Kr) ~4.1 Å and at ~3.77 Å. One can readily

note the divergence of MGGA-MS2+H[d] at small atomic separation because of

the obvious singularity in the expression of EH. Table 6 gives the binding energy

Fig. 4 (a) Binding energy curves for MGGA-MS2, MGGA-MS2 + vdW[d], and MGGA-MS2

+ vdW[d0]. (b) Binding energy curves for MGGA-MS2, MGGA-MS2 +H[d], and MGGA-MS2

+H[d0]. (c) Binding energy curves using vdW-DF2 [46] and PBE-D2 [27] plotted with the

experimental one

Table 5 Binding energy (ΔЕ in kcal/mol) and equilibrium bond length (Re in Å) for the Xe–Xe
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔЕ 0.23100 0.39302 0.42232 0.80012 0.65163 0.56057

Re 4.59 4.53 4.54 4.40 4.40 4.35
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(ΔE in kcal/mol) and the equilibrium distance (Re in Å) for different methods. We

notice that MGGA-MS2 +H[d0] gives very good equilibrium bond length when

compared to the experimental result. Figure 5c confirms that another two methods,

PBE-D2 [27] and vdW-DF2 [46], significantly overbind the experimental curve.

We can see the same trend in MGGA-MS2 + vdW[d0] along with PBE-D2 and

vdW-DF2 in the very long-range part, where they tend to overlap with the exper-

imental result.

Fig. 5 (a) Binding energy curves for MGGA-MS2, MGGA-MS2 + vdW[d], and MGGA-MS2

+ vdW[d0]. (b) Binding energy curves for MGGA-MS2, MGGA-MS2 +H[d], and MGGA-MS2

+H[d0]. (c) Binding energy curves using vdW-DF2 [46] and PBE-D2 [27] plotted with the

experimental one. The vdW corrected curves are calculated using the cut-off distance d0 and
system-averaged a¼ 2.09

Table 6 Binding energy (ΔЕ in kcal/mol) and equilibrium bond length (Re in Å) for the Kr–Kr
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔЕ 0.20379 0.37102 0.39750 0.53832 0.53242 0.40005

Re 4.17 4.11 4.03 4.00 4.00 4.01
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4.5 Ne–Ne Dimer

In the Ne–Ne dimer, MGGA-MS2, MGGA-MS2+ vdW [d0], and MGGA-MS2+H

[d0] overbind the experimental curve. MGGA-MS2+H[d] and MGGA-MS2 + vdW

[d] show the divergence at small atomic separation. However, Fig. 6a, b shows the

similar kind of long-range correction by both MGGA-MS2+ vdW[d0] and MGGA-

MS2+H[d0]. We plot the PBE-D2 and vdW-DF2 result with the experimental and

MGGA-MS2 + vdW[d0] results in Fig. 6c. We conclude that, for the Ne dimer,

semilocal functionals normally overbind the experimental result. From Fig. 6c we

find that the long-range part of the MGGA-MS2 + vdW[d0] and vdW-DF2 curves

almost overlap with the experimental curve in the range 3.9Å�Re� 5.0Å. Table 7
shows numerical values.

Fig. 6 Binding energy curves for the Ne–Ne dimer: (a) for MGGA-MS2, MGGA-MS2+ vdW[d],
and MGGA-MS2+ vdW[d0]; (b) for MGGA-MS2, MGGA-MS2 +H[d], and MGGA-MS2 +H[d0].
(c) Comparison of the calculated binding energy curves using vdW-DF2 [46] and PBE-D2 [27]

with the experimental curve

Table 7 Binding energy (ΔE in kcal/mol) and equilibrium bond length (Re in Å) for the Ne–Ne
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔЕ 0.16811 0.33323 0.32208 0.27369 0.20395 0.08401

Re 2.94 2.83 2.81 3.00 3.00 3.09
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4.6 Ar–Kr Dimer

MGGA-MS2 underbinds the experimental curve [48] in the Ar–Kr dimer, as can be

seen in Fig. 7a, b. This tendency is removed and we get very satisfactory binding

energy curves when the cut-off distance d0 is introduced in the MGGA-MS2 + vdW

[d0] and MGGA-MS2+H[d0] methods. This removes the singularity as expected

and gives significant improvement in the long-range part of the van der Waals

interaction. The strong divergence in van der Waals interaction series and in

Hamaker’s expression can be seen in MGGA-MS2+ vdW[d] and in MGGA-MS2

+H[d] in Fig. 7a, b. PBE-D2 [27] and vdW-DF2 [46] results are not so satisfactory

compared to the experimental result. Table 8 shows the binding energy (ΔE in kcal/

mol) and the equilibrium distance (Re in Å) for different methods.

Fig. 7 Binding energy curves of the Ar–Kr dimer calculated: (a) using MGGA-MS2, MGGA-

MS2+ vdW[d], and MGGA-MS2+ vdW[d0]; (b) using MGGA-MS2, MGGA-MS2 +H[d],
MGGA-MS2 +H[d0], and the experimental result. (c) Comparison of vdW-DF2 [46] and

PBE-D2 [27] with experiment. The vdW corrected binding energy curves are calculated using

the cut-off distance d0 and system-averaged a¼ 2.09

Table 8 Binding energy (ΔE in kcal/mol) and equilibrium bond length (Re in Å) for the Ar–Kr
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔE 0.18772 0.35712 0.38053 0.46469 0.46481 0.36123

Re 3.98 3.89 3.88 3.80 4.00 3.88
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4.7 Ar–Xe Dimer

We plot the binding energy curves of the Ar–Xe dimer in Fig. 8a, b. These figures

show outstanding performance of the method in the long-range part of the energy

when either of the additive corrections EvdW(d
0) or EH(d0) is used. Table 9 gives a

qualitative picture of different methods for the estimation of equilibrium bond

length and binding energy. It can be inferred from Table 9 that both MGGA-

MS2+ vdW [d0] and MGGA-MS2 +H[d0] produce almost correct binding energy

but slightly overestimate the equilibrium bond length.

Fig. 8 Binding energy curves of the Ar–Xe dimer calculated from the vdW method combined

with MGGA-MS2 using the system-averaged a. (a) Binding energy curves calculated using

MGGA-MS2, MGGA-MS2+ vdW[d], and MGGA-MS2+ vdW[d0], and the experimental one.

The vdW-corrected binding energy curve is calculated using the cut-off distance d0 and system-

averaged a¼ 2.09. (b) Binding energy curves for MGGA-MS2, MGGA-MS2 +H[d], and MGGA-

MS2+H[d0], and the experimental results. (c) Binding energy curves from other vdW-corrected

methods

Table 9 Binding energy (ΔE in kcal/mol) and equilibrium bond length (Re in Å) for the Ar–Xe
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔE 0.18677 0.34032 0.38191 0.53029 0.51532 0.37505

Re 4.24 4.10 4.10 4.00 4.20 4.07
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4.8 Kr–Xe Dimer

As in the Ar–Kr dimer, in the Kr–Xe dimerMGGA-MS2 underbinds the experimental

curve. Figure 9a, b shows that introduction of the cut-off distance d0 not only removes

the singularity but also improves the underbinding of MGGA-MS2 in the long-range

part of the van der Waals interaction energy, although it remarkably overestimates the

equilibrium bond length. The binding energy estimated by MGGA-MS2+H [d0] is in
very good agreement with the experimental result. The PBE-D2, vdW-DF2, MGGA-

MS2+vdW[d0], and experimental curves are shown in Fig. 9c. PBE-D2 and

vdW-DF2 seem to be too attractive in the short-range part and overbind the experi-

mental curve, although the equilibrium bond lengths from these two curves are in very

good agreement with experiment. Table 10 shows numerical values.

Fig. 9 Binding energy curves of the Kr–Xe dimer calculated from the vdW method combined

with MGGA-MS2 using the system-averaged a¼ 2.09. (a) Binding energy curves for MGGA-

MS2, MGGA-MS2+ vdW[d], and MGGA-MS2+ vdW[d0], and the experimental one. (b) Binding

energy curves for MGGA-MS2, MGGA-MS2+H[d], and MGGA-MS2 +H[d0], and the experi-

mental results. (c) Comparison of vdW-DF2 [46] and PBE-D2 [27] with experiment

Table 10 Binding energy (ΔE in kcal/mol) and equilibrium bond length (Re in Å) for the Kr–Xe
dimer

Quantity

MGGA-

MS2

MGGA-MS2

+ vdW(d0)
MGGA-MS2

+H(d0)
PBE-

D2

vdW-

DF2 Expt.

ΔE 0.20900 0.37242 0.39787 0.67692 0.58528 0.46422

Re 4.39 4.31 4.27 4.20 4.20 4.18
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4.9 Be–Be Dimer

Be2 is chosen because it is a van der Waals-bound diatomic from the alkaline earth

group. The characteristic difference of Be2 from the rare gas dimers is that it shows

much more density overlap. Figure 10a gives us a qualitative picture of how the

strong divergence at d¼ 2R in the EH(d) part of the van derWaals interactions energy

expression of (15) is successfully removed upon introduction of the cut-off distance

d0. Figure 10b shows that MGGA-MS2+ vdW [d0] gives a satisfactory long-range

correction compared to PBE-D2. In the same figure the similar performance of

vdW-DF2 can be seen. The common tendency of overbinding the experimental result

[49] by semilocal functionals MGGA-MS2 and PBE [24] can be seen in Fig. 10b.

From this result we conclude that more accurate correction is needed for semilocal

functionals for He2, Ne2, and Be2. Moreover, Fig. 10b shows that vdW-DF2 correctly

estimates the equilibrium bond length ~2:5 Å, where MGGA-MS2+ vdW[d0] fails to
do so. It overestimates the bond length at ~2.7Å. The experimental equilibrium bond

length is 2.45Å. Careful observation of Fig. 10b reveals that the too-attractive nature
of PBE yields a deep minimum at very short distance ~1.5 Å for the PBE-D2 curve.

4.10 Comparison Between Hamaker and Geometric Series
for Two Identical Solid Spheres

An interesting feature of the Hamaker expression [41] and the geometric expression

[38] (see (25) in Appendix 1) is that both have divergences at two different values

of d, one at d¼ 2R and the other at d¼ 0. To investigate further the divergence of

these two expressions, we have plotted c1 1� 2R
d

� �2� 		�1

�
X2

k¼0

2R

d

� 
2k
( )

and c1
cH1

� 	
EH RA ¼ RB ¼ R, dð Þ. These two quantities have the same singularity at

d¼ 2R but they are rather different in the range of typical vdW energies, which can

be seen in Fig. 11. This could explain why the Hamaker expression works better in

the fits.

Fig. 10 Binding energy curves for the Be–Be dimer calculated (a) from meta-GGA-MS2 and (b)

from other vdW-corrected methods
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5 Conclusions

In summary, our work is a reasonable and physical way to remove the nonzero

d singularity in the summed-up van der Waals interaction series. We also conclude

that, although the fitting parameter “a” is system-dependent and empirical in nature,

averaging it and using R¼max(Rhbl, 1.37Rpo1) as an input to our calculation gives

our formulas some predictive value. In this work we have presented a simplified

version with only one fitting parameter a, replacing the earlier model [38] with two

parameters (g, h), to get the long-range van der Waals correction to a density-

functional binding energy curve for objects with spherical densities. We have

reached similar or better accuracy when compared with the PBE-D2 [27] and

vdW-DF2 [46] correction schemes.

An interesting outcome of our work is that the complicated (15), as proposed in

Perdew et al. [38], can be replaced without loss of accuracy by the simpler (18).

This means in particular that no input vdW coefficient is needed.

One extension of this work could be to use it to obtain a semi-local density

functional with an embedded long-range vdW correction using this summed-up

series method. The positive outcome of this method motivates us to use it for other

strongly dispersion-driven systems such as layered-materials. Furthermore,

MGGA-MS2 often provides a useful description of intermediate-range vdW inter-

action. It underestimates this in most rare gas dimers, but overestimates it in He2,

Ne2, and Be2. Appreciable performance by MGGA-MS2 [19] in predicting stacking

energies between nucleobases of DNA and RNA confirms that improved density

functionals can give a better description of different chemical and physical prop-

erties. It remains to be seen whether further improvements in meta-GGAs yield a

more consistent description of intermediate-range vdW interactions.
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Fig. 11 Divergence of

Hamaker’s [41] expression
and the geometric

expression of Perdew

et al. [38] for Ar–Ar dimer
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Appendix 1 Summed-Up Series Expression

The Casimir–Polder [50, 51] formula for the van der Waals coefficients between

two objects A and B to the second-order in electron–electron interaction is

CAB
2k ¼ 2k � 2ð Þ!

2π

Xk�2

l1¼1

1

2l1ð Þ! 2l2ð Þ!
ð1
0

duαA
l1

iuð ÞαB
l2

iuð Þ; ð19Þ

where l2 ¼ k � l1 � 1 and αA
l1
! 2l1 pole dynamic polarizability of A at imaginary

frequency ω¼ iu. It should be noted that l ¼ 1, l ¼ 2, l ¼ 3 are for dipole,

quadrupole, and octupole interactions, respectively.

The dynamic multipole polarizabilities for a classical conducting spherical shell

can be found from the following expressions:

αl iuð Þ ¼ R2lþ1 ω2
l

ωl
2 þ u2

1� θl
1� βlθl

; ð20Þ

where

βl ¼
ωl

2eω2
l

ωl
2 þ u2ð Þ eω2

l þ u2
� � ð21Þ

and

θl ¼ R� t

R

� 
2lþ1

¼ 1� t=Rð Þ2lþ1 ð22Þ

from the work of Lucas et al. [52]. Here ωl ¼ ω p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l= 2lþ 1ð Þp

andeωl ¼ ω p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ= 2lþ 1ð Þp

. The plasma frequency of the system is ω p ¼
ffiffiffiffiffiffiffiffi
4πρ

p
with ρ ¼ N

4
3
π R3� R�tð Þ3f g½ � for the spherical shell (with radius R and thickness t) and

ρ ¼ N
4
3
πR3ð Þ for the sphere (with radius R). N is the total number of valence electrons,

equal to 2 for He and 8 for other rare gas atoms.

In Perdew et al. [37] it is shown that, for a classical conducting spherical shell of

radius R, thickness t, and uniform density ρ, the above integration at (18) can be

performed to get all the higher order vdW coefficients. For two identical spheres,

i.e., when A¼B, one can get

CAA
2k ¼ ω p 2Rð Þ2k 1

22k
2k � 2ð Þ!

4

Xk�2

l¼1

1

2lð Þ! 2k � 2l� 1ð Þ!

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ=lp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k � 2l� 1ð Þ= k � l� 1ð Þp :

ð23Þ
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Then the van der Waals interaction of (2) can be written as

E dð Þ ¼ �
ffiffiffiffiffiffiffiffi
4πρ

p X1
k¼3

ck t=Rð Þzk; ð24Þ

where ck(t/R) is related to C2k by (4) and z ¼ 2R
d

� �2
.

Now, by the introduction of the geometric series of
X1

k¼1
zk ¼ 1� zð Þ�1

for

0� z< 1 and approximating ck ! c1 for k> 5, we find

Egeo dð Þ ¼ �
ffiffiffiffiffiffiffiffi
4πρ

p
c3

t

R

� 	
z3 þ c4

t

R

� 	
z4 þ c5

t

R

� 	
z5 þ c1 1� zð Þ�1 �

X5
k¼0

zk

( )" #
:

ð25Þ

This expression interpolates between the very large d and d ! 2R limits. The

above expression for Egeo(d ) has an unphysical divergence at z¼ 1 or d¼ 2R where

the two spheres touch each other. This divergence appears because we sum up all

the terms. However, in reality there is no divergence in (2) because it is an

asymptotic expansion for large value of d.
This is true because at large d the exponential density overlap between the two

real quantum-mechanical objects may be neglected. This divergence in the expres-

sion of Egeo(d ) can be removed by replacing z by z0 where z0 ¼ (2R/d0)2 with a

proper choice of d0. The expression for Egeo(d ) is true for the interaction between

identical spheres but it can be generalized to non-identical spheres 2R ! RA þ RB,

which leads to an equation such as (14) for the expression of EvdW(d
0).

In the pair interaction picture, Hamaker’s [41] expression of the van der Waals

interaction between two solid spheres of uniform density ρ is

E dð Þ ¼ �β

ð
A

d3r

ð
B

d3r
0 1��r � r0

��6; ð26Þ

where β ¼ c3 1ð Þ ffiffiffiffiffiffiffiffi
4πρ

p
3
4π

� �2
26 ¼ 0:006766

ffiffiffiffiffiffiffiffi
4πρ

p
3
4π

� �2
26 can be evaluated using the

value of c3(1) from Table 1.

Appendix 2 Binding Energy Curves from Geometric Series

The summed-up van der Waals series expression of (4) can also be used to obtain

the binding energy curves for the rare-gas dimers if we use our short-range cut-off

idea. Reduced van der Waals coefficients c3(t/R), c4(t/R), c5(t/R) and c1(t/R) are
taken from Table 1 for t/R¼ 1, e.g., for solid spheres. For identical solid-spheres the

electron density is ρ ¼ N= 4πR3=3
� �

for a sphere with radius R and number of total

valence electrons N (N is 2 for He and 8 for the other rare-gas atoms). The electron

density for non-identical spheres can be evaluated using 2
ffiffiffiffiffiffi
ρA

p ffiffiffiffiffi
ρB

p
=

ffiffiffiffiffiffi
ρA

p þ ffiffiffiffiffi
ρB

p� �
.
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We could not optimize the fitting parameter for every dimer. We have used

a¼ 4.09, the average of the optimum values for Ar–Ar and Kr–Kr. Figure 12

shows the results.

Fig. 12 Binding energy curves for different dimers using the geometric-series expression of (25)

a¼ 4.09

Short-Range Cut-Off of the Summed-Up van der Waals Series: Rare-Gas Dimers 77



References

1. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation

effects. Phys Rev 140:A1133–A1138

2. Perdew JP, Kurth S (2003) A primer in density functional theory, Lecture notes in physics.

Springer, Berlin

3. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas

correlation energy. Phys Rev B 45:13244–13249

4. Sun J, Perdew JP, Seidl M (2010) Correlation energy of the uniform electron gas from an

interpolation between high- and low-density limits. Phys Rev B 81(8):085123

5. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple.

Phys Rev Lett 77:3865–3868

6. Becke AD (1993) Density functional thermochemistry, III. The role of exact exchange. J Chem

Phys 98(7):5648–5652

7. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb

potential. J Chem Phys 118(18):8207–8215

8. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG (2006) Screened hybrid

density functionals applied to solids. J Chem Phys 124(15):154709

9. Burke K (2012) Perspective on density functional theory. J Chem Phys 136(139):150901

10. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the

exchange-correlation energy. AIP Conf Proc 577(1):1–20

11. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder:

nonempirical meta-generalized gradient approximation designed for molecules and solids.

Phys Rev Lett 91:146401

12. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X,

Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces.

Phys Rev Lett 100:136406

13. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J (2009) Workhorse semilocal

density functional for condensed matter physics and quantum chemistry. Phys Rev Lett

103:026403

14. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new

nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys

119:12129

15. Perdew JP, Ruzsinszky A, Tao J, Csonka GI, Scuseria GE (2007) One-parameter optimization

of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation

energy. Phys Rev A 76(4):042506

16. Tao J, Perdew JP, Ruzsinszky A, Scuseria GE, Csonka GI, Staroverov VN (2007) Meta-

generalized gradient approximation: non-empirical construction and performance of a density

functional. Philos Mag 87(7):1071–1084

17. Constantin LA, Perdew JP, Tao J (2006) Meta-generalized gradient approximation for the

exchange-correlation hole with an application to the jellium surface energy. Phys Rev B 73

(20):205104

18. Sun J, Xiao B, Ruzsinszky A (2012) Communication: effect of the orbital-overlap dependence

in the meta generalized gradient approximation. J Chem Phys 137(5):051101

19. Sun J, Xiao B, Fang Y, Haunschild R, Hao P, Ruzsinszky A, Csonka GI, Scuseria GE, Perdew

JP (2013) Density functionals that recognize covalent, metallic, and weak bonds. Phys Rev

Lett 111(10):106401

20. Sun J, Haunschild R, Xiao B, Bulik IW, Scuseria GE, Perdew JP (2013) Semilocal and hybrid

meta-generalized gradient approximations based on the understanding of the kinetic-energy-

density dependence. J Chem Phys 138(4):044113

21. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas

dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J Phys Chem A 110

(15):5121–5129

78 A. Patra et al.



22. Tran F, Hutter J (2013) Nonlocal van der Waals functionals: the case of rare-gas dimers and

solids. J Chem Phys 138(20):204103

23. Tao J, Perdew JP (2005) Test of a non-empirical density functional: short-range part of the van

der Waals interaction in rare-gas dimers. J Chem Phys 122(11):114102

24. Ruzsinszky A, Perdew JP, Csonka GI (2005) Binding energy curves from nonempirical density

functionals II. van der Waals bonds in rare-gas and alkaline-earth diatomics. J Phys Chem A

109(48):11015–11102

25. Stone AJ (1996) The theory of intermolecular forces, vol 32, International series of mono-

graphs on chemistry. Oxford University Press, Oxford

26. Wu Q, Ayers PW, Yang W (2003) Density-functional theory calculations with correct long-

range potentials. J Chem Phys 119:2978

27. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range

dispersion correction. J Comput Chem 27:1787

28. Sato T, Tsuneda T, Hirao K (2007) Long-range corrected density functional study on weakly

bound systems: balanced descriptions of various types of molecular interactions. J Chem Phys

126:234114/1

29. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional.

J Chem Phys 125:234109/1

30. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected

density functional theory. J Comput Chem 32(7):1456–1465

31. Johnson ER, Becke AD (2005) A post-Hartree–Fock model of intermolecular interactions.

J Chem Phys 123(2):024101

32. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from

ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005

33. Vydrov OA, Van Voorhis T (2010) Dispersion interactions from a local polarizability model.

Phys Rev A 81(6):062708
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