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Reduced Density Matrix Functional Theory

(RDMFT) and Linear Response

Time-Dependent RDMFT (TD-RDMFT)

Katarzyna Pernal and Klaas J.H. Giesbertz

Abstract Recent advances in reduced density matrix functional theory (RDMFT)

and linear response time-dependent reduced density matrix functional theory

(TD-RDMFT) are reviewed. In particular, we present various approaches to

develop approximate density matrix functionals which have been employed in

RDMFT. We discuss the properties and performance of most available density

matrix functionals. Progress in the development of functionals has been paralleled

by formulation of novel RDMFT-based methods for predicting properties of

molecular systems and solids. We give an overview of these methods. The

time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting

practical and generally useful functionals which would work within the adiabatic

approximation. In this chapter we concentrate on the formulation of TD-RDMFT

response equations and various adiabatic approximations. None of the adiabatic

approximations is fully satisfactory, so we also discuss a phase-dependent exten-

sion to TD-RDMFT employing the concept of phase-including-natural-spinorbitals

(PINOs). We focus on applications of the linear response formulations to

two-electron systems, for which the (almost) exact functional is known.
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1 Introduction

The most widely used methods in quantum chemistry are either wavefunction-

based or they exploit density functional theory (DFT). The former class of methods

offers high accuracy, but unfavorable scaling of the computational cost with system

size limits their scope of applicability to relatively small systems. Density func-

tional approximations are known to offer a good balance between computational

efficiency and accuracy. Nevertheless, most approximations to DFT are plagued by

generic problems related to the fact that DFT employs a simple local object – the

electron density. Accurate description of the electronic structure of multireference

systems or predicting multiple electronic excitations are examples of problems that

still await satisfactory solutions in DFT. There has recently been growing interest in

approaches embracing simplicity (in the sense that a wavefunction is not involved),

computational efficiency, and versatility of DFT, while lacking the drawbacks.

Functionals of one-electron reduced density matrix (1-RDM) γ, defined for an N-
electron wavefunction Ψ as

γ x; x0ð Þ ¼ N

ð
� � �
ð
Ψ x; x2; . . . ; xNð ÞΨ* x0; x2; . . . ; xNð Þdx2� � �dxN; ð1Þ

where x¼ (r, s) is a combined spatial and spin coordinate, should, in principle, lead

to formulating methods superior to existing density functional approximations,

especially when static electron correlation effects cannot be neglected. An imme-

diate advantage of using 1-RDM as a main variable instead of the electron density,

ρ, is that the kinetic energy is an explicit functional of γ but not of ρ. Thus, in
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reduced (one-electron) density matrix functional theory (RDMFT) there is no need

to introduce a fictitious noninteracting system. Moreover, orbitals present in

RDMFT are fractionally occupied so functionals of γ seem to be better suited

than their density counterparts to account for static correlation and, for example,

describe correctly a covalent bond-breaking process. As discussed in this chapter,

this presumption has been confirmed by a good performance of the most successful

density matrix functionals.

Although the theoretical foundations of RDMFT were set a long time ago [1–

11], functionals of practical usefulness which can compete with density functionals

in accuracy have only recently been proposed. In this section we present the main

ingredients of RDMFT (theorems, definitions, and conditions) and first approxi-

mate density matrix functionals proposed for electronic systems. In the following

sections more recent and successful developments in RDMFT are shown.

Self-adjointness of γ defined in (1) allows for its spectral representation, namely [12]

γ x; x0ð Þ ¼
X
p

n pφ p xð Þφ*
p x0ð Þ: ð2Þ

Eigenvalues of 1-RDM, {np}, are called natural occupation numbers, whereas its

eigenfunctions, {φp}, are known as natural spinorbitals. Throughout the chapter we

assume a convention that the indices p, q, r, s pertain to natural spinorbitals and a, b,
c, d to arbitrary one-electron functions. Self-adjointness of γ implies orthonormality

of the natural spinorbitals. Additionally, because γ is assumed to be normalized to a

number of electrons N, cf. definition given in (1), the natural occupancies sum up to

N. Taking into account that each np is nonnegative and not greater than 1 [2, 3], the
overall properties of the natural spinorbitals and occupation numbers read

8 p,q

ð
φ*

p xð Þφq xð Þdx ¼ δ pq; ð3Þ

8 p 0 � n p � 1; ð4ÞX
p

n p ¼ N: ð5Þ

Coleman [2] has proved that if a given Hermitian 1-RDM satisfies the conditions

(3)–(5) there exists an ensemble of N-electron antisymmetric wavefunctions that

yield γ. The conditions are called N-representability conditions. It should be noted

that similar sufficient and necessary conditions that would ensure pure-state N-
representability are not known, though some significant progress has been reported

by Klyachko [A.A. Klyachko, J. Phys. Conf. Ser. 36, 72–86 (2006), doi: 10.1088/

1742-6596/36/1/014].

A one-to-one mapping between pure-state v-representable 1-RDMs and

non-degenerate ground state wavefunctions has been demonstrated by Gilbert

who extended the Hohenberg–Kohn theorem to nonlocal potentials [1, 13]. This

establishes existence of a 1-RDM functional [1, 11]
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EHK
v γ½ � ¼ Tr ĥ γ̂

� �þ Ψ γ½ � V̂ ee

�� ��Ψ γ½ �� �
; ð6Þ

where ĥ stands for a one-electron Hamiltonian comprising kinetic energy and

external potential operators,

ĥ ¼ t̂ þ v̂ ext; ð7Þ

V̂ ee ¼
XN

i> j

1

ri j
is an electron interaction operator (note that atomic units are

employed throughout the chapter), and Ψ[γ] denotes a ground state wavefunction

pertinent to a v-representable γ. A variational principle for the functional defined in

(6) exists and reads

8γ2v-rep Ev γ½ � � E0 ; ð8Þ

where “v-rep” denotes a set of pure-state v-representable 1-RDMs. The equality is

achieved for a ground state density matrix. Levy extended the domain of a density

matrix functional to all pure-state N-representable 1-RDMs by defining the electron

repulsion functional as [4, 5]

EL
ee γ½ � ¼ min

Ψ!γ
Ψ V̂ ee

�� ��Ψ� �
: ð9Þ

The minimization is carried out in a set of all physically admissible wavefunctions

Ψ that yield a given 1-RDM γ. Levy’s constrained search definition has been further
extended to ensemble N-representable 1-RDMs (belonging to a set “N-rep”) by
Valone [7, 8] and the exact functional reads

Eee γ½ � ¼ min
Γ Nð Þ!γ

Tr Ĥ Γ̂ Nð Þ
h i

; ð10Þ

where the minimization is carried out with respect to N-electron density matrices

Γ(N ) that yield γ. Because of the linearity of the map Γ(N )! γ and the fact that the

set of N-representable γ is convex, a functional Eee[γ] is also convex [6]. For a given
external potential v̂ ext, minima of the Hohenberg–Kohn functional given in (6), the

Levy functional Tr ĥ γ̂
� �þ EL

ee γ½ � (9), and the functional Tr ĥ γ̂
� �þ Eee γ½ � (10),

defined, respectively, for v-rep, pure-state N-representable, and ensemble N-repre-
sentable (N-rep) 1-RDMs, coincide [7, 9]. Therefore, taking into account a varia-

tional principle given in (8), one concludes that a functional defined for N-rep
1-RDMs yields a ground state energy at minimum, i.e.,

E0 ¼ min
γ2N-rep

Tr ĥ γ̂
� �þ Eee γ½ �

� �
: ð11Þ
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A great advantage of working with functionals defined for (ensemble) N-represent-
able γs is that sufficient and necessary conditions for N-representability are known.
Equation (11) together with (3)–(5) are a foundation for RDMFT.

The definition of the exact functional (10) is of little practical use in developing

approximate functionals. However, in two cases exact forms of Eee[γ] are known,

providing some guidelines for developing generally applicable approximate func-

tionals. The first case corresponds to N-electron noninteracting systems. The

1-RDM corresponding to a single determinantal wavefunction is idempotent

which implies integer (0 or 1) values of the natural occupation numbers, i.e.,

γ̂ 2 ¼ γ̂ , 8 p n p ¼ 0
W

n p ¼ 1 : ð12Þ

A two-electron reduced density matrix Γ (2-RDM), defined for a general

wavefunction Ψ as

Γ x1, x2, x
0
1x

0
2

	 
 ¼ N N � 1ð Þ
ð
� � �
ð
Ψ x1; x2; x3; . . . ; xNð ÞΨ* x01; x

0
2; x3; . . . ; xN

	 

dx3� � �dxN ;

ð13Þ

is explicitly expressible in terms of 1-RDM if the wavefunction takes the form of a

Slater determinant, namely

Γ x1, x2, x
0
1x

0
2

	 
 ¼ γ x1; x
0
1

	 

γ x2; x

0
2

	 
� γ x1; x
0
2

	 

γ x2; x

0
1

	 

: ð14Þ

The electron interaction functional corresponding to such a noninteracting 2-RDM

reads

EHF
ee γ½ � ¼ EH γ½ � þ Ex γ½ �: ð15Þ

We refer to it as Hartree–Fock functional (thus the superscript HF) because

optimization of the functional which is a sum of the one-electron part and EHF
ee

with respect to N-representable γ leads to an idempotent density matrix coinciding

with the solution to the Hartree–Fock equations [14]. The HF functional (15)

comprises two components. The Hartree functional, EH, describes the classical

part of electron interaction, namely

EH γ½ � ¼ 1

2

ðð
γ x; xð Þγ x0; x0ð Þ

r� r0j j dxdx0; ð16Þ

whereas the exchange functional, Ex, reads

Ex γ½ � ¼ �1

2

ðð
γ x; x0ð Þγ x0; xð Þ

r� r0j j dxdx0: ð17Þ

Another paradigm case for which an exact density matrix functional is known, is a

two-electron closed-shell system. We discuss this case extensively in Sect. 2.1.
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The two cases, namely a noninteracting N-electron system and an interacting

two-electron species, cover two extreme regimes of electron correlation for an

electron pair: the former pertains to an uncorrelated pair, whereas the latter, applied

to electrons separated in space (e.g., H2 molecule in a dissociation limit), describes

strongly correlated electrons. In other words, exact density matrix functionals for an

uncorrelated and a strongly correlated electron pair are known. Ideally, a valid

approximate functional should reduce to exact functionals for both cases.

In developing approximate functionals it is convenient to separate out the

Hartree functional given in (16) from the electron repulsion Eee functional defined

in (10) and to search for approximations to the exchange-correlation complement

Exc defined as

Exc γ½ � ¼ Eee γ½ � � EH γ½ �: ð18Þ

The exchange-correlation functional can be further decomposed into an exchange

part given in (17) and the remainder called the correlation functional Ec

Ec γ½ � ¼ Exc γ½ � � Ex γ½ �: ð19Þ

A number of conditions satisfied by the exact Eee functional or its correlation

component Ec have been revealed, cf. [5, 15–17], and some of them are invoked

in this chapter.

The first realization of the approximate density matrix functional has been given

by Müller [18] and it was later independently derived from more physical argu-

ments by Buijse and Baerends [19, 20]. The exchange-correlation part of the

functional called either Müller functional or BB (we adhere to the latter name) reads

EBB
xc γ½ � ¼ �1

2

X
pq

ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pq
��qp� �

; ð20Þ

where the natural occupation numbers {np} and the spinorbitals {φp} are eigen-

values and eigenfunctions of γ and the exchange integrals {hpq|qpi} are written in

the representation of the natural spinorbitals. The following notation is adopted in

this chapter for two-electron integrals

pq
��rs� � ¼ ððφ*

p x1ð Þφ*
q x2ð Þ r1 � r2j j�1φr x1ð Þφs x2ð Þdx1dx2: ð21Þ

The BB functional is convex [21] and reduces to the exchange functional (17) for an

idempotent γ. It is not exact for two-electron systems, though. It has been shown

that this functional severely overestimates correlation energy of atoms and mole-

cules [22–27]. However, the BB functional has been successfully used as a base for

developing more sophisticated functionals, as discussed in Sect. 2.1.

Goedecker and Umrigar (GU) have modified the BB functional by removing

diagonal ( p¼ q) terms, called electron self-interaction, from the Hartree and the
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exchange-correlation BB functionals [28, 29], and thus the xc part of the GU

functional reads

EGU
xc γ½ � ¼ �1

2

X
pq

ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pq
��qp� �þ 1

2

X
p

n p � n2p

� 
pp
��pp� �

: ð22Þ

GU offers an improvement to the BB functional for atoms and molecules around

their equilibrium geometries [28, 30] but it is in large error in the bond dissociation

region of diatomic molecules [22, 25, 27]. Another simple xc functional – corrected

Hartree–Fock (CHF) – has been proposed by Csanyi and Arias [31]

ECHF
xc ¼ �1

2

X
pq

n pnq þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n p 1� n p

	 

nq 1� nq
	 
q� �

pp
��pp� �

: ð23Þ

Even though the correlation part of the CHF functional satisfies the particle-hole

symmetry condition, cf. (30), which is also satisfied by the exact functional [15], it

provides little or no improvement over the HF method for molecules around the

equilibrium distances, and it breaks down in the dissociation limit [22, 32].

Although the aforementioned first generation of density matrix functionals has

not turned out to be overall competitive with DFT approximations, understanding

the origins of their failures has provided insight to developing more advanced and

successful functionals described in the next section.

2 Construction of Density Matrix Functionals

Because of the two-particle nature of the electron interaction, given a system

described by a ground state wavefunction |0i, the electronic repulsion energy Eee

results from contraction of the two-electron reduced density matrix elements Γabcd
with two-electron integrals hab|cdi, namely

Eee ¼ 1

2

X
abcd

Γabcd cd
��ab� �

; ð24Þ

where, for a given basis set {χa} and the pertinent sets of the creation and

annihilation operators {â{}, {â}, the elements of the 2-RDM are defined as

Γabcd ¼ 0 ĉ {d̂ {b̂ â
�� ��0� �

: ð25Þ

Formally, the 2-RDM is a functional of the 1-RDM. Most approaches to approxi-

mating the electron–electron interaction functional (10) exploit the formula given

in (24) and assume that the elements of Γ are functions of the natural occupation

numbers {np}. Consequently, if natural spinorbitals {φp} are used as a basis set, the
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whole dependence of the Eee functional on the natural spinorbitals is included in

two-electron integrals, which gives rise to the form

Eee γ½ � ¼ 1

2

X
pqrs

Γpqrs ntf g½ � rs�� pq� �
: ð26Þ

This assumption is borrowed from the Hartree–Fock approximation, cf. (14), in

which elements of the 2-RDM in the representation of the natural spinorbitals are

given solely in terms of the occupation numbers, i.e.,

ΓHF
pqrs ¼ n pnq δ prδqs � δpsδqr

	 

: ð27Þ

The functional Eee[γ] in most approximations proposed so far is an explicit function

of the occupation numbers and the natural spinorbitals.

Developing an approximate correlation functional, cf. (19), begins with assum-

ing a cumulant expansion of 2-RDM [33] which consists of writing Γ as the

antisymmetrized product of γ and the cumulant part, λ being a functional of γ,

Γpqrs ¼ n pnq δ prδqs � δpsδqr
	 
þ λpqrs γ½ �: ð28Þ

A cumulant expansion gives rise to the following expression for Ec

Ec γ½ � ¼ 1

2

X
pqrs

λpqrs γ½ � rs
�� pq� �

: ð29Þ

It has been shown that the exact correlation 1-RDM functional possesses a particle-

hole symmetry [15]

Ec γ½ � ¼ Ec 1� γ½ � ð30Þ

(this symmetry should be understood as invariance of Ec to the following replace-

ment 8p np! (1� np)) and scales linearly under homogeneous scaling of coordi-

nates in γ(x, x0) [5]

Ec γη
� � ¼ ηEc γ½ �; ð31Þ

where coordinates in γη are scaled with a real number η and the normalization is

preserved, i.e.,

γη x; x0ð Þ ¼ η3γ ηx, ηx0ð Þ: ð32Þ

Some density matrix functionals rely on the reconstruction scheme given in (28). In

other cases, the exchange-correlation functional (18) is not partitioned any further

and is modeled as a whole. Different approaches to approximating electron–elec-

tron density matrix functionals proposed in recent years are discussed in the

remaining part of this section.
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2.1 Functionals Based on a Paradigm Two-Electron Case

Homogeneous electron gas (HEG) is a paradigm system for density functionals.

This is because the exact form of the exchange density functional for this system is

known and a highly accurate correlation energy functional is available. Conse-

quently, electron gas has been a reference system for most approximate density

functionals and their forms are such that exact energy for a homogeneous electron

density is recovered. The situation is different in RDMFT because the exchange-

correlation density matrix functional for HEG is not known. However, the exact

density matrix functional is available for a two-electron system [29, 34], so it is now

considered to be a paradigm in RDMFT. A two-electron molecule seems to be even

a more adequate reference than the homogeneous electron gas if one aims at

developing a functional accurately describing electronic structure of molecules.

A form of the two-electron density matrix functional can be immediately

formulated based on the work of L€owdin and Shull (LS) [35] who showed that in

a basis of the natural spinorbitals {φp} a Slater-determinant-expansion of a singlet

wavefunction (assumed to be real-valued) is entirely given by “diagonal” determi-

nants composed of spinorbitals sharing spatial parts, i.e.,

ΨLS ¼
X
p

c p φ pφ p

�� ��; ð33Þ

where p and p are spinorbitals of the opposite spin and φ pφ p

�� ��denotes a normalized

Slater determinant. The normalization of the wavefunction imposes the following

condition of the expansion coefficients {cp}X
p

c2p ¼ 1: ð34Þ

Employing the LS wavefunction given in (33) in (1) defining 1-RDM, one imme-

diately obtains γ in its spectral representation, which indicates that squares of the

expansion coefficients are simply the natural occupation numbers, i.e.,

8 p n p ¼ c2p : ð35Þ

Taking the expectation value of the Hamiltonian with the LS wavefunction (33)

leads to a simple expression for the energy

E ¼
X
p

c2phpp þ
1

2

X
pq

c pcq pp
��qq� �

; ð36Þ

where the indices p, q correspond to indices of the natural spinorbitals. It should be
noted that (36) is valid for a closed-shell system so it is assumed that the coefficients

corresponding to spinorbitals of opposite spins and same spatial parts are equal.
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The exact ground state energy for a two-electron system follows by minimizing the

energy with respect to the expansion coefficients {cp} and the natural spinorbitals

{φp} under the orthonormality condition for the orbitals and a normalization

condition given in (34). An exact electron interaction density matrix functional

can be immediately written as

ELS
ee γ½ � ¼ 1

2
min
f qf g
X
pq

f p f q
ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pq
��qp� �

; ð37Þ

8 p f p ¼ �1 ; ð38Þ

where it has been taken into account that the orbitals are real so the integrals hpp|qqi
are equal to the exchange integrals hpq|qpi, and the relation (35) between expansion
coefficients in the LS wavefunction and the occupation numbers have been

exploited. It is known that for two-electron atoms and molecules at equilibrium

geometry the sign of the factor f1 corresponding to the highest occupation n1 is

predominantly opposite to signs {fp} of all other factors corresponding to weakly

occupied n p < 1
2

	 

orbitals [29]. It should be noted that cases when this rule is

violated are known and they include, for example, a hydrogen molecule far from

equilibrium bond distance [36–38] or a strongly correlated Hooke’s atom [39]. In

such cases, natural orbitals that violate the phase rule, i.e., those orbitals whose

phase factor coincides with f1, are very weakly occupied and their contribution to

the energy is small. Consequently, a two-electron functional explicitly depending

on the occupation numbers defined as

eELS
ee γ½ � ¼ 1

2

X
pq

GLS
pq pq

��q p� �
; ð39Þ

GLS
pq ¼

n p p ¼ q
� ffiffiffiffiffiffiffiffiffiffi

n pnq
p

p ¼ 1, q > 1 or p > 1, q ¼ 1ffiffiffiffiffiffiffiffiffiffi
n pnq

p
otherwise

8<: ; ð40Þ

is not always fully equivalent to the exact LS functional (37) but it provides a very

good approximation to it. Inspecting the structure of the functional (39), it is evident

that terms corresponding to two weakly occupied orbitals ( p, q> 1) are treated

differently (enter the functional with a different signs) from products of strongly-

weakly occupied orbitals ( p¼ 1, q> 1 or p> 1, q¼ 1).

Evidently the form of the BB functional given in (20) does not reflect the orbital

structure of the functional for two electrons given in (39). Restoring this structure

and correcting for the overcorrelation by the BB functional have been motivations

behind proposing a number of corrections to it [27]. This has resulted in the

development of BB-corrected (BBC) functionals consisting of the Hartree part

(16) and the exchange-correlation functional comprising products of exchange

integrals and occupation number depending factors GBBC
pq , namely
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EBBC
ee γ½ � ¼ 1

2

X
pq

n pnq pp
��qq� �þ 1

2

X
pq

GBBC
pq pq

��q p� �
: ð41Þ

In definitions of the BBC functionals, spinorbitals of the occupancies smaller than

1/2 are called weakly occupied, although those with occupation numbers exceeding

1/2 belong to a set of strongly occupied orbitals (it should be noted that only in the

limit of strong correlation are some natural occupation numbers exactly equal to

1/2). Note also that the BB functional is recovered from (41) upon setting

GBBC
pq ¼ � ffiffiffiffiffiffiffiffiffiffi

n pnq
p

. A comparison of the orbital structure of the BB functional with

that of the accurate two-electron functional (39) has led to proposing a correction

restoring positive signs of cross products between weakly occupied natural

spinorbitals. Such a corrected BB functional, named BBC1, conforms to a general

form of (41) after assuming

GBBC1
pq ¼

ffiffiffiffiffiffiffiffiffiffi
n pnq

p
p 6¼ q, p, q 2 weak,

� ffiffiffiffiffiffiffiffiffiffi
n pnq

p
otherwise;

�
ð42Þ

where p, q 2 weak denotes that both spinorbitals are weakly occupied. Self-

consistent calculations revealed that, similar to BB, BBC1 overbinds diatomic

molecules, which indicates a need for further repulsive corrections [27]. The

BBC2 functional emerged after correcting interaction between two different

strongly occupied orbitals and replacing square roots of products of the pertinent

occupancies with products npnq. The third functional, BBC3, is a result of adding

another two corrections to the BBC2 functional. In the BBC3 functional a pair of

bonding and antibonding (both called frontier) spinorbitals which form a breaking

bond is distinguished. It is assumed that a bonding orbital belongs only to a set of

frontier orbitals, and that, at the same time, antibonding orbitals belong to sets of

frontier and weakly occupied orbitals. The first BBC3 correction, added on top of

the BBC1 and BBC2 corrections, replaces square roots of products of occupation

numbers with pertinent products if one occupancy corresponds to an antibonding

orbital and the other to a strongly occupied one. The replacement does not affect

pairs of antibonding-bonding orbitals. The second correction removes self-

interaction from all orbitals except the frontier (i.e., bonding and antibonding)

orbitals. The form of the Gpq elements in the BBC3 functional therefore read

GBBC3
pq ¼

ffiffiffiffiffiffiffiffiffiffi
n pnq

p
p 6¼ q, p, q 2 weak,

p 2 weak, q 2 frontier weakð Þ
p 2 frontier weakð Þ, q 2 weak

�n pnq

p 6¼ q, p, q 2 strong,

p 2 strong, q 2 frontier,

p 2 frontier, q 2 strong,

�n2p p ¼ q, p=2frontier,
� ffiffiffiffiffiffiffiffiffiffi

n pnq
p

otherwise;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð43Þ
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where the frontier (weak) spinorbitals are those that belong to a set of frontier

orbitals and their occupancy number is smaller than 1/2 (antibonding orbitals).

BBC3 functional possesses a correct orbital structure of the two-electron functional

(39) if applied to hydrogen molecule in the dissociating limit and it is able to

reproduce very accurately the whole dissociation curve [27]. Moreover, based on

examples of small atoms and diatomic molecules at equilibrium geometries and in

their dissociation limits, it has been shown that BBC3 accounts for both dynamic

and static correlation yielding correct potential energy and recovering most of the

correlation energy.

A difficulty with practical usage of the BBC3 functional is a need to select

bonding and antibonding orbitals. In a computer implementation a strongly occu-

pied orbital of the lowest occupancy is taken as bonding although a weakly

occupied orbital of the highest occupancy is taken as an antibonding with a

straightforward extension for this selection rule for molecules with more than one

bond. This, however, leads to numerical problems because in the optimization

procedure occupation numbers are varied and the antibonding character of orbitals

may change, which may cause problems with convergence or may result in

obtaining discontinuities in potential energy curves. To avoid the previously

described problems with selecting frontier orbitals and to improve the overall

accuracy of the BBC3 functional, it has been proposed to replace the elements

Gpq present in the BBC functional, cf. (41), with a function G(np,nq). The function

mimics the behavior of the GBBC3
pq elements but does it automatically, based on the

values of its arguments. The optimal function has been found by introducing two

parameters and fitting the resulting AC3 functional to accurate energies of two

molecules at equilibrium and stretched-bond geometries [40]. The AC3 functional

yields decent quality potential energy curves for ten-electron molecules, although

for some molecules a small hump in the curve is visible.

A two-electron wavefunction (33) is a special case of the more general closed-

shell N-electron ansatz (N assumed to be even) involving, apart from a reference

determinantΦ0, all determinants arising from diagonal double, diagonal quadruple,

etc., excitations; cf. (67). Taking the expectation value of the Hamiltonian with

such a wavefunction yields an energy expression involving only Coulomb,

exchange, and integrals of the hpp|qqi type [41]. In [42] the previously mentioned

ansatz for the wavefunction has been used in development of the extended L€owdin–
Shull (ELS) functional. The functional is applicable to systems for which a set of

the natural spinorbitals can be partitioned into “inner” orbitals localized on atoms

and the occupancies close to 1 and “outer” orbitals including a bonding orbital and

all weakly occupied orbitals, i.e., orbitals localized on a single bond. For N-electron
(N being even) systems (N/2� 1) strongly occupied orbitals (in a spin-restricted

formulation each orbital gives rise to two spinorbitals with opposite spins) would be

considered “inner” and the remaining strongly occupied orbital of the lowest

occupancy would belong to the “outer” orbital set. By analyzing a structure of the

energy expression resulting from the assumed ansatz, the following form of the ELS

functional has been proposed
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EELS
ee γ½ � ¼ 1

2

X
p, q2outer

f p f q
ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pp
��qq� �þ 1

2

X
p2inner

n p pp
��pp� �

þ
X
p2inner

X
q> p

q2inner

n pnq pq
�� pq� �� pq

��qp� �	 

þ
X
p2inner

X
q2outer

n pnq pq
�� pq� �� pq

��q p� �	 
þ FL n p; nq
	 


pp
��qq� �� �

;

ð44Þ

where the phase factors {fp} for the outer orbitals are set according to the rule valid
for two-electron systems, namely

8 p2outer f p ¼
1 if n p >

1

2

�1 if n p <
1

2

8<: : ð45Þ

Note that even though the exchange integrals hpq|qpi are identical to hpp|qqi if the
spinorbitals are real, the two types of integrals make different contributions to time-

dependent linear response equations so they are kept separately in the ELS func-

tional. It is evident that for a two-electron system the set of inner spinorbitals is

empty and, unlike the BBC3 or AC3 functionals, the ELS reduces to the accurate

functional given in (39). A few models have been tried for the function FL, which is

responsible for correlating inner and outer orbitals. The most successful ones

include one or two empirical parameters fitted to reproduce potential energy curves

of LiH, Li2, and BH+ molecules. Very accurate potential energy curves have been

obtained for these molecules [42]. Unfortunately, applications to other systems

have not been presented, because the functional has been designed to treat only

molecules with one single bond and no lone electron pairs. Nevertheless, ELS is a

promising step towards extending the L€owdin–Shull functional to more than two

electrons, aiming at providing a balanced description of the dynamic and static

correlation.

2.2 Functionals Based on Reconstruction of 2-RDM
in Terms of 1-RDM

One of the possible strategies towards development of novel one-electron density

matrix functionals consists of assuming the cumulant expansion for the 2-RDM

(28) and finding approximations for the cumulant part, γ, by imposing known

conditions which the exact cumulant satisfies. The first naive proposition one

might try is neglecting γ completely. This would result in the electron interaction

functional being just a sum of the Hartree (16) and exchange (17) functionals, with

no correlation part. One might then hope that some portion of correlation could still
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be recovered by allowing nonidempotent γ in the optimization, in other words by

allowing fractional occupancies of the natural orbitals. However, it has been shown

by Lieb, that for electronic systems the minimum of the functional involving only

Hartree and exchange contributions to the electronic repulsion, cf. (15), is achieved

at an idempotent 1-RDM [14]. Thus, the minimum of the functional free of the

correlation part simply coincides with the Hartree–Fock energy. To go beyond the

Hartree–Fock approximation requires not only admitting nonidempotent γ but also
including nonzero cumulant part in the reconstructed 2-RDM. Recently, Piris and

collaborators proposed a series of natural orbital functionals known as PNOFi
(i¼ 1–6) [43–48] by finding approximations to the cumulant matrix γ in terms of

the natural occupation numbers [49, 50]. In reconstructing RDM defined in (25) in

terms of 1-RDM the equality conditions satisfied by the N-representable 2-RDM are

such that Hermiticity

Γpqrs ¼ Γ∗
rspq; ð46Þ

antisymmetry

Γpqrs ¼ �Γqprs ¼ �Γpqsr; ð47Þ

and a sum rule X
q

Γpqrq ¼ N � 1ð Þn pδ pr ð48Þ

have been imposed. To narrow down the possible form of the 2-RDM as a function

of the occupation numbers, it has been required that the final correlation energy

functional includes only Coulomb integrals hpq|pqi, exchange integrals hpq|qpi,
and integrals of the type hpp|qqi. It should be noted that the last two sets are

identical if the orbitals are real, which is the case in practical calculations, but

they enter the time-dependent density matrix functional equations in different terms

as discussed in Sect. 5. Piris and Ugalde [49, 50] proposed the following structure of

the spin-blocks of the cumulant matrix in a spin-restricted formalism

λσσpqrs ¼ �Δσσ
pq δ prδqs � δpsδqr
	 


; ð49Þ
λαβpqrs ¼ �Δαβ

pqδ prδqs þ Πrpδ pqδrs; ð50Þ

where σ¼ α, β, the Δ matrices are symmetric, and the Π matrix is Hermitian. Such

an ansatz for the cumulant results in the 2-RDM given in (28) satisfying the

symmetry and antisymmetry conditions; cf. (46) and (47). For Systems in a singlet

state, for which n pα ¼ n pβ ¼ n p, and λααpqrs ¼ λββpqrs, PNOF functionals, resulting

from employing a reconstruction of Γ given in (28) with the ansatz (49) and (50),

are of the following spin-summed form:

138 K. Pernal and K.J.H. Giesbertz



EPNOF
ee γ½ � ¼

X
pq

n pnq 2 pq
�� pq� �� pq

��q p� �	 

�
X
pq

Δαα
pq þ Δαβ

pq

� 
pq
�� pq� �� Δαα

pq pq
��q p� �h i

þ
X
pq

Π pq pp
��qq� �

;

ð51Þ

where the indices p, q pertain to spatial parts of the natural spinorbitals. Diagonal

elements of the Δαβ and Π matrices have been fixed by imposing conservation of

spin [51] which for high-spin states amounts to requiring that the expectation value

of the Ŝ 2 operator computed with the assumed form of the 2-RDM is equal to

Ms(Ms+ 1), with Ms¼ (Nα�Nβ)/2, Nα�Nβ. The pertinent diagonal elements read

[50]

Δαβ
pp ¼ nα

pn
β
p; ð52Þ

Πpp ¼ nβ
p: ð53Þ

The final forms of the off-diagonal elements of the Δ and Π matrices have been

proposed by further imposing a sum rule given in (48) and exploiting the

so-called D, G, Q-conditions that state that 2-RDM, the electron–hole density

matrix G, and two-hole density matrix Q must be positive [50]. The first PNO

functional, PNOF1 [43], has been proposed for singlets after setting Δαα¼Δαβ,

assuming dependence of the cumulant matrix on two occupation numbers with

relevant indices, i.e.,

λ pq ¼ λ pq n p; nq
	 


; ð54Þ

and defining symmetric functions Πpq(np,nq)¼Πpq(nq,np). Three possible cases

have been considered for pairs of indices p, q: (1) p and q pertain to strongly

occupied spinorbitals of occupancies greater than 1/2, (2) p and q pertain to weakly
occupied spinorbitals of occupancies smaller than 1/2, and (3) one orbital is

strongly occupied while the other is weakly occupied. Each of the cases is treated

with a different function Πpq with the form deduced from the structure of the

2-RDM for two-electron systems. It is worth mentioning that the PNOF1 functional

has also been extended to high-spin multiplet states [51]. Despite the fact that

PNOF1 has been designed to resemble an exact functional for two-electron systems

in singlet state, its performance for potential energy curves is poor [40]. However, it

has to be admitted that despite its simple form PNOF1 has turned out to be reliable

in reproducing equilibrium bond distances, harmonic vibrational frequency, ioni-

zation potentials, and polarizabilities of small molecules [52].

A more involved form of the cumulant than that shown in (54) has been

employed in the PNOF3 functional [45]. The same-spin block of the Δ matrix

(49) was set to 0 and only the opposite-spin block, cf. (50), has been considered for

singlet and high-spin multiplet states. Analogously to the PNOF1 functional
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different forms of the λpq and Δαβ
pq functions of {np} have been proposed depending

on the values of occupation numbers of the pertinent spinorbitals p and q. The

elementsΔαβ
pq for the strongly-weakly occupied pair of orbitals p, q are functions not

only of the corresponding occupancies np and nq but also of the sum of occupation

numbers of all weakly occupied spinorbitals. PNOF3 has been applied to comput-

ing high/low-spin energy splitting of atoms and atomization energies of molecules

showing a remarkable agreement with the accurate coupled cluster accurate data

[45]. PNOF3 has also correctly reproduced potential energy surfaces of challenging

isomerization reactions [53]. Despite the proved usefulness of PNOF3 for systems

dominated by dynamic electron correlation it fails in describing near-degenerate

systems which has been illustrated by the breakdown of the functional in

reproducing the energy of the Li2 molecule with the stretched bond [46]. This

failure has been attributed to violation of the positivity condition of the electron–

hole density matrix G corresponding to the reconstruction scheme assumed in

PNOF3. This problem has been addressed in [46] and a new form of the

Πpq({nr}) function has been proposed which resulted in a PNOF4 functional.

PNOF4 accurately reproduces potential energy surfaces of diatomic molecules.

Unfortunately, it has been reported recently that the products of homolytic disso-

ciated molecules may have a non-integer number of electrons [50].

The PNOF5 functional formulated for closed-shell systems [47] can be seen as a

simplification to PNOF4, because both the elements Δpq and Πpq are functions of

only the occupation numbers np and nq (and not of the whole vector n), yet the

proposed ansatz for the two-electron reduced density matrix laying the foundation

for PNOF5 satisfies the symmetry conditions and the sum rule (46)–(48), as well as

the positivity conditions. This has been achieved by assuming that for an N-electron
system (N being even) only for N natural orbitals (2N natural spinorbitals) the

occupation numbers are different from zero, the rest of orbitals being unoccupied.

Additionally, the set of occupied orbitals has been partitioned into N/2 pairs. Each

orbital belongs to only one pair and for the p, q orbitals coupled in a pair P the

pertinent occupation numbers sum up to 1, i.e.,

8 p,q2P n p þ nq ¼ 1: ð55Þ

It should be noted that imposing the condition (55) immediately implies that the

normalization condition for 1-RDM, namely

2
XN=2
P¼1

X
p2P

n p ¼ N ð56Þ

is satisfied. In (56) the first summation runs over pairs of electrons and the condition

(55) has been employed. Analogously to other PNOF functionals, the diagonal

elements of the Δ and Π matrices employed in PNOF5 are given by (52) and (53),

whereas the off-diagonal elements for the coupled indices p and q have been

proposed to take the form
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8 p,q2P Δ pq ¼ n pnq; ð57aÞ
8 p,q2P Π pq ¼ � ffiffiffiffiffiffiffiffiffiffi

n pnq
p

: ð57bÞ

The resulting spin-summed expression of the PNOF5 functional reads [47, 49]

EPNOF5
ee γ½ � ¼

XN=2
P 6¼Q

X
p2P

X
q2Q

n pnq 2 pq
�� pq� �� pq

��qp� �	 

�
XN=2
P

X
p2P

X
q2P
q6¼ p

ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pp
��qq� �þX

p

n p pp
��pp� �

;

ð58Þ

where P and Q stand for indices of pairs of coupled orbitals. PNOF5 has

outperformed all its PNOF predecessors in describing multireference systems. In

particular it has been shown that it describes qualitatively correctly dissociation

curves yielding accurate dissociation energies [54–56] and products of dissociation

are of integer numbers of electrons [47, 56]. Dissociating of molecules with

multiple bonds, e.g., N2 or CO, leads to products of a correct high-spin symmetry

[56]. The ability of the PNOF5 functional to treat homolytic bond cleavage has been

exploited in its application to radical formation reactions [54]. Unfortunately, good

performance of PNOF5 in recovering static correlation in nearly degenerate sys-

tems is paralleled by its insufficient inclusion of the dynamic correlation [49, 57,

58]. Application of the PNOF5 functional for such challenging systems as Cr2, Mo2,

and W2 dimers revealed that, although it yields energies of an accuracy between

that of the CASSCF and CASPT2 methods, the lack of an important portion of

dynamic correlation energy spoils the results [55]. In order to add the missing

interpair dynamic correlation to PNOF5 Piris has considered a second-order

multiconfiguration perturbation theory [59] and has adopted it for a wavefunction

which leads to the PNOF5 energy expression [57]. The method has been named

PNOF5-SC2-MCPT. Quite unexpectedly, its application to description of the

helium dimer has led to a curve with multiple minima. Moreover, homolytic

dissociation of diatomic molecules with the perturbation method resulted in break-

down of the dissociation curves because of singularities in the second-order energy

appearing for quasi-degenerate systems. The former problem has been avoided by

excluding from the perturbative expansion determinants corresponding to double

excitations from spinorbitals of the same spatial parts, whereas singularities have

been eliminated by removing second-order terms corresponding to quasi-

degenerate orbitals [57]. Such a modified perturbation method has been called

PNOF5-PT2. Application of PNOF5-SC2-MCPT and PNOF5-PT2 to the G2/97

test set of molecules has shown that, on average, the methods recover, respectively,

around 80% and 70% of the correlation energy (with respect to Hartree–Fock

energies) [58].

Good performance of the uncorrected PNOF5 for chemical reactions is a con-

sequence of the observation that the functional can also be derived within the
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antisymmetrized product of strongly orthogonal geminals (APSG) theory

[60]. APSG has not only proven to be successful in describing dissociation curves

of singly-bonded molecules [61] but it is also very accurate in predicting equilib-

rium geometries, vibrational frequencies, and dipole moments of diatomic mole-

cules from G2/97 test set [62, 63]. In the APSG theory a wavefunction for an N-
electron system in a singlet state is given by the antisymmetrized product of

geminals {ψP(x2P�1,x2P)}

ΨAPSG x1; . . . ; xNð Þ ¼ Â
YN=2
P¼1

ψP x2P�1; x2Pð Þ; ð59Þ

which are strongly orthogonal, i.e., 8P 6¼Q

ð
ψP x1; x2ð ÞψQ x01; x2

	 

dx2 ¼ 0 [64, 65]. It

can be shown that if geminals are expanded in the natural orbitals {φp(r)}

corresponding to the 1-RDM obtained from the ansatz (59), then the expansion

for each geminal P is diagonal, i.e.,

ψP x1; x2ð Þ ¼ 2�1=2
X
p2P

c pφ p r1ð Þφ p r2ð Þ α 1ð Þβ 2ð Þ � α 2ð Þβ 1ð Þ½ �; ð60Þ

the coefficients {cp} are simply square roots of the corresponding occupation

numbers taken with “+” or “�” sign

8 p n p ¼ c2p ð61Þ

and the strong orthogonality of geminals implies that the sets of orbitals belonging

to individual geminals are disjointed, i.e., each natural orbital belongs to only one

geminal [66]. It should be noted that for a closed-shell two-electron system the

APSG wavefunction is exact and identical with the L€owdin and Shull function

given in (33). The expectation value of the Hamiltonian with the APSG

wavefunction yields the following spin-summed electron–electron repulsion energy

expression

EAPSG
ee f p

� �
; n p

� �
; φ p

� �� � ¼
XN=2
P

X
p, q2P

f p f q
ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pp
��qq� �

þ
XN=2
P 6¼Q

X
p2P, q2Q

n pnq 2 pq
�� pq� �� pq

��qp� �	 

;

ð62Þ

where {fp} are phase factors of the value +1 or �1. The APSG ground state energy

follows from optimization of the total energy with respect to phase factors, occu-

pation numbers, and the orbitals. Actually, it turns out that typically each geminal is

composed of one strongly occupied orbital of the occupation number greater than

1/2 and a pertinent phase factor f1¼ +1, and all other orbitals, which are weakly
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occupied (np< 1/2), of the corresponding phase factors fp¼�1 [61, 67]. As already

mentioned in Sect. 2.1 for two-electron singlet systems (described within the APSG

theory by one geminal), exceptions to this rule have been observed [36, 39], but

they occur for very weakly occupied orbitals. Practically, fixing the phases in the

APSG functional given in (62) according to the aforementioned rule, instead of

finding them variationally, has only a small effect on the APSG energy. The APSG

functional with the phase factors fixed can be seen as a density matrix functional.

Comparison of the PNOF5 functional defined by (58) and (55) with (62) immedi-

ately reveals that they are identical if the dimension of the expansion space for each

geminal in the APSG approach is limited to 2 and the phase factors of the two

orbitals which form a given geminal are opposite, i.e., f1¼�f2 [60]. Because

PNOF5 is equivalent to such constrained APSG approximation, it inherits its

features from the latter, which explains the good performance of the PNOF5

functional for predicting dissociation energy curves of molecules [47] and the

localized character of its optimal orbitals [68].

Lifting the restriction on the dimensionality of expansion spaces for the geminals

in PNOF5 functional should allow one to recover a part of the correlation energy

missing in this functional. This procedure has been proposed in [69] but clearly

such extended PNOF5 functional (PNOF5e) is identical to the APSG functional

(62) with fixed phases. For PNOF5 and PNOF5e functionals a systematic recon-

struction of the 2-RDM in terms of the 1-RDM has merged with a theory based on

the ansatz for the wavefunction [49]. On one hand this may seem to be a desirable

result – the functionals are N-representable and bound by the exact ground state

energy, but the drawback is that the functionals suffer from the same deficiencies as

the APSG approximation.

An interesting idea that leads to incorporating the dynamic correlation that

PNOF5 lacks has been proposed in [48]. The intrapair correlation is included in

PNOF5 by proposing the elements Δpq (57a) and Πpq (57b) corresponding to

uncoupled orbitals p and q (belonging to different pairs) to be nonzero and

expressing them as functions of the occupation numbers. The new functional,

PNOF6, employs, similarly to PNOF5, a paired-orbitals picture. Compared to

PNOF5, the PNOF6 functional underestimates the dissociation energies to a lesser

degree. Unlike its predecessor, PNOF6 yields delocalized orbitals and it avoids

spatial symmetry breaking of the benzene equilibrium geometry [48].

An ongoing development of natural orbital functionals, PNOF, originating from

reconstruction of 2-RDM in terms of 1-RDM, has already resulted in functionals

competing in accuracy with MP2 method for single-reference systems. Unlike the

MP2 method, the PNOF4, PNOF5, and PNOF6 functionals are useful in describing

potential energy surface also when bonds are stretched and dissociation potential

energy curves are often of the quality of the much more expensive CASSCF

approach.
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2.3 Going Beyond Explicit Density Matrix Functionals

Approximate density matrix functionals discussed so far are explicitly expressed in

terms of natural spinorbitals and natural occupation numbers. Ground state energy

results from minimization of a functional with respect to orbitals and occupancies

under N-representability conditions given in (3)–(5). To afford greater versatility,

over the years efforts have been made to develop functionals the forms of which

involve other quantities than only spectral components of 1-RDM. The quantities

(typically being parameters) are found for a given γ by solving some auxiliary

equations. The overall dependence of such functionals on γ is only implicit.

One of the first functionals of this kind has been proposed by Yasuda [15] who,

by considering a contracted Schr€odinger equation, derived a set of equations

yielding, for given sets {np} and {φp}, values of partially contracted products of

cumulant elements λ (28) and two-electron integrals {hpq|rsi}, i.e.,X
qrs

λpqrs γ½ � rs
�� pq� � ¼ ε p: ð63Þ

The resulting Yasuda correlation functional, cf. Eq.(29), Ec[γ]¼∑pεp[γ] is there-
fore implicitly dependent on spectral components of γ. Parameters {εp} are found

from a set of auxiliary equations. Despite the fact that the Yasuda correlation

functional possesses a number of desirable features, i.e., it satisfies the exact

conditions given in (30) and (31), it gives rise to dispersion interaction [70] and

recovers a logarithmic divergence of the correlation energy of the homogeneous

electron gas in high-density limit [71], its usefulness in practical electronic struc-

ture calculations has been undermined by showing that it does not seem to be bound

from below even for two-electron systems [72].

Quite a different approach has been assumed in [41, 73–76] where explicit

density matrix functionals have been derived by assuming a configuration interac-

tion (CI) ansatz for a wavefunction and parameterizing CI coefficient. In all cases

the CI wavefunctions were such that the resulting expression for the energy

involved only Coulomb and exchange two-electron integrals. Because the former

integrals are often denoted with the letter J and the latter with K, the functionals

involving only these two types of integrals are sometimes called “JK-only” func-

tionals. The idea of constructing functionals by parameterizing the CI ansatz is

evidently directly related to the Levy constrained search functional (9) which for

the CI wavefunction

Ψ ¼
X
I

CIΦI; ð64Þ

where {ΦI} is a set of Slater determinants, turns into

ECI
ee γ½ � ¼ min

C!γ
Ψ Cð Þ��V̂ ee

��Ψ Cð Þ� �
: ð65Þ

144 K. Pernal and K.J.H. Giesbertz



C stands for a vector of all CI coefficients and the minimization in the functional

(65) is carried out with respect to all vectors C corresponding to the assumed ansatz

for a wavefunction (64) which yield a given density matrix γ. Were the expansion in

(64) complete, the functional (65) would be exact, i.e., it would be equivalent to the

Levy functional (9). Otherwise, for truncated CI expansion, the functional is only

approximate. The strategy adopted in [41, 73–76] was to use a CI ansatz leading to a

“JK-only” approximation and to replace the whole set of the CI parameters by

auxiliary variational matrices, say A and B, such that the functional (65) turns into

Eee n p

� �
; φ p

� �� � ¼ min
A,B!n

X
pq

A pq pq
�� pq� �þX

pq

B pq pq
��q p� �( )

; ð66Þ

where the two-electron integrals are computed with the natural spinorbitals {φp}.

The minimization is done with respect to the matrices A, B constrained to yield a

given vector of occupation numbers n and to satisfy some conditions, for example

conditions imposing size-consistency on the functional. If the conditions are such

that there is a mapping from A and B to the CI coefficients C, the functional given

in (66) is variational, i.e., it constitutes an upper bound to the functional (65) and the

exact Levy functional (9). If, however, the matrices A, B are constructed to ensure

that the underlying 2-RDM only satisfies some of the necessary N-representability
conditions, the functional (66) is not necessarily variational. The main advantage of

replacing functionals (65) with approximations (66) is to obtain a more efficient

method than CI, because the complex objects (CI coefficients) are replaced by

matrices of much smaller dimensionalities. Moreover, if the starting CI ansatz (64)

is not size-consistent, the proposed reparameterization in terms of A, B could

restore this property (but then variationality is lost).

In [74] Kollmar and Hess considered a CI wavefunction being a combination of

a closed-shell reference Slater determinant Φ0 and determinants arising from Φ0 by

doubly exciting electrons from spinorbitals of the same spatial parts to virtual

orbitals also sharing spatial functions, i.e., Φaαaβ
iαiβ

, where i and a stand for, respec-

tively, occupied and unoccupied orbitals in the reference state. Such an ansatz leads

to an energy expression involving only Coulomb and exchange integrals but it lacks

size-consistency. To recover this property a normalization condition has been

replaced by a new condition on the CI coefficients. The resulting functional of

the form of (66) has been applied to the description of symmetric dissociation of

water molecule which has led to a potential energy curve of a reasonable shape. At

the same time, it became evident that the functional misses dynamic correlation.

In [41] the most general form of the closed-shell CI wavefunction which leads

only to Coulomb and exchange integrals in the energy expression has been consid-

ered. The wavefunction can be called pair-excited CI because it includes all

possible Slater determinants, each built of N/2 spatial orbitals entering a determi-

nant with the α and β spin component, i.e.,
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Ψ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2ð Þ!p X

QN=2

AQN=2
ϕq1

ϕq1
� � �ϕqN=2

ϕqN=2

��� ���; ð67Þ

where QN/2¼ q1,. . .,qN/2 is a string of indices, and ϕq1ϕq1� � �ϕqN=2ϕqN=2

��� ��� is a Slater
determinant built of N/2 elements from the set of one-electron spatial functions

{ϕp}. The coefficients AQN=2

n o
are symmetric with respect to exchanging two

indices in a string QN/2 and they satisfy a normalization condition. The

wavefunction (67) is size-consistent and it yields a diagonal 1-RDM, i.e.,

γ pq ¼ 2δ pqN
X
QN=2�1

A pQN=2�1

� 2
¼ 2δ pqn p: ð68Þ

Therefore one immediately recognizes that the orbitals {ϕp} are simply the natural

orbitals, i.e., φ p rð Þ�ϕ p rð Þ. As already mentioned, another property of the ansatz

(67) is that the spin-summed electron interaction part of the corresponding energy

reading

Eee ¼
X
pq

F pq 2 pq
�� pq� �� pq

��q p� �� �þX
pq

G pq pp
��qq� �

; ð69Þ

where

F pq ¼ N

2

N

2
� 1

� �X
QN=2�2

A pqQN=2�1

� 2
; ð70Þ

Gpq ¼ N

2

X
QN=2�1

A pQN=2�1
AqQN=2�1

; ð71Þ

takes a simple “JK-only” form. A reparameterization of the energy expression (69)

proposed in [41] consists of replacing the coefficients {AQN/2} by a new variational

object: an idempotent matrix ω having occupation numbers on its diagonal and

additional phase factors f QN=2

n o
(of values 1 or �1). The parameterization pre-

serves the variationality of the energy so the resulting functional

Eee γ½ � ¼ min
ω!n

min

f QN=2

n o X
pq

F pq ωð Þ 2 pq
�� pq� �� pq

��qp� �� �(

þ
X
pq

G pq ω; fQN=2

� 
pp
��qq� �) ð72Þ
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is a strict upper bound to the exact energy functional. A large number of possible

phase factors makes minimization of the functional practically impossible. Intro-

ducing some fixed pattern for signs of those factors could destroy variationality of

the functional. This has been called a “phase dilemma” in [41] and identified as a

serious bottleneck in constructing density matrix functionals. A functional free of

the phase factors has been obtained by Kollmar and Hess by reconstructing 2-RDM

in terms of 1-RDM by imposing N-representability condition (a strategy similar to

the one adopted in construction of PNOF functionals presented in Sect. 2.2

[75]). The Kollmar–Hess functional is identical to (72) if a simple approximation

for phase factor products is assumed [41]. The functional is therefore not variational

in general (except for two-electron systems for which the functional is exact).

Numerical applications showed that it is very accurate for four-electron systems

[75]. The results for water molecule undergoing symmetric dissociation are much

less satisfactory. They are very close, however, to those corresponding to the

closed-shell MC-SCF approach with the CI ansatz given in (67). One can therefore

conclude that the phase dilemma is not such a serious limitation if a proper model is

assumed for the phase factors. Another confirmation of this conclusion comes from

considering the exact functional for a two-electron closed-shell system which is a

special case of the functional given in (72) for N¼ 2. As has already been men-

tioned, fixing the signs of the phase factors corresponding to the weakly occupied

orbitals to be opposite to the sign of the phase factor associated with the strongly

occupied orbitals leads to only a small change in the energy.

In [76] it has been shown that a computationally hard MC-SCF problem can be

replaced by the optimization of a simple 1-RDM functional which parallels the

MC-SCF method in accuracy. However, it has also been pointed out that the ansatz

(67), i.e., the best possible wavefunction leading to a “JK-only” expression for the

energy (67), recovers only a small fraction of the correlation energy for systems as

small as a ten-electron molecule. Any variational (or based on an N-representable
2-RDM) “JK-only” functional suffers from the same deficiency. The density matrix

functionals tested in [76] developed by imposing basic necessary N-representability
conditions on the underlying 2-RDM do not recover more correlation than the

wavefunction-based approach, even though they are not variational. In other words,

results of parallel accuracy are obtained by minimizing the CI energy given by

(69)–(71) with respect to the CI coefficients and the orbitals {ϕp} and by optimizing

“JK-only” functionals proposed as approximations to (69) [76]. This poses a

question as to whether the pair-excited CI ansatz (67) is a good starting point for

developing functionals. This question is addressed in Sect. 6.

Apart from the implicit density matrix functionals discussed earlier which

involve some auxiliary parameters, cf. (66), a promising class of functionals

depending on γ and electron density ρ has been proposed by combining density-

functional and density matrix functional theory [77, 78]. The method is based on the

range-separation of electron–electron interaction operator, V̂ ee, into short- and

long-range parts, V̂ sr
ee and V̂ lr

ee, respectively [79, 80]. Dynamic correlation energy

should mostly be described by the short-range density functional, and static
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correlation energy by the long-range density matrix functional. A formal definition

of the exact range-separated functional is possible by exploiting Levy constrained-

search construction [4] and it reads [77]

E γ½ � ¼ T γ½ � þ Vext ργ
� �þ Elr

ee γ½ � þ Fsr ργ
� �

; ð73Þ

where the long-range functional is defined analogously to the full-range functional

in (9), namely

Elr
ee γ½ � ¼ min

Ψ!γ
Ψ V̂ lr

ee

�� ��Ψ� �
; ð74Þ

ργ is a diagonal part of the density matrix γ and the definition of the short-range

universal density functional Fsr also employs Levy constrained search construction.

Partitioning the long- and short-range functionals into Hartree and exchange-

correlation parts results in obtaining the following srDFT-lrRDMFT energy

functional

E γ½ � ¼ T γ½ � þ Vext ργ
� �þ EH ργ

� �þ Elr
xc γ½ � þ E sr

xc ργ
� �

: ð75Þ

Ground state energy follows from minimizing the range-separated functional with

respect to N-representable γ. A short-range PBE exchange-correlation functional

[81] has been used for Esr
xc[ρ]. This is a short-range version of the PBE functional

derived for the error function employed in range-separation of electronic interac-

tion. The long-range density matrix functional, Elr
xc, has been approximated by the

long-range BB functional ElrBB
xc obtained by simply replacing two-electron integrals

in the full-range BB functional, cf. (20), by their long-range counterparts, namely

the spin-summed expression which reads

E lrBB
XC γ½ � ¼ �

X
pq

ffiffiffiffiffiffiffiffiffiffi
n pnq

p
pqjqph ilr; ð76Þ

pqjqph ilr ¼
ðð

φ*
p r1ð Þφ*

q r2ð Þ erf μr12ð Þ
r12

φq r1ð Þφ p r2ð Þdr1dr2; ð77Þ

where r12¼ |r1� r2| and erf stands for the error function. Both short- (sr) and long-

range (lr) functionals involve a range-separation parameter μ, the value of which

has been empirically chosen to be 0.4 bohr�1. Such an obtained srPBE-lrBB

functional has been applied to a few diatomic molecules and, in contrast to full-

range BB or PBE functional, the range-separated density matrix functional turned

out to be capable of reproducing correct dissociation energy curves [78]. Another

direct advantage of range-separated functionals over full-range density matrix

functionals is that the former, unlike the latter, are weakly basis set dependent

which adds to their favorable computational efficiency.
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2.4 Empirical Density Matrix Functionals

Approximate density matrix functionals cannot be rigorously derived. Rather, the

form of the functional is proposed by taking into account properties of the exact

functional. The applicability of density matrix functionals is not limited to finite

systems (atoms and molecules); in principle, most of them could also be applied to

solids. However, functionals such as BBC, AC3, or the recent PNOF approxima-

tions account for a sophisticated interplay between orbitals which is necessary to

predict bond stretching and breaking. It is therefore not so surprising that perfor-

mance of BBC1 and BBC2 functionals for a model extended system, namely the

homogeneous electron gas (HEG), is quite poor. The accuracy of predicted corre-

lation energy and the quality of momentum distribution for the HEG described with

these functionals are unsatisfactory even for metallic densities. Admittedly, they

still perform better than the other simple density matrix functionals defined in (20)

and (23) such as BB or CHF [82, 83]. It should be noted that an exact exchange-

correlation density matrix functional working for the HEG is not known even for a

high-density limit, which is the reason why this system does not serve as a starting

point for developing new density matrix functionals. In order to develop functionals

for extended systems one could try introducing some empirical parameters into

known approximate functionals and fitting them to experimental data.

Such an approach has been tried in [82, 84–86]. Adopting plane-waves as natural

orbitals of the homogeneous electron gas turns a spectral representation of 1-RDM

into

γ r; r0ð Þ ¼ 2

V

X
k

n kð Þeik� r�r0ð Þ; ð78Þ

where k¼ |k|, n(k) is called momentum distribution, and V is the volume of the

system (V!1). BBC functionals, cf. (41)–(43), developed for molecules involve

in their definition partitioning natural orbitals into strongly and weakly occupied,

which is based on the value of the pertaining occupation number. A straightforward

generalization of the BBC functionals to extended systems would assume

establishing a type of the natural orbital (a plane wave) on the basis of the k-number

i.e., whether it is smaller or greater than some reference value kc [82]. The most

obvious choice would be kc¼ kF, where kF is the Fermi wave vector. As mentioned

before, this choice implemented in the BBC1 or BBC2 functionals does not lead to

accurate correlation energy of HEG. Lathiotakis et al. proposed two variants of the

BBC1 modifications [82]. In the first, kc was treated as a parameter, whereas the

second variant assumes keeping kc¼ kF, multiplying the exchange-correlation

terms of the BBC1 functional corresponding to two weakly occupied orbitals by a

parameter s (s-functional). In both cases, values of parameters were chosen to

reproduce the exact correlation energy of HEG. Unfortunately, momentum distri-

butions resulting from such proposed functionals obtained for metallic densities,

even though they show discontinuity, quantitatively still deviate strongly from the
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accurate references. Adaptation of the s-functional developed for the electron gas to
finite systems has led to surprisingly accurate values of energy for molecules at

their equilibrium geometry but it has been also revealed that the functional is not

size-consistent and it fails in the description of potential energy curves [85].

Motivated by the fact that the exchange-correlation functional (18) in many

density matrix functionals is approximated by an expression involving only

exchange integrals multiplied by factors depending on two pertinent occupation

numbers, i.e.,

Exc γ½ � ¼ �1

2

X
pq

G n p; nq
	 


pq
��q p� �

; ð79Þ

Marques and Lathiotakis (ML) proposed to find the function G fully empirically by

using a Padé approximant depending on a variable x¼ npnq [87]. Coefficients in the
Padé approximant were found by minimizing the error of the correlation energies of

selected test-molecules. Computing the correlation energies of molecules in a G2

test with different methods has revealed that the empirical ML functional is on

average the most accurate of all functionals tested, competing with or being

superior to the MP2 method [87]. However, because the exchange-correlation

part depends only on products of two occupation numbers, it inevitably lacks the

structure needed to describe the breaking of a two-electron bond. The ML func-

tional is not appropriate for describing molecules at geometries far from their

equilibrium.

In the quest to develop a computationally efficient 1-RDM functional which is

useful for solids, a very simple idea has been proposed and leads to remarkable

results. The first and simplest approximate density matrix functional proposed is the

BB functional (also known as the Müller functional) [18, 19], cf. (20). Müller has

arrived at the particular form for the exchange-correlation functional given in (18)

by considering a generalization of the Hartree–Fock exchange functional (17),

which assumes replacing |γ(x, x0)|2 present in the HF two-particle density matrix

and, consequently, in the functional (17), by a product γ1�α(x, x0)γα(x, x0)*. The
power α was constrained to belong to the interval h0, 1i, to assure convexity of the

functional and integrating of the corresponding exchange-correlation hole to �1

[18]. The BB functional results from choosing α¼ 1/2. Sharma et al. proposed to

consider an approximate exchange-correlation functional of the form [84]

Eα
xc γ½ � ¼ �1

2

X
pq

n pnq
	 
α

pq
��q p� �

; ð80Þ

that for α¼ 1 is just an exchange Hartree–Fock functional (17) whereas for α¼ 1/2

it turns into a BB form (20). It should be mentioned that a 2-RDM

Γpqrs ¼ n pnqδ prδqs � n pnq
	 
α

δpsδqr; ð81Þ
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giving rise (via (26)) to the exchange-correlation power functional (80) satisfies the

sum rule (48) only for α¼ 1/2. Application of the power functional to the homo-

geneous electron gas revealed that momentum distribution resulting from the

functional optimization not only lacks a step structure but is very different from

the exact distributions in general [83, 88]. Even though the power functional does

not recover the exact high-density limit of the correlation energy of the HEG [83,

89], it has been shown that with a carefully chosen value of α it is possible to obtain

rather accurate values of the correlation energy for this system in the broad range of

densities [86]. Moreover, the power functional performs remarkably well in

predicting accurate band gaps of semiconductors and insulators [84]. The test set

included materials of covalent or ionic character with band gaps ranging from 1 to

14.2 eV. It is striking that all these systems are incorrectly predicted to be metallic if

described with the α¼ 1/2 power functional, whereas choosing α¼ 0.65 or α¼ 0.7

results in obtaining nonzero gaps deviating on average from experimental values by

less than 10%. Reducing α below the value 0.65 leads to zero energy gap for some

materials, so it seems the range of admissible values of α is quite narrow.

Performance of the simple power functional (80) with α 2 (0.65, 0.7) when

applied to transition metal oxides (TMO) is even more impressive. TMOs can be

regarded as prototypes of strongly correlated Mott insulators, the nonzero band gap

of which is a result of strong Mott–Hubbard correlations. Most approximate density

functionals incorrectly predict TMO to be metallic. The power density matrix

functional, however, yields finite values for band gaps of nonmagnetic TMOs,

although deviations of the computed gaps from their experimental counterparts

are larger than in the case of conventional insulators [84]. Sharma et al. also showed

that apart from band gaps the power functional is capable of accurately predicting

other properties of solids such as equilibrium lattice constants. Another successful

application of the power functional includes predicting the photoelectron spectra of

strongly correlated Mott insulators within a density matrix functional method

proposed in [90]. Despite its very simplistic form, the power functional has been

shown to be a useful tool for studying solids, including those for which most density

functionals provide unreliable results.

3 Predicting Properties of Electronic Systems with Density

Matrix Functionals

Reduced density matrix functionals give immediate access to total energies of

systems under investigation and, because the 1-RDM is known, to expectation values

of local or nonlocal one-electron operators. However, in recent years a number of

methods have been formulated within RDMFT allowing one to obtain properties of

systems which are not mere traces of products of 1-RDMwith one-electron operators.

The properties accessible within static RDMFT include second- and higher-order

static response properties, photoelectron spectra, or fundamental gaps.

Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time. . . 151



3.1 Response Properties

Response properties follow from RDMFT by considering a one-electron perturba-

tion of the strength λ

Ĥ 0 ¼
XN
i

ŵ λ; xið Þ; ð82Þ

where λ¼ 0 corresponds to the lack of perturbation [91]. Because 1-RDM is

obtained variationally, the Hellman–Feynman theorem is satisfied and the first-

order response properties result from taking a trace of 1-RDM with the first-order

perturbation, i.e.,

∂E γ½ �
∂λ

¼
X
p

n p φ p

∂ŵ
∂λ

���� ����φ p

� �
; ð83Þ

where the occupancies {np} and the natural spinorbitals {φp} correspond to

unperturbed γ. Second-order properties are given by the expression (valid for real

orbitals)

∂2
E γ½ �
∂λ2

¼
X
p

n p φp

∂2
ŵ

∂λ2

�����
�����φp

* +
þ
X
pq

n 1ð Þ
p δ pqþ nq�n p

	 

U 1ð Þ

pq

h i
φp

∂ŵ
∂λ

���� ����φp

� �
; ð84Þ

where {n
ð1Þ
p } and U(1) are components of the first-order response of γ, namely

γ 1ð Þ
pq ¼ n 1ð Þ

p δ pq þ nq � n p

	 

U 1ð Þ

pq : ð85Þ

They can be found by solving a set of linear coupled-perturbed equations [91]. If the

perturbation is particle-number-conserving then a condition must be imposed that a

sum of perturbations {n
ð1Þ
p } vanishes. Applying the response equations to compute

the static polarizabilities has revealed that even functionals which perform well in

predicting energies of atoms and diatomic molecules, e.g., BBC3, do not provide

satisfactory results for the second-order response properties [91]. The values for

polarizabilities are of comparable or even worse quality than those obtained within

the coupled-perturbed Hartree–Fock method [91]. Much more encouraging results

have been obtained for hyperpolarizabilities of the H2 molecule using the PNOF5

functional within a finite field approach [92]. Good accuracy could have been

expected though, because the PNOF5 functional, cf. (58), is equivalent to the

two-electron functional (39) if the number of orbitals with nonzero occupancy is

restricted to two [60]. Despite this constraint, the PNOF5 functional captures the

right physics of two-electron systems.
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3.2 Ionization Potentials

A number of methods for predicting vertical ionization potentials (IPs) have been

proposed within RDMFT. The most straightforward approach involves performing

calculations of energies for a neutral and ionized species [93–95]. Apart from the

fact that such multiple calculations are time consuming, it has been pointed out in

[95] that inaccuracy may arise because of different treatment of closed- and open-

shell systems in RDMFT.

Another way of computing IPs is provided by the Extended Koopmans’ Theo-
rem (EKT) which connects 1- and 2-RDM of a Coulombic system with its ioniza-

tion potentials [96–98]. It has been shown in [99] that the Lagrangian matrix λ
related to imposing orthonormality of the natural orbitals in optimizing a density

matrix functional, reading

λ pq ¼ n phqp þ
ð
δEee γ½ �
δφ*

p xð Þφ
*
q xð Þdx; ð86Þ

is equivalent to the generalized Fock matrix of the EKT equations. This implies that

diagonalization of a Hermitian matrix Λ defined as

Λ pq ¼ � λ pqffiffiffiffiffiffiffiffiffiffi
n pnq

p ð87Þ

yields IPs as eigenvalues. For small molecules the BBC and GU functionals

employed in the EKT formalism yield ionization energies with errors with respect

to experimental references of the order of 4–6%. Similar accuracy has been

obtained with the PNOF functionals [93, 100]. On average the accuracy is higher

than that of the standard Koopmans’ theorem.

The EKT method is not practical for solids as it would require diagonalization of

a very large matrix. Sharma et al. proposed an alternative method [90]. This consists

of assigning to each natural spinorbital an orbital energy εp obtained as a derivative
of the total energy with respect to the pertinent occupation np. The derivative is

taken at np¼ 1/2 with the rest of occupation numbers set equal to their ground state

optimal values, i.e.,

ε p ¼ ∂E γ½ �
∂n p

����
n p¼1=2

: ð88Þ

Employing orbital energies obtained in this way for predicting densities of states of

transition metal oxides has led to excellent agreement with experimental data. The

orbital energies defined in (88) have also been used as approximations to ionization

energies and electron affinities of molecules. Performance of density matrix func-

tionals within such an approach is satisfactory and for IPs the errors are of the same

order as those obtained from the much more theoretically grounded EKTmethod [95].
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A central feature of one-electron approximations such as Hartree–Fock or

Kohn–Sham DFT methods is existence of an effective Hamiltonian, the spectrum

of which provides approximate ionization potentials. In HF this approximation is

justified by Koopmans’ theorem. In the KS-DFT formulation, although only the

negative of the HOMO orbital energy yields the exact first IP if the exact potential is

employed, it has been shown and theoretically justified that other orbital energies of

occupied orbitals also approximate well ionization potentials, on condition that an

accurate potential with a correct asymptotics is employed in KS equations [101,

102]. In RDMFT the effective Hamiltonian whose eigenfunctions correspond to

natural spinorbitals also exists but its spectrum is infinitely degenerate [1, 103].

Recently, however, a local reduced density matrix functional method has been

proposed which, for a given functional, searches for an optimal local potential, such

that eigenfunctions of the corresponding effective Hamiltonian minimize a func-

tional (for a fixed set of the occupation numbers) [104]. Although formulation of the

local variant of RDMFT is not theoretically grounded, it offers at least two

advantages over the standard optimization of the density matrix functional via a

nonlocal potential. The first is better computational efficiency of the optimization of

the energy functional (see Sect. 4). The other advantage is that local RDMFT

formulation yields approximations to IPs as eigenvalues of the effective Hamilto-

nian with a local potential. Namely, it has been shown that photoelectron spectra of

molecular systems obtained from the local-RDMFT with the BB [19], BBC3 [27],

power [84], and empirical functional of Marques and Lathiotakis [87] compare well

with experiment and are superior to spectra obtained from the Hartree–Fock

Koopmans’ method [105].

3.3 Fundamental Gap

Another quantity of key importance for solids accessible in RDMFT is the band gap

or more generally the fundamental gap, which is defined as the difference between

the ionization potential I and the electron affinity A as

Δ ¼ I � A: ð89Þ

Helbig et al. proved that within exact formulation of RDMFT a Lagrange multiplier

μ, used to impose the normalization condition (5) on the occupation numbers in

variational equations, possesses a discontinuity at integer particle numbers. This

discontinuity amounts to the fundamental gap [106, 107], i.e.,

Δ ¼ lim
η!0

μ N þ ηð Þ � μ N � ηð Þ½ �: ð90Þ

A system with a fractional number of electrons N+ η should be understood as an

ensemble of N- and (N + 1)-electron states mixed with the corresponding weights

1� η and η so that the 1-RDM of the ensemble reads
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γNþη ¼ 1� ηð ÞγN þ ηγNþ1; ð91Þ

where 0� η� 1, and γN and γN+1 are one-electron reduced density matrices

corresponding to N- and (N+ 1)-electron states. γN+η is normalized to N + η. Nec-
essary and sufficient N-representability conditions for γN+η, i.e., conditions under
which there is a link between a density matrix γN+η with a fractional number of

electrons and an ensemble of N- and (N + 1)-states, have been a proved [108]. They

are of the same form as N-representability conditions for an integer-particle system,

namely ∑pnp¼N + η and 8p 0� np� 1.

To find a chemical potential (a Lagrange multiplier) μ(N + η) one just carries out
minimization of the density matrix functional under standard N-representability
conditions, imposing the normalization of {np} to N + η. Applying approximate

functionals to estimation of the fundamental gap of finite systems shows that μ does
not possess a discontinuity. However, for functionals with self-interaction removed,

e.g., the GU functional, μ plotted as a function of η displays a steep increase close to
η¼ 0. This increase usually begins with a kink of the function μ (η) which occurs for
η larger than 0 [106–108]. Its origin is related to the fact that by adding excess

charge η the “HOMO” natural orbital (the orbital whose occupation number is the

smallest among all strongly occupied orbitals) is filling up till its occupancy reaches

1. Increasing η further, the “LUMO” natural orbital (the orbital whose occupation

number is the largest among all weakly occupied orbitals) begins increasing its

occupancy which shows up on a μ(η) plot as a kink from which a steep increase of μ
begins. Taking into account the origin of the step-like structure of μ for approximate

functionals, it is rather surprising that a crude extrapolation of μ from large η (close
to 1) to small η (close to 0) provides very reasonable estimations for the gaps [106,

107]. Formulation of the method for computing Δ within the open-shell RDMFT

leads to obtaining a more pronounced step-like structure of the chemical potential

μ, which makes the process of estimating Δ by extrapolating less ambiguous [107].

As mentioned in Sect. 2.4, satisfactory band gaps have been obtained for semi-

conductors, insulators, and even Mott insulators by employing the aforementioned

method of finding approximate discontinuity of μ, cf. the formula (90), together

with the power functional (80) [84]. Clearly, for periodic solids, the energy and the

number of electrons are infinite and adding a charge η to each unit cell would result
in an infinitely charged unstable system. It has therefore been proposed in [84] to

find band gaps by adding excess charge η per unit cell and, at the same time, adding

a constant charge background to keep the total system charge neutral. A band gap

corresponds to a difference eμ η ! 0þð Þ � eμ η ! 0�ð Þ, where eμ ¼ ∂eEVþδv ηð Þ=∂η
and eEVþδv is the energy per volume unit computed self-consistently at the external

potential V with the charge neutralizing potential δv added. A chemical potential

obtained with the power functional lacks the discontinuity but its curvature changes

the sign around η¼ 0 for nonmetallic systems. It allows the estimation of band gaps

by constructing two tangent lines [84].
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4 Optimization of Density Matrix Functionals

As mentioned in the introduction, the RDMFT approximations, apart from being

accurate, are expected to be competitive with one-electron methods in terms of

computational efficiency. RDMFT is based on the variational principle given in

(11) according to which a ground state energy of a given system can be obtained by

minimizing the energy functional on the set of N-representable density matrices.

Thus, the optimization is of the constrained-type, because it must take into account

N-representability conditions provided in (3)–(5). Because the conditions are given
in the forms of equalities and inequalities involving eigenvalues and eigenvectors

of 1-RDM, it implies that imposing N-representability conditions would require

carrying out diagonalization of γ even for explicit functionals of γ.
An efficient algorithm offering optimization of the functional directly with

respect to the whole density matrix or its square root has been proposed

[109]. The N-representability of γ is imposed in each iteration step by projecting

γ resulting from unconstrained directional optimization onto the space of N-repre-
sentable 1-RDMs. An advantage of the proposed projected gradient algorithm is

that, because the gradient is taken with respect to the elements of γ, changes in

natural orbitals are coupled with variations of the occupancies which should lead to

faster convergence. The proposed projection algorithm has been shown to work

efficiently for Hartree–Fock (15) or BB (20) functionals. For other functionals,

which are given in terms of orbitals and occupation numbers and are not proper

functionals of γ (e.g., GU or BBC functionals), it is still possible to compute the

gradient with respect to γ but the projected gradient algorithm converges disap-

pointingly slowly [109].

The most robust and universal optimization approach consists of minimizing a

functional with respect to the natural orbitals and the natural occupation numbers

successively in separate steps. Natural orbitals are typically parameterized using,

for a given orthonormal basis set {χa}, the exponential function of a skew-

symmetric matrix X, i.e.,

φ ¼ eXχ ð92Þ

which assures orthonormality of the orbitals φ, cf. (3), [26, 27]. To satisfy the N-
representability condition given in (4) the natural occupation numbers may be

parameterized by cosine functions, namely 8p np¼ cos2(xp) where parameters

{xp} are unconstrained. The normalization condition (5) is taken into account by

means of a Lagrange multiplier. A bottleneck of a two-step procedure is optimiza-

tion of the orbitals. It takes many iterations to meet tight convergence criteria,

because energy is almost completely insensitive to variations of very weakly

occupied orbitals.

Because of unsatisfactory efficiency of the gradient orbital optimization algo-

rithms, efforts have been made to turn the optimization problem for orbitals into an

eigenproblem for an effective Hamiltonian [1, 103, 110–113]. For a given
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functional and a fixed set of the natural occupation numbers, a one-electron

Hamiltonian can be constructed in a self-consistent way such that its eigenfunctions

minimize the functional (for fixed occupancies) [103, 110, 112]. The problem is

that the self-consistent procedure of calculating orbitals from diagonalization of the

effective Hamiltonian is highly divergent [103]. Moreover, the spectrum of this

Hamiltonian is infinitely degenerate if it is constructed from optimal natural orbitals

and occupation numbers. However, by proper combination of level-shifting and

scaling off-diagonal elements of the Hamiltonian matrix, optimal orbitals can be

obtained from iterative diagonalization [103, 111]. Such an approach does not,

however, seem to surpass gradient methods significantly in terms of speed of

convergence.

It has recently been proposed to employ an optimal effective potential (OEP)

method formulated originally for optimization of orbital-dependent density func-

tionals [114, 115] in RDMFT [104]. For a given density matrix functional, a local

potential is sought such that its orbitals minimize the functional for fixed occupa-

tion numbers. The main difference from the above-mentioned scheme which

employs a nonlocal Hamiltonian is that in local-RDMFT the potential is

constrained to be local and to possess proper asymptotic behavior. Replacing a

nonlocal potential with a local one and employing the OEP approach formulated

originally for DFT (cf. [116]) leads to an efficient optimization method which

enlarges scopes of applicability of the density matrix functionals to larger mole-

cules and provides good estimations for the ionization potentials [105]. These

advantages notwithstanding, it should also be noted that there is no theoretical

justification for local-RDMFT. Moreover, by definition, the method does not

provide a solution to the original variational problem given in (11) and for a

given functional the optimal energy resulting from the local method is higher

(although not much) than that obtained by solving the “nonlocal” RDMFT optimi-

zation problem [104].

5 Time-Dependent RDMFT

The extension of ground state RDMFT to the time domain was recently considered

[117–121]. The main motivation to develop time-dependent RDMFT

(TD-RDMFT) is the poor performance of time-dependent DFT (TDDFT) in the

adiabatic approximation in combination with the approximate ground state density

functionals. The best known failure is the inability of approximate TDDFT to

capture charge transfer excitations [122, 123], though this deficiency has been

remedied with some success using range-separated hybrid functionals [123, 124]

and by an explicit reconstruction of the spatial divergence in the kernel [125,

126]. Other failures of adiabatic TDDFT are bond-breaking excitations which are

predicted to be too low in energy upon dissociation (they can even go to zero) [127,

128] and a lack of double excitations [128–130]. All these failures are connected to

the inability of approximate adiabatic density functionals to deal with static
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correlation effects. Because approximate 1-RDM functionals have been quite

successful in dealing with static correlation effects on the ground state level, we

also expect an improvement for the calculation of excitations when using the full

1-RDM in our formalism instead of only the density. It turns out, however, that the

formulation of a satisfactory adiabatic approximation in TD-RDMFT is not as

straightforward as in TDDFT. Most of the research has therefore been done on

formulating an adequate adiabatic approximation, so the formulation of an adia-

batic approximation forms the major content of this TD-RDMFT section.

5.1 Equation of Motion of the 1-RDM

The time-dependent 1-RDM is obtained by using the time-dependent wavefunction

in the definition of the 1-RDM (1)

γ x, x0; tð Þ ¼ N

ð
� � �
ð
Ψ
	
x, x2, . . . , xN; t



Ψ∗ x0; x; . . . ; xN; tð Þdx2� � �dxN: ð93Þ

The equation of motion for the 1-RDM is readily obtained from the time-dependent

Schr€odinger equation

i∂tγ x; x0; tð Þ ¼ ĥ x; tð Þ � ĥ x0; tð Þ	 

γ x; x0; tð Þþð

1

r� r2j j �
1

r0 � r2j j
� �

Γ xx2, x
0x2; tð Þdx2; ð94Þ

where ∂t denotes a time derivative and the time-dependent 2-RDM is defined as

Γ x1x2, x
0
1x

0
2; t

	 
 ¼ N N � 1ð Þ
ð
� � �
ð
Ψ x1; x2; x3; . . . ; xN; tð Þ

	Ψ* x01; x
0
2; x3; . . . ; xN; t

	 

dx3 . . . dxN:

ð95Þ

So we find that we need the 2-RDM to determine the evolution of the 1-RDM. It

turns out that the evolution of the 2-RDM is coupled to the 3-RDM and so on, till we

hit the full N-RDM. This chain of p-RDMs coupled to each other is known as the

Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [131–137]. To be

of any practical use, the BBGKY hierarchy needs to be truncated at some level. In

TD-RDMFT the hierarchy is truncated already at the level of the 1-RDM and it is

assumed that the time-dependent 2-RDM is a functional of the 1-RDM, Γ[γ]. For
Hamiltonians with only local potentials, we know from the Runge–Gross theorem

[138] and its extension [139, 140] that this is indeed true, because all observables

are already functionals of the density, so they are also functionals of the 1-RDM.

The use of density for the formal foundations of TD-RDMFT is not satisfactory,

however, because we would have to limit ourselves to local-potential representable
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1-RDMs. The formulation of a solid foundation for TD-RDMFT which allows for

non-local potentials is still an open challenge.

The time-dependent 1-RDM can be diagonalized at each time t, allowing one to

consider the time-dependent natural spinorbitals, φp(xt), and time-dependent occu-

pation numbers, np(t). The equation of motion for the 1-RDM (94) can be trans-

formed to the time-dependent natural spinorbital basis, which gives the equations of

motion for the natural spinorbitals and occupation numbers separately [118, 119]

i nq tð Þ � n p tð Þ	 

φ p tð Þj _φq tð Þ� � ¼ nq tð Þ � n p tð Þ	 


h pq tð Þ þ W{
pq tð Þ �W pq tð Þ

� 
8 p6¼q,

ð96aÞ
i _n p tð Þ ¼ W{

pp tð Þ �Wpp tð Þ
� 

; ð96bÞ

where the dot indicates a time-derivative and we introduced a short-hand notation

for the partial contraction of the 2-RDM with the two-electron integrals

W pq tð Þ ¼
X
rst

Γprst tð Þ st
��qr� �

tð Þ: ð97Þ

It should be noted that the two-electron integrals are also time-dependent here,

because they are evaluated with the time-dependent natural spinorbitals.

5.2 Time-Dependent Response Equations

The time-dependent response equations can be derived from the equation of motion

of the 1-RDM (96) by considering a small time-dependent perturbation to a

stationary system, with the stationary 1-RDM γ0. The first-order perturbation in

the 1-RDM is directly related to perturbation in the natural spinorbitals and

occupation numbers as [compare with (85)]

δγ pq tð Þ ¼ δn p tð Þδ pq þ nq � n p

	 

δUpq tð Þ; ð98Þ

where the indices refer to the natural spinorbital basis at t¼ 0 and

δUpq(t)¼hφp|δφq(t)i. Collecting the perturbations in all the quantities up to first

order, we obtain the first-order time-dependent response equation for the 1-RDM

iδ _γ pq tð Þ ¼
X
r

h pr tð Þδγrq tð Þ � δγ pr tð Þhrq tð Þ	 
þX
rs

ð1
�1

K pq, rs γ0
� �

t� t0ð Þδγrs t0ð Þdt0 þ nq � n p

	 

δv pq tð Þ:

ð99Þ
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The response matrix K[γ0](τ) is the coupling matrix defined as [117, 119, 121,

141, 142]

K pq, rs γ0
� �

t� t0ð Þ ¼
δ W{

pq tð Þ �W pq tð Þ
� 

δγrs t0ð Þ

������
γ0

ð100Þ

and plays the same role as the Hartree-exchange-correlation kernel, fHxc (r, r0,
t� t0), in TDDFT [138, 143]. To obtain the frequency-dependent response equa-

tions, we simply need to take the Fourier transform of the time-dependent response

equations. Because the time-integral over the coupling matrix K(t� t0) and the

perturbation in the 1-RDM has the form of a convolution, the Fourier transform

turns this integral into a simple product. If we further assume that the natural

spinorbitals of the unperturbed 1-RDM can be chosen to be real (no magnetic

fields), the frequency-dependent response equations can be cast into a particular

simple matrix form

ω1M �Aþ
MM ωð Þ 0

�N�1A� ωð ÞN�1 ω1M �N�1C ωð Þ
0 �Aþ

mM ωð Þ ω1m

0@ 1A δγR ωð Þ
iδUI ωð Þ
δn ωð Þ

0@ 1A ¼
0

δvR ωð Þ
0

0@ 1A ;

ð101Þ

where Npq,rs¼ (nq� np)δprδqs and 1M denotes an M	M unit matrix. The

sub-matrices δγR ωð Þ ¼ F Reγ½ � ωð Þ and δUR ωð Þ ¼ F ImU½ � ωð Þ denote the Fourier

transforms of the real and imaginary parts of the unique off-diagonal parts of δγ(t)
and δU(t), respectively, and likewise, δvR ωð Þ ¼ F Rev½ � ωð Þ denotes the Fourier

transform of the real part of the unique off-diagonal parts of the perturbing potential

δv(t). The matrix on the left is therefore an (M, M, m)	 (M, M, m) matrix, where

m denotes the number of basis functions andM¼m(m� 1)/2 the number of unique

off-diagonal elements. The submatrix A+ has labels MM and mM to indicate which

parts of this matrix need to be used. The response matrices A(ω) and C(ω) combine

the one-body and two-body effects to the response of the 1-RDM and are defined as

A pq, rs ωð Þ ¼ ns � nrð Þ h prδsq � δ prhsq
	 
þ K pq, rs ωð Þ	 


; ð102aÞ
Cpq, r ωð Þ ¼ h pq δrq � δr p

	 
þ K pq, rr ωð Þ: ð102bÞ

Positive and negative combinations of the response matrix A(ω) enter the

frequency-dependent RDMFT response equations (101) as

A�
pq, rs ωð Þ ¼ A pq, rs ωð Þ � A pq, sr ωð Þ: ð103Þ
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5.3 Standard Adiabatic Approximation

To turn the frequency-dependent RDMFT linear response equations (101) into a

practical scheme, we need to be able to evaluate the coupling matrix K in some

manner. In the standard adiabatic approximation (the one also used in TDDFT), one

assumes that the history dependence for slow processes is not very important, so a

good approximation would be

K γ0
� �

t� t0ð Þ 
 K γ0
� �

δ t� t0ð Þ: ð104Þ

If the initial state of the system was the ground state, a ground state functional

would probably provide a reasonable approximation and the full standard adiabatic

approximation becomes

K γ0
� �

t� t0ð Þ 
 Kgs γ0
� �

δ t� t0ð Þ: ð105Þ

An additional advantage of the adiabatic approximation for the frequency-

dependent response RDMFT equations (101) is that all the response matrices A�

and C become frequency independent, which greatly simplifies the calculation of

response properties (excitation energies), because we only need to solve a linear

system of equations (eigenvalue equation), instead of a complicated set of coupled

nonlinear equations.

The standard adiabatic approximation, however, implies that the natural occu-

pation numbers do not change in time. This is a particularly disappointing result,

because the time-evolution of the natural occupation numbers is expected to be

important to handle strongly correlated systems such as stretched chemical bonds.

For “JK-only” approximate functionals the stationarity of the occupation numbers

is easily demonstrated [118, 120, 121]. The “JK-only” 2-RDM is of the general

form

Γpqrs ¼ FH n p; nq
	 


δ prδqs þ Fx n p; nq
	 


δpsδqr: ð106Þ

Using this approximate 2-RDM in the definition for W(t) (97), and inserting the

result into the equation of motion of the natural occupation numbers (96b), we find

that they are time-independent, i _n p tð Þ ¼ 0.

More work is needed to demonstrate that the use of a ground state functional for

the 2-RDM always leads to stationary occupation numbers in the standard adiabatic

approximation [117, 144, 145]. First we note that, because the natural orbitals are

the eigenfunctions of the self-adjoint kernel, γ(x,x0;t), their phases are undetermined

by the 1-RDM. Therefore, a 1-RDM functional formulated in terms of the natural

orbitals and occupation numbers is not allowed to depend on the phase of the natural

orbitals. Making the phase of the natural orbital explicit φ p xtð Þ ¼ eiα p tð Þϕ p xtð Þ, we
have the following condition on the derivative of any 1-RDM functional, F
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0 ¼ dF

dα p tð Þ ¼ i

ð
dx φ*

p xtð Þ ∂F
∂φ*

p xtð Þ �
∂F

∂φ p xtð Þφ p xtð Þ
 !

: ð107Þ

To connect these derivatives with the contractions W(t) (97) in the adiabatic

approximation, we express the exact ground state functional as [99]

W φ p

� �
; φ*

p

n o
; n p

� �h i
¼ 1

2
min
ξif g

X
pqrs

Γpqrs ξif g; n p

� �� �
rs
�� pq� �

; ð108Þ

where the set of variables {ξi} indicates the additional degrees of freedom over

which we can vary the 2-RDM, keeping the 2-RDM ensemble N-representable and
such that it yields the prescribed 1-RDM (48). This expression assumes that only

the occupation numbers are part of the N-representability conditions for the 2-RDM
and not the natural orbitals. This is reasonable, because N-representability should

not depend on the particular orthonormal basis we are working in. An advantage of

expressing the exact interaction-energy function in this manner is that the func-

tionalW is even defined for non-orthogonal natural spinorbitals. Although the value

of the functionalW does not make any physical sense for non-orthonormal orbitals,

it allows us to define derivatives with respect to ϕp(x) and ϕ�
q(x) separately in an

unambiguous manner and impose the orthonormality conditions afterwards with the

help of Lagrange multipliers or in other ways, e.g., (92).

The optimal 2-RDM parameters which attain the minimum are functionals of the

natural orbitals and occupation numbers, and we write these optimal value for the

parameters as ξi φ p

� �
; φ∗

p

n o
; n p

� �h i
. Using ξi

� �
the exact interaction-energy

functional can also be written as

W φ p

� �
; φ*

p

n o
; n p

� �h i
¼ 1

2

X
pqrs

Γpqrs ξi
� �

; n p

� �� �
rs
�� pq� �

; ð109Þ

where we suppressed the explicit dependence of the optimal 2-RDM parameters on

the natural spinorbitals and occupation numbers. Assuming that the gradient of

Γ[{ξi}, {np}] with respect to the parameters ξi exists, we can work out the functional
derivative of W with respect to the natural orbitals as

δW

δφt xð Þ ¼
1

2

X
i

δξi
δφt xð Þ

X
pqrs

∂Γpqrs

∂ξi

����
ξ

rs
�� pq� �þ 1

2

X
pqrs

Γpqrs

δ rs
�� pq� �

δφt xð Þ : ð110Þ

Because we minimize over the parameters ξi in the functional W, the derivatives

with respect to ξi vanish at the minimum ξi
� �

, so the first term on the right-hand

side does not give any contribution. Projecting the functional derivative against

natural spinorbitals, we have
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ð
dx

δW

δφ p xð Þφq xð Þ ¼
X
rst

Γprst st
��qr� � ¼ W pq: ð111Þ

Using this result together with the phase invariance condition (107) in the equation

of motion for the occupation numbers (96b) in the standard adiabatic approxima-

tion, we find the claimed result

i _n p tð Þ ¼
ð
dx φ∗

p xtð Þ ∂W
∂φ∗

p xtð Þ �
∂W

∂φ p xtð Þφ p xtð Þ
 !

¼ 0: ð112Þ

A shorter, though more handwaving argument has been given in [146].

Because the occupation numbers are not perturbed in the standard adiabatic

approximation, they drop out of the response equations and the standard adiabatic

response equations reduce to

ω1M �Aþ
MM

�N�1A�N�1 ω1M

� �
δγR ωð Þ
iδUI ωð Þ

� �
¼ 0

δvR ωð Þ
� �

: ð113Þ

Because no δn(ω) term is present, we find that even in the static limit ω! 0 the

occupation numbers are not perturbed, in contrast to the time-independent response
equations presented in Sect. 3.1 [120, 121, 142]. This discrepancy has been

demonstrated to be sizable by calculating the polarizability of HeH+ [117, 120,

144, 145]. The L€owdin–Shull functional has been exclusively used for these

calculations. There are two possible variants of this functional: one with the

exchange integrals (39) and one where we restore the original integrals hpp|qqi of
the singlet two-electron system (36) and replace products cpcq with GLS

pq given in

(40). For real natural spinorbitals there is no difference, but in the time-dependent

case the natural orbitals are complex and hence the two different integrals give rise

to different coupling matrices. The advantage of using exchange integrals is that the

functional is phase invariant, which is a requirement for a proper 1-RDM func-

tional. Therefore, this variant is called the density matrix LS (DMLS). The variant

with the original hpp|qqi integrals is not phase invariant, so not a proper 1-RDM

functional. Because of its phase dependence it is called the phase including LS

(PILS). Though the PILS is not a proper 1-RDM functional, its use is appealing,

because the breaking of phase invariance implies that the natural occupation

numbers do change.

One would expect that the DMLS functional should give superior results. This is

indeed the case for the polarizability of HeH+ if only a limited number of transitions

between the natural orbitals are taken into account [117, 144, 147], typically only

the transitions from the two highest occupied NOs to all the others. If all transitions

between the natural orbitals are taken into account, the DMLS functional has

spurious divergences in the polarizability at low frequencies [117, 145, 147],

severely deteriorating the DMLS result. Though the polarizability from the PILS
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functional does not follow the exact polarizability as closely as the DMLS, it has the

main advantage that no spurious divergences emerge, even when all natural orbital

transitions are taken into account in the response calculation [117, 121, 147].

Another disadvantage of the standard adiabatic approximation is that we effec-

tively lose excitation energies. Because the original frequency-dependent response

matrix has M+M+m¼m2 entries, the standard adiabatic approximation yields m2

excitation energies, because the response matrices A and C are frequency indepen-

dent. However, we only obtain 2M¼m(m� 1) sensible excitation energies and

m roots ω¼ 0, which are physically meaningless, so, effectively, these m excitation

energies are lost in the standard adiabatic approximation [142].

Test calculations on the excitation spectrum of the hydrogen molecule as a

function of the bond length have been carried out to test the performance of both

LS functionals. Because divergences in the polarizability correspond to excitations,

the spurious divergences of the DMLS functional already indicate that the perfor-

mance of the DMLS functional for the calculation of excitation energies is not very

good. Indeed, the test calculations on H2 have shown that the DMLS functional

predicts many spurious low lying excitations which completely clutter the excita-

tion spectrum when all natural orbital transitions are taken into account [117, 145,

148]. Reducing the number of transitions to only transitions from the two heaviest

occupied natural orbitals is very effective in cleaning up the DMLS excitation

spectrum [117]. Such an approach would not be desirable in practice, because it is

orthogonal to the idea that expanding a basis brings one closer to the desired result.

Because the PILS functional is dependent on the phase of the natural orbitals, the

occupation numbers are not necessarily stationary any more in the standard adia-

batic approximation. However, it can be demonstrated that there are still only

2M¼m(m� 1) non-trivial roots of the response equations (113) and m zero exci-

tations [117]. Nevertheless, the PILS functional gives a huge improvement over the

DMLS functional for excitation energies. Most notably, no spurious low lying

excitations appear when we exhaust the response basis by including more natural

orbital transitions. Furthermore, one can show that the 1Σþ
u ,

1Πg and
1Πu excitations

become equal to the full CI result when all natural orbital transitions are taken into

account [117, 141, 142]. This is caused by the fact that these excitations do not need

any perturbation in the natural occupation numbers to be described exactly, which

is related to symmetry. This also holds for excitations in other irreducible repre-

sentations (irreps) that do not couple to the completely symmetric irreducible part

of the response matrix, such as the xy component of the Δg excitations. The x
2� y2

component does couple to the occupation numbers, however, so the Δg excitations

of the H2 molecule is symmetry broken when using the PILS functional: the xy
components are equal to the full CI result and the x2� y2 components are not

[117]. Symmetry breaking does not occur for the DMLS functional, because the

occupation numbers are never involved in the standard adiabatic response.
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5.4 Alternative Adiabatic Approximation

Because the standard adiabatic approximation used in TD-RDMFT has the unde-

sirable features of stationary occupation numbers and a mismatch with the static

response equations (Sect. 3.1) in the ω! 0 limit, an alternative adiabatic approx-

imation has been proposed. The idea is to replace the dynamic equation for the

occupation numbers (96b) by its static counterpart and to make the perturbed

quantities frequency-dependent, which leads to the following equation

0 ¼ 2
X
r>s

CT
p, rsδγ

R
rs ωð Þ þ 2

X
r

W p, rδnr ωð Þ þ δvpp ωð Þ; ð114Þ

where we use

CT
p, rs ¼ Crs, p and W p,q ¼ 1

2

∂2
W

∂n p∂nq
: ð115Þ

Though the occupation numbers are not determined by an equation of motion, but

follow instantaneously from δγR(ω) and the diagonal elements of the potential

δvD(ω), there is at least a response of the occupation numbers. The fact that this

alternative adiabatic approximation is an instantaneous relaxation of the natural

occupation numbers at each time t has been stressed in [149] where the more

descriptive name “instantaneous occupation number relaxation” was introduced.

The frequency-dependent response equations in this alternative adiabatic approxi-

mation become

ω1M �Aþ
MM 0

�N�1A�N�1 ω1M �N�1C

�CTN�1 0 �W

0@ 1A δγR ωð Þ
iδUI ωð Þ
δn ωð Þ

0@ 1A ¼
0

δvR ωð Þ
δvD ωð Þ=2

0@ 1A: ð116Þ

The correction for the ω! 0 limit to the standard adiabatic approximation proves to

be quite effective and improves the description of the polarizability for small

frequencies [117, 120, 121]. Additionally, because the frequency-dependent

response equations now reduce correctly to the static response equations in the

ω! 0 limit, both the DMLS and PILS functionals coincide at ω¼ 0. The general

trend from the standard adiabatic approximation remains: the DMLS is closer to the

exact polarizability, though has some spurious divergences which are absent in the

PILS calculations [117].

Because ω is only present in the upper twoM	M blocks, the determinant of the

response matrix is only a 2M¼m(m� 1) order polynomial in ω. We therefore find

that the alternative adiabatic approximation does not restore the lost roots in the

standard adiabatic approximation. Calculations on the H2 and HeH+ have demon-

strated that the excitation spectrum does not change much compared to the standard

adiabatic approximation for both the DMLS and PILS functionals [117]. The lowest
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excitation energies decrease somewhat when correcting the incorrect ω! 0 limit in

the adiabatic approximation and it depends on the particular system whether this is

an improvement. For H2 the results are slightly worse in the alternative adiabatic

approximation, whereas for HeH+ they are slightly better [117, 142].

Although the alternative adiabatic approximation is successful in correcting the

ω! 0 limit of the standard adiabatic approximation, this adiabatic approximation is

still not very satisfactory, because the occupation numbers are still not truly

dynamic variables and we still lose m excitations. These m excitations correspond

to excitations which require a significant response of the occupation numbers.

Because the response of the occupation numbers corresponds to the response of

the diagonal of the 1-RDM (98), so they are referred to as the diagonal double

excitations. Other double excitations related to perturbations in the off-diagonal

parts of the 1-RDM are well accounted for, as the excitation energies in the 1Σþ
u and

1Πu are perfectly accounted for [117, 142]. It turns out that these diagonal double

excitations are important for the correct description of the lowest 1Σþ
g excitation

energy in stretched H2 [141, 142], so including the diagonal double excitations is

important.

5.5 Phase Including Natural Orbitals

It is unlikely that the missing m diagonal double excitations can be restored with

any decent adiabatic approximation to the TD-RDMFT equations. The problem is

that the excitation energies should come out of the response equations in pairs +ω
and�ω. This pairing of the frequencies is dictated by an important symmetry of the

response function χ ωð Þ ¼ χ* �ωð Þ, which follows directly from the Lehmann [150]

(sum-over-states) representation. We therefore need to increase the number of roots

by m in some manner, because m is not necessarily even. Increasing the number of

roots to 2(M+m) results in an even number of roots, which in turn ensures that all

excitations are present in both the positive and negative parts of the spectrum.

This partially explains why we had m zero excitations in the standard adiabatic

approximation, because ω¼ 0 is the only number which is its own negative, so it

does not destroy theχ ωð Þ ¼ χ* �ωð Þ symmetry even if an odd number of these roots

is present. This does not explain why we could not have bm/2c excitation energies

occurring both at +ω and �ω in an adiabatic approximation. To explain this, we

observe that for a proper quantum evolution a quantity needs to be able to have a

complex phase. All the off-diagonal elements of the 1-RDM are able to obtain a

complex phase-factor, but because the diagonal is necessarily real, the occupation

numbers do not have a quantum phase [117]. This lack of a corresponding quantum

phase for the natural occupation numbers is not limited to the 1-RDM, but exists for

the diagonal of any p-RDM if the BBGKY hierarchy is truncated at the pth order [151].
The way to solve all these problems together is to include an additional set of

m complex phase factors which can act as the conjugate variables for the natural
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occupation numbers to facilitate a true quantum evolution. It is obvious that the

ideal candidate would be the phase factors of the natural orbitals, which is corrob-

orated by the reconstruction of the exact frequency-dependent coupling matrices of

the K(ω) for singlet two-electron systems [117, 142]. To distinguish these special

natural orbitals with a specific phase from those defined as eigenfunctions of the

1-RDM, we call them phase-including natural orbitals (PINOs) and give them their

own symbols, 6π p xtð Þ. Using PINOs, the functionals are also allowed to depend

explicitly on the phase of the orbitals, so the PILS functional becomes a legal

functional.

To derive equations of motion for the PINOs and their occupation numbers, we

start from the following quantum mechanical action [152]

A 6π p; n p

� �� � ¼ ð T
0

dt Ψ 6π p; n p

� �� �
tð Þ� ��i∂t � Ĥ tð Þ Ψ 6π p; n p

� �� �
tð Þ�� �

; ð117Þ

where we assume that the action can be considered as a functional of the PINOs and

occupation numbers. The equations of motion for the PINOs and their occupation

numbers follow by making the action stationary with respect to all variations.

However, we have to keep in mind that the action is now only a functional of the

PINOs and occupation numbers and not of the full many-body wavefunction.

Therefore, we cannot set the variation at the end-point t¼ T to zero and need to

take this term into account explicitly [153], so the variational principle becomes

δA ¼ i Ψ Tð Þ��δΨ Tð Þ� �
: ð118Þ

Neglect of the variations in the boundary term at t¼ T leads to violation of causality

as was shown by Vignale in [153], where he showed that explicit treatment of the

boundary term solves the causality paradox which has haunted TDDFT for so many

years [154].

To obtain more practical and explicit equations, we follow the same approach

as in TDDFT [138] and partition the action of the fully interaction system into a

non-interacting part, A0 and a remainder AHxc

A 6π p; n p

� �� � ¼ A0 6π p; n p

� �� �� AHxc 6π p; n p

� �� �
: ð119Þ

Because the occupation numbers of non-interacting pure-states are stationary by

construction, we need to use the action for an ensemble for the non-interacting

system to allow for occupation numbers that vary in time

A0 6π p; n p

� �� � ¼ ð T
0

dt
X
P

dP tð Þ ΦP tð Þh ji∂t � Ĥ 0 tð Þ ΦP tð Þj i; ð120Þ

where 0� dP(t)� 1 are time-dependent weights, ΣPdP tð Þ ¼ 1, and Ĥ0(t) is the

one-body part of the fully interacting Hamiltonian, Ĥ(t), so corresponding to a
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noninteracting system. The states ΦP(t) are time-dependent Slater determinants

constructed out of the PINOs. Because the states ΦP(t) are constructed out of

PINOs, the expectation values can be worked out as

ΦP tð Þh ji∂t � Ĥ 0 tð Þ ΦP tð Þj i ¼
X
p2P

6π p tð Þ� ��i∂t � ĥ tð Þ 6π p tð Þ�� �
; ð121Þ

where p 2 Pmeans that the sum runs over all PINOs present in the determinant ΦP.

Because the 1-RDM of the ensemble should have the prescribed occupation num-

bers, all the weights of the states which contain a particular 6π p need to sum to the

corresponding occupation number, np(t). The non-interacting action therefore sim-

plifies even further to

A0 6π p; n p

� �� � ¼ ð T
0

dt
X
p

n p tð Þ 6π p tð Þ� ��i∂t � ĥ tð Þ 6π p tð Þ�� �
; ð122Þ

and the variational principle becomes

δA0 ¼ i
X
P

ΦP Tð Þ��δΦP Tð Þ� � ¼ i
X
p

n p Tð Þ 6π p Tð Þ��δ6π p Tð Þ� �
: ð123Þ

Considering variations in δA0 separately, we find the expected result that the PINOs

are solutions of one-electron Schr€odinger equations i∂t 6π p xtð Þ ¼ ĥ tð Þ 6π p xtð Þ and

that the occupation numbers (weights) are time-independent. We are not interested

in the solutions of the non-interacting system, however, but we want the solutions of

the interacting system. Therefore, we should add a “bath” term which takes into

account that the electrons do not behave independently but move in the “bath” of

other electrons. Hence, we subtract the following term

δW 6π p; n p

� �� � ¼ δAHxc 6π p; n p

� �� �
þ i Ψ 6π p; n p

� �� �
Tð ÞjδΨ 6π p; n p

� �� �
Tð Þ� �� i

X
p

n p Tð Þ 6π p Tð Þjδ6π p Tð Þ� �
ð124Þ

from the left-hand side, to make the variational principle equal to the interacting

one (118)

δA0 6π p; n p

� �� �� δW 6π p; n p

� �� � ¼ i
X
p

n p Tð Þ 6π p Tð Þjδ6π p Tð Þ� �
: ð125Þ

Enforcing the orthonormality of the PINOs with the standard Lagrange multiplier

technique, we can work out the variations in the action produced by perturbations in

the PINOs [117, 145], which recovers the equation of motion for the 1-RDM in the

natural orbital basis (96)
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i _n p tð Þ þ nq tð Þ � n p tð Þ	 
 6π p tð Þj _6πq tð Þ
D Eh i

¼ nq tð Þ � n p tð Þ	 

h pq tð Þ þ W6π{

pq tð Þ �W6π
pq tð Þ

� 
;

ð126Þ

where the effects of the electron–electron interaction are now expressed as varia-

tions δW produced by perturbations in the PINOs

W6π
pq tð Þ ¼

ð
dx

δW
δ6π p xtð Þ 6πq xtð Þ: ð127Þ

An equation of motion for the phase factors of the PINOs is obtained by considering

variations produced by perturbations in the occupation numbers, which give [117,

144, 145]

i 6π p tð Þj _6π p tð Þ
D E

¼ hpp tð Þ þ δW
δn p tð Þ : ð128Þ

One can combine the equation of motion for the PINO phase factors with the

off-diagonal terms of the equation of motion for the 1-RDM (126) to write a

Schr€odinger equation for the PINOs with an effective potential,

v̂ PINO 6π p; n p

� �� �
tð Þ, [117, 144, 145]

i∂t 6π p xtð Þ ¼ ĥ tð Þ þ v̂ PINO 6πr; nrf g½ � tð Þ	 
 6π p xtð Þ; ð129Þ

where v̂ PINO 6π p; n p

� �� �
tð Þ is an effective potential which takes the two-body effects

into account and is defined via its matrix elements which can be read off from (126)

and (128)

vPINOpq 6πr; nrf g½ � tð Þ ¼
W6π{

pq tð Þ �W6π
pq tð Þ

nq tð Þ � n p tð Þ for p 6¼ q

δW
δn p tð Þ for p ¼ q

8>>><>>>: : ð130Þ

It is interesting to consider the effective time-dependent Schr€odinger equation for

the PINOs (129) in the case of a stationary (ground) state. In that case, the time-

dependence of the PINOs factors out as a simple exponential, 6π p xtð Þ ¼ e�iεpt 6π p xð Þ,
and the exponential factors, εp, are related to the time-independent Schr€odinger for
the PINOs

ĥ þ vPINOpq 6πr; nrf g½ �
� 

6π p xð Þ ¼ ε p 6π p xð Þ: ð131Þ

The degeneracy of the natural spinorbitals [103] mentioned in Sect. 4 can therefore

also be regarded as the complete in-phase time evolution of the PINOs. This makes
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complete sense, especially for the two-electron system, because the phase factors of

the PINOs can be used to reconstruct completely the two-electron wavefunction as

[117, 155]

Ψ x1; x2; tð Þ ¼ 1ffiffiffi
2

p
Xm
p¼1

ffiffiffiffiffiffiffiffiffiffiffi
n p tð Þ

q
6π p x1tð Þ6π� p x2tð Þ � 6π� p x1tð Þ6π p x2tð Þ� �

; ð132Þ

so the PINOs are coupled in pairs in the two-electron wavefunction. This expression

is valid for an arbitrary spin state. In the case of a singlet state, the spin-up and spin-

down components of the same spatial part form the PINO pairs and, in the case of

triplet states, two PINO which are spatially different are coupled together [117]. It

is clear from this expression that for all np 6¼ 0, all the PINOs need to have the same

time-dependent phase factor in order for the full two-electron wavefunction to be a

stationary state, Ψ x1; x2; tð Þ ¼ e�iEtΨ x1; x2ð Þ.
The equations of motion can be used again to formulate time-dependent

response equations. Because the zeroth-order time-dependent PINOs already have

a (time-dependent) phase factor, we expand the perturbation in the PINO in the

order of the perturbation as

6π p xtð Þ ¼ eiεpt 6π p xð Þ þ δ 6π p xtð Þ þ � � �	 
 ð133Þ

The first order of the perturbation in the PINOs, δ 6π p xtð Þ is expanded in the time-

independent PINO basis as

δ 6π p xtð Þ ¼
X
r

6πr xð ÞδUrp tð Þ: ð134Þ

The advantage of expressing the first-order perturbation in this manner is that the

connection between and δγ(t) used in the TD-RDMFT response equations at (98) is

still valid. Following the same procedure as before, collecting all perturbations up

to first order and taking the Fourier transform, the frequency-dependent PINO

response equations in the standard adiabatic approximation, W 
 W can be cast

in the following form [117, 144, 145, 156]

ω1M 0 �Aþ
MM �Aþ

Mm

0 ω1m �Aþ
mM �Aþ

mm

�N�1A�N�1 �N�1C ω1M 0

�CTN�1 �W 0 ω1m

0BB@
1CCA

δγR ωð Þ
δn ωð Þ
iδUI ωð Þ

iδUD ωð Þ=2

0BB@
1CCA ¼

0

0

δvR ωð Þ
δvD ωð Þ=2

0BB@
1CCA: ð135Þ

These PINO response equations in the adiabatic approximation have all the desired

properties:

• Theω! 0 exactly coincides with the linear response equations of static RDMFT

(see Sect. 3.1)
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• The diagonal double excitations are properly accounted for without destroying

the important symmetry of the response function, χ ωð Þ ¼ χ* �ωð Þ
• The PILS functional is a proper PINO functional, so the exact PINO functional is

known for the two-electron system

The dimensionality of the response equations can be reduced by half by elim-

inating the imaginary components from the response equations, giving

ω2 � Aþ N�1A�N�1 N�1C

CTN�1 W

� �� �
δγR ωð Þ
δn ωð Þ

� �
¼ Aþ δvR ωð Þ

δvD ωð Þ=2
� �

; ð136Þ

which immediately demonstrates that indeed all the roots occur both at +ω and�ω.
The dimensionality of the TD-PINO response equations (m(m + 1)/2) is signifi-

cantly larger than in TDDFT, where only the transitions between the occupied and

unoccupied KS orbitals need to be taken into account (so the dimension would be

only m� 1 for two electrons). Though the results from the adiabatic TD-PINO

equations are far superior to those from adiabatic TDDFT, the computational cost is

equivalent to a full CI calculation. However, one would expect that the transitions

between all the low occupied PINOs are not important for the description of low

lying excited states. Test calculations have been performed where only transitions

from the k highest occupied PINOs to all other PINOs are taken into account. No

reduction was made in δn(ω), because its full treatment turned out to be important

for particle number conservation.

Indeed, calculations with low values of k demonstrated that the polarizabilities

[147], excitations [156], and oscillator strengths [157] are in excellent agreement

with the exact results. Taking transitions from only the highest occupied PINO into

account (k¼ 1) gives reasonable results for the low lying excitations of the hydro-

gen molecule at its equilibrium. To take properly into account the static correlation

effects on the excitation spectrum, one also needs transition from the 1σu PINO,

because that PINO also obtains a significant occupation when the bond is stretched.

The truncation to k¼ 2 already gives results very close to the exact ones along the

complete bond-breaking coordinate. Going to k¼ 3 only provides a small additional

improvement over k¼ 2.

The same idea has also been tested in the time-domain [155, 158]. The same

effect as in the frequency-domain has been observed: only a small number of the

highest occupied PINOs need explicitly to be taken into account to give a reliable

description of the physical processes. This is particularly interesting for the calcu-

lation of the double ionization yield of He in strong laser fields, which needs an

accurate description of non-sequential double ionization, a highly correlated pro-

cess [159, 160]. An accurate account of the non-sequential double ionization

process has only been given in one dimension by solving the full many-body

Schr€odinger equation for a one-dimensional He model [161]. A full three-

dimensional treatment is still out of reach, because the grid (number of basis

functions) needs to be very large to describe the electrons moving very far away

from the nucleus and coming back. In a one-dimensional pilot study it has been
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demonstrated that only ten PINOs are sufficient to give a quantitative prediction of

the double ionization yield [162], so an accurate three-dimensional calculation

should now come within reach.

The main challenge is to make the PINO approach applicable to systems with

more than two electrons. For the two-electron system it is clear how to define the

PINO phase factors which gives a very simple expression for the two-body effects,

W, and is even exact. For systems with more electrons, it is not so clear what a

suitable and convenient definition for the PINO phase would be and which prefer-

ably reduces to the exact functional for two electrons. For multi-electron systems

which only have one electron pair constituting a chemical bond (Li2 and LiH for

example), one can try to use a Hartree–Fock (HF) functional for the core electrons

and the PILS functional for the “HONO” which is the highest strongly occupied

natural orbital and some encouraging results have already been obtained for

diatomic molecules with a single chemical bond [163].

A different route is also explored by combining features from the PINO response

equations to the extended RPA equations [164, 165] obtained from Rowe’s equa-
tion of motion framework [166]. The advantage is that the response matrices are

now formulated as partial contractions of the 1-RDM and 2-RDM instead of

functional derivatives with respect to PINOs and occupation numbers. This

makes it easier to use other sources for approximate 2-RDMs such as the APSG

wavefunction or other correlated methods. However, the APSG wavefunction can

also be used to construct a PINO functional (62). The adiabatic PINO response

equations with the APSG functional are actually identical to those obtained by

applying time-dependent response theory to the APSG wavefunction directly

[165]. Calculations on small molecular systems have demonstrated that the lowest

excitation energies for the APSG functional (62) are in very good agreement with

more sophisticated approaches. Higher excitation energies seem to be less reliable.

Experiments using a range-separated version of the APSG functional indicate a

shortcoming of the APSG functional rather than an inherent limitation of the

adiabatic TD-PINO linear response equations [165]. However, more evidence

needs to be gathered before we can make any conclusive statement.

6 Summary and Outlook

Reduced density matrix functional theory is a promising approach to the problem of

electron correlation based on the existence of a functional of the one-electron

reduced density matrix (1-RDM). One-electron components of the total energy,

i.e. the kinetic part and the external potential interaction, are explicitly given in

terms of 1-RDM. The electron–electron interaction functional, the two-electron

part of the energy, is well defined, cf. (10), but its practical exact realization remains

unknown. A formalism that would lead to systematically more accurate and effi-

cient approximations to Eee[γ] is not available. By “efficient” we mean approxima-

tions that would avoid searching for minimizing wavefunctions or ensembles
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proposed in constructions given in (9) or (10), and would be competing in compu-

tational efficiency with one-electron methods. Over the years different approaches

to construct approximate functionals have been explored, some of them leading to

successful functionals. The first generation of functionals such as BB (20), GU (22),

or CHF (23) has turned out to be insufficiently accurate for molecules and extended

systems. Their failure in predicting potential energy curves of diatomic molecules

has led to realizing the importance of incorporating orbital structure of the exact

two-electron functional into approximate N-electron functionals. A series of BBC

(41)–(43) functionals and the recent ELS (44) functional have emerged as a result

of a careful analysis of the orbital structure of the energy expression obtained from a

size-consistent CI ansatz. The orbital structure of the most accurate BBC functional

– BBC3 – leads to accurate potential energy curves of simple molecules. Because of

numerical problems with selecting bonding and antibonding orbitals, assumed in a

definition of BBC3 [see (43)], an “automated” version has been proposed – the AC3

functional [40]. The orbital structures of the BBC3, AC3, and ELS functionals

account for that of the exact two-electron functional necessary to provide a correct

description of electron-pair dissociation.

Almost all approximate electron–electron interaction functionals proposed so far

are the so-called “JK-only” functionals, i.e., they include only two-electron inte-

grals of the Coulomb and exchange type. In [76] Kollmar addressed the question of

accuracy of the most general “JK-only” variational energy expression. Based on his
findings, one is driven to a conclusion of fundamental importance for functional

development. Namely, the limits of accuracy of the variational “JK-only” func-

tionals are set by a pair-excited CI ansatz (67) that leads to the best “JK-only”
energy expression [41]. This ansatz is known to be insufficiently accurate for

chemical problems. It has been shown in [76] that variational (bounded from

below by an exact ground state energy) “JK-only” functionals unavoidably miss a

significant portion of the dynamic electron correlation. Therefore, successful var-

iational functionals should include other than Coulomb and exchange integrals or

one should not try to impose variationality in developing accurate and versatile

“JK-only” functionals.
Another class of functionals – Piris natural orbital functionals (PNOF’s)

[cf. (51)] – are also of “JK-only” type. They have been proposed by employing a

cumulant expansion given in (28) and approximating two-electron reduced density

matrix elements in terms of the natural occupation numbers. Reconstruction of

2-RDM in terms of 1-RDM is guided by N-representability conditions for 2-RDM.

PNOFs, especially one of the latest ones, PNOF5, have been extensively tested for

predicting energy and different properties of molecules of diversified electronic

structure. PNOF5 is particularly successful in describing systems for which static

electron correlation is nonnegligible. At the same time, it has become apparent that

this functional misses an important part of dynamic correlation, which seriously

plagues its performance for some systems. These findings are perfectly understand-

able because, as a variational “JK-only” functional, PNOF5 inherits the aforemen-

tioned limitations of the best “JK-only” functional. Thinking about the possible

ways of developing functionals based on reconstructing 2-RDM in terms of
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1-RDM, it is evident that retaining solely Coulomb and exchange integrals in the

functional and reconstructing N-representable 2-RDM would lead to a variational

functional deficient in accounting for dynamic electron correlation. However, N-
representability conditions for 2-RDM employed in developing novel functionals

are of necessary but insufficient character. Consequently, functionals resulting from

employing a reconstructional approach are not necessarily variational. As a result,

they can yield lower energy than the best “JK-only” functional if the limited “JK-
only” form is properly compensated by the lack of N-representability of the

underlying 2-RDM.

BBC, ELS, or PNOF functionals are orbital-dependent and, by incorporating a

subtle orbital structure of the exact two-electron functional, they are more appro-

priate for molecular systems than for solids. A functional proposed to work mainly

for extended systems is the power functional (80) with the value of the power α
found empirically. Because of a simple form of the power functional its optimiza-

tion is highly efficient. Taking into account that its form has been proposed rather

ad hoc without imposing any exact conditions, it is remarkable how well it works

for solids. The most spectacular application of the power functional is for Mott

insulators which are properly predicted to be nonmetallic [84]. In general, power

functional cannot compete with the BBC3 or the recent PNOF functionals in

describing the electronic structure of molecular systems.

It should be mentioned that most of the functionals have been proposed in spin-

restricted formulation but extensions to open-shell systems are also available

[167]. So far, RDMFT for high-spin systems has been tested for only a limited

set of systems.

Size-consistency is another property that a useful functional should possess.

Apart from the BB or power functionals, most of the other available approximations

are, in principle, not size-consistent. However, in [168] it has been shown that

violation of size-consistency is negligible for BBC, AC3, and ML functionals.

Undoubtedly there has been significant progress in the last 10 years in the

development of methods in RDMFT. More accurate and versatile functionals

have been proposed. Surprisingly, the “JK-only” form has not yet been fully

exploited and the most recent functionals, ELS [42] and PNOF6 [48], still stay

within this form. As has been discussed, future functionals can either include other

integrals than Coulomb and exchange or stay within the “JK-only” form at the price

of abandoning variationality from the start. Unfortunately, development of

RDMFT-based methods is hindered by slow advances in improving computational

efficiency of optimization algorithms for density matrix functionals. The lack of

sufficiently fast methods has not allowed for application of the existing functionals

to systems consisting of more than a few tens of electrons. Only the very recently

proposed local-RDMFT approach [104] holds any promise of extending limits of

the size of systems that can be treated with RDMFT by at least one order of

magnitude.

The practical use of a time-dependent version of RDMFT has recently been

explored to calculate excitation energies and other frequency-dependent response

properties. A rigorous mathematical foundation for TD-RDMFT is still lacking,
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because the Runge–Gross proof [138] cannot straightforwardly be extended to

1-RDMs and non-local potentials. Not only is the mathematical foundation of

TD-RDMFT more challenging than in TDDFT, but also the formulation of a

satisfactory adiabatic approximation has turned out to be rather involved. The

standard adiabatic approximation (same as in TDDFT) leads to a mismatch between

the static response equations and the frequency-dependent response equations in

their ω! 0 limit. This problem can be mitigated by assuming an instantaneous

response of the natural occupation numbers. Nevertheless, important diagonal

double excitations are still missing and a justification for the use of the PILS

functional, which is not a proper 1-RDM functional, is still lacking. All these

problems are solved by augmenting the time-dependent 1-RDM with explicit

phase-factors for the natural spinorbitals. The TD-PINO equations have all the

desired properties of a decent adiabatic approximation. In contrast to TDDFT, even

in the adiabatic approximation, the TD-PINO response equations are able to

describe excitations of double and bond-breaking character and charge transfer

excitations are also recovered without difficulty. A confirmation of this statement

has been delivered by the results for the H2 and HeH+ molecules, obtained within

the adiabatic TD-PINO formalism with the PILS functional and the extended RPA

results with the APSG density matrices. The latter approach has been shown to be

equivalent to the adiabatic TD-PINO if the APSG functional is employed [165] and

has been tested on several small molecules. Even though it recovers certain double

excitations, its overall accuracy is not satisfactory. The main challenges in the time-

dependent direction are to formulate a general definition for the PINO phase factors

to develop functionals for N-electron systems and to establish a proper mathemat-

ical foundation.
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