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1 Introduction

Excited states have been studied in wave function theory by both excited state

variational theories and ground state response methods [1, 2]. Either approach has

been used extensively and is considered complementary and, in principle, able to
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afford estimates to any desired degree of accuracy. Given the status of Kohn–Sham

density functional theory (KS-DFT) as a ground state theory, the natural path to

excited states in KS-DFT would seem to be the ground state response approach. In

fact, Runge and Gross [3] have formulated a time-dependent density functional

ground state response theory (TDDFT) which in principle should be able to

describe excited state properties without approximations. TDDFT in its exact

form requires knowledge of the “true” ground state functional and of the frequency

dependence of the energy response kernel corresponding to this functional. In

practical calculations, use is made of approximate ground state functionals and

the frequency dependence of the kernel is neglected in what has now become

known as the adiabatic TDDFT approach (ATDDFT) [4–9]. For more than two

decades the ATDDFT approach has remained the method of choice in DFT-based

studies of excited states and both its merits and limitations have been studied in

great detail [10–33]. Progress beyond the adiabatic approximation has, on the other

hand, been slow, although work in this direction is ongoing [34–36].

Long before TDDFT, Slater introduced a variational DFT approach to excited

states called ΔSCF [37, 38]. Excited states are reached in this scheme by promoting

electrons from occupied to virtual ground state levels followed by a KS calculation

on the new electron configuration. The ΔSCF approach has met with considerable

success for those lower excited states which can be represented by a single orbital

replacement (SOR) [39–49]. However, it is plagued by SCF-convergence problems.

Further, as it applies a ground state functional in a variational excited state

calculation, it is considered somewhat ad hoc [50] and without any theoretical

foundation [51–53]. Nevertheless, Van Voorhis et al. [39] have recently put for-

ward some theoretical justifications for ΔSCF and Besley et al. [42, 43] and Park

et al. [44] have addressed the SCF-convergence issue. Apart from ΔSCF, there are a
number of interesting variational DFT approaches to the study of excited states.

They include ensemble DFT [54–59], variation of bifunctionals [60], and excited

state perturbation theory [61]. They are discussed elsewhere in this volume.

The use of a ground state functional in variational excited state calculations

seems intuitively appealing from the point of view that electron correlation should

be quite similar in the ground and excited states, at least in the lower valence region.

In fact, based on this notion we introduced in 2009 the constricted variational DFT

method (CV-DFT) for excited states [29]. In this theory we allow for an admixture

of virtual ground state orbitals ψa; a ¼ 1, virf g into each of the occupied ground

state orbitals ψ j; j ¼ 1, occ
� �

, according to

ψ i ¼
Xvir
a

Uaiψa ð1Þ

The ansatz in (1) makes it possible to construct occupied excited state orbitals

and evaluate the corresponding excited state energies based on the ground state

functional to any desired order n in the variational mixing matrix U. Such a
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procedure gives rise to the nth order CV-DFT scheme designated as CV(n)-DFT
[26–28].

We start this review by an outline of the CV(n)-DFT theory. This framework

enables us to identify ATDDFT and ΔSCF as special cases of the CV(n)-DFT
scheme with ATDDFT being equivalent to CV(2)-DFT [29, 62] whereas ΔSCF
corresponds to CV(1)-DFT under the simplifying assumption that the excited state

under investigation can be described by a single orbital replacement i ! að Þ [27,
44]. The theoretical exposition is followed by first assessing the general perfor-

mance of CV(n)-DFT in connection with applications to n ! π* [26–67] and

π ! π* [27] transitions in organic molecules. After that we demonstrate that CV

(n)-DFT is able to deal with a number of transitions where the performance of

ATDDFT based on local and hybrid functionals is problematic. These transitions

involve π ! π* excitations in organic dyes [64, 65] as well as π ! π* transitions in
charge transfer adducts [30] and Rydberg excitations for atoms and small molecules

[66]. We finally discuss future directions for the development and application of the

CV(n)-DFT scheme.

2 Constricted Variational Density Functional Theory

We have recently introduced a variational approach based on density functional

theory for the description of excited states [29, 31]. In this constricted variational

density functional theory, CV-DFT, we carry out a unitary transformation among

occupied ϕi; i ¼ 1, occf g and virtual ϕa; a ¼ 1, virf g ground state orbitals:

Y
ϕocc

ϕvir

� �
¼ eU

ϕocc

ϕvir

� �
¼

X1
m¼0

Uð Þm
m!

 !
ϕocc

ϕvir

� �
¼ ϕ

0
occ

ϕ
0
vir

� �
ð2aÞ

Here ϕocc and ϕvir are concatenated column vectors containing the sets

ϕi; i ¼ 1, occf g and ϕa; a ¼ 1, virf gwhereas ϕ0
occ and ϕ

0
vir are concatenated column

vectors containing the resulting sets ϕ
0
i; i ¼ 1, occ

� �
and ϕ

0
a; a ¼ 1, vir

� �
of

occupied and virtual excited state orbitals, respectively. The unitary transformation

matrix Y in (2a) is expressed in terms of a skew symmetric matrix U as

Y ¼ eU ¼ Iþ Uþ U2

2
þ � � � ¼

X1
m¼0

Um

m!
¼
X1
m¼0

U2
� �m
2m!

þ U
X1
m¼0

U2
� �m
2mþ 1ð Þ! ð2bÞ

If the summation in (2a) and (2b) over m is carried out tom¼ n we talk about nth
order CV-DFT or CV(n)-DFT. Above Uij ¼ Uab ¼ 0 where “i,j” refer to the

occupied set ϕi; i ¼ 1, occf g whereas “a,b” refer to ϕa; a ¼ 1, virf g. Further, Uai

are the variational mixing matrix elements of (1) which combines virtual and

occupied ground state orbitals in the excited state withUai ¼ �Uia. Thus the entire
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matrix U is made up of occ� vir independent elements Uai which can also be

organized in the column vectorU
!
. For a givenU

!
we can, by means of (2a) and (2b),

generate a set of “occupied” excited state orbitals:

ϕi

0 ¼
Xoccþvir

p

Ypiϕp ¼
Xocc
j

Yjiϕj þ
Xvir
a

Yaiϕa ð3Þ

which are orthonormal to any order in Uai.

2.1 Second Order Constricted Variational Density
Functional Theory

In the simple CV(2)-DFT theory [29] the unitary transformation of (2a) and (2b) is

carried out to second order in U. We thus obtain the occupied excited state orbitals

to second order as

ϕ
0
i ¼ ϕi þ

Xvir
a

Uaiϕa �
1

2

Xocc
j

Xvir
a

UaiUaj ð4Þ

from which we can generate the excited state Kohn–Sham density matrix to second

order as

ρ0 1, 10ð Þ ¼ ρ 0ð Þ 1, 10ð Þ þ Δρ0 1, 10ð Þ ¼ ρ 0ð Þ 1, 10ð Þ
þ
Xocc
i

Xvir
a

Uaiϕa 1ð Þϕ*
i 10ð Þ þ

Xocc
i

Xvir
a

U*
aiϕ

*
a 10ð Þϕi 1ð Þ

þ
Xocc
i

Xvir
a

Xvir
b

U*
aiUbiϕa 10ð Þϕ*

b 10ð Þ �
Xocc
i

Xocc
j

Xvir
a

U*
aiUajϕi 1

0ð Þϕ*
j 10ð Þ

ð5Þ

The expression for ρ 0 (1, 1 ’) now makes it possible to write down the

corresponding excited state Kohn–Sham energy to second order as

EKS ρ0 1, 10ð Þ½ � ¼ EKS ρ0½ � þ
X
ai

UaiU
*
ai ε

0
a � ε0i

� �þX
ai

X
bj

UaiU
*
bjKai,bj

þ 1

2

X
ai

X
bj

UaiUbjKai, jb þ 1

2

X
ai

X
bj

U*
aiU

*
bjKai, jb þO U 3ð Þ

h i
:

ð6Þ
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Here EKS[ρ
0] is the ground state energy and “a,b” run over virtual ground state

canonical orbitals whereas “i,j” run over occupied ground state canonical orbitals.

Further,

Kru, tq ¼ KC
ru, tq þ KXC

ru, tq ð7Þ

where

KC
ru, tq ¼

ð ð
ϕ*
r 1ð Þϕu 1ð Þ 1

r12
ϕt 2ð Þϕ*

q 2ð Þdv1dv2 ð8Þ

whereas

K
XC HFð Þ
ru, tq ¼ �

ð ð
ϕ*
r 1ð Þϕt 2ð Þ 1

r12
ϕu 2ð Þϕ*

q 1ð Þdv1dv2 ð9aÞ

for Hartree–Fock exchange correlation and

K
XC KSð Þ
ru, tq ¼ δ msr;msuð Þδ mst;msq

� �ð
ϕ*
r r

!
1

� 	
ϕu r

!
1

� 	
f msr ;mstð Þ ρ0

� �h i
ϕt r

!
1

� 	
ϕ*
q r

!
1

� 	
dr
*

1

ð9bÞ

for DFT exchange correlation. In (9a) msr ¼ 1=2 for a spin orbital ϕr(1) of α-spin
whereas msr ¼�1=2 for a spin orbital ϕr(1) of β-spin. In addition, the kernel

f (τ,υ)(ρ0) is the second functional derivative of EXC with respect to ρα and ρβ:

f τ,υ ρ0α; ρ
0
β

� 	
¼ δ2EXC

δρτδρυ

� �
0

τ ¼ α, β ; υ ¼ α, β: ð10Þ

Finally for KS exchange we have the case whereϕu r
!

1

� 	
,ϕq r

!
1

� 	
have the same

(α) spin whereas ϕr r
!

1

� 	
,ϕt r

!
1

� 	
are of the other (β) spin. In this case we have,

according to Wang and Ziegler [67–69],

K
KS XCð Þ
ru, tq

¼ 1

2

ð 

ϕ
*

r r
!
1

� 	
ϕu r

!
1

� 	
ϕt r

!
1

� 	
ϕ*
q r

!
1

� 	 1

s0
δEXC

δρα
� δEXC

δρβ

 ! !
ρ0;s0ð Þ

24 35d r!1

ð11Þ

In (11) the integration is over space and ϕr r
!
1

� 	
,ϕt r

!
1

� 	
are the spatial parts of

orbitals with β-spin. The evaluation of K
KS XCð Þ
ru, tq

by numerical integration might lead

to numerical instabilities if s0 ¼ ρα � ρα � 0. We can, in that case, carry out a Taylor

expansion of ∂EKS
XC=∂ρα,∂E

KS
XC=∂ρβ from ρ¼ ρα þ ρβ and s0 ¼ 0. Thus
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K
KS XCð Þ
ru,tq

¼1

2

ð
ϕ
*

r r1ð Þϕu r1ð Þϕt r1ð Þϕ*
q r1ð Þ

h i1
2

δ2EXC

δ2ρα
þδ2EXC

δ2ρβ
�2

δ2EXC

δραδρα

 !
ρ0;s0ð Þ

24 35dr1
¼KKS,XC

ru,tq �KKS,XC
rt,uq

ð12Þ

where KKS,XC
ru,tq ,KKS,XC

rt,uq
are defined in (9a) and (9b). The expression in (12) is

numerically stable and has no singularities for s0¼0. Finally, ε0i ,ε
0
a in (6) are the

ground state orbital energies of ϕi(1) and ϕa(1), respectively.

2.2 Equivalence Between Adiabatic TDDFT and Second
Order Constricted Variational Density Functional
Theory

In second order variational density functional theory (CV(2)-DFT) we seek points on

the energy surface EKS[ρ ’] such that ΔEKS Δρ0½ � ¼ EKS ρ0½ � � EKS ρ0½ � represents

transition energy. Obviously, a direct optimization ofΔEKS[Δρ 0] without constraints
results in ΔEKS Δρ0½ � ¼ 0 and U ¼ 0. We [29] now introduce the constraint that the

electron excitation must represent a change in density Δρ 0 in which one electron in

(5) is transferred from the occupied space represented by Δρocc ¼ �
X

ija
UaiU

*
ajφi

1
0� �
φ*
j 1ð Þ to the virtual space represented by Δρvir ¼

X
iab
UaiU

*
biφa 10ð Þφ*

b 1ð Þ.
Integration of Δρocc and Δρvir over all space affords

�Δqocc ¼ Δqvir ¼
X

ai
UaiU

*
ai. We thus introduce the constraint

X
ai
UaiU

*
ai ¼ 1.

Constructing next the Lagrangian L ¼ EKS ρ0½ � þ λ 1�
X

ai
UaiU

*
ai

� 	
with λ being a

Lagrange multiplier and demanding that L be stationary to any real variation in

U results in the eigenvalue equation

AKS þ BKS
� �

U
! Ið Þ

¼ λ Ið ÞU
! Ið Þ

ð13aÞ

where

AKS
ai,bj ¼ δabδij ε

0
a � ε0i

� �þ KKS
ai,bj; BKS

ai,bj ¼ KKS
ai, jb: ð13bÞ

We can now from (13a) determine the sets of mixing coefficients

U
! Ið Þ

; I ¼ 1, occ� vir

� �
which make L stationary and represent excited states.

The corresponding excitation energies are given by λ(I ), as can be seen by
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substituting U
! Ið Þ

into (6) and making use of the constraint and normalization

condition U
! Ið Þþ

U
! Ið Þ

¼ 1 after multiplying on both sides with U
! Ið Þþ

.

Within the Tamm–Dancoff approximation [70], (13a) reduces to

AKSU
! Ið Þ

¼ λ Ið ÞU
! Ið Þ

ð14Þ

which is identical in form to the equation obtained from ATDDFT in its adiabatic

formulation [3–9] after applying the same Tamm–Dancoff [70] approximation

(ATDDFT-TD). We have recently shown [62] that CV(2)-DFT without the

Tamm–Dancoff approximation is equivalent to the full adiabatic TDDFT scheme

developed by Gross [3], Casida [4], and others [5–9].

2.3 Perturbative All Order Constricted Variational Density
Functional Theory

Having determined U
! Ið Þ

from (14) allows us [28] to turn to a discussion of how we

construct the proper energy expression for excited singlet states originating from a

closed shell ground state. We first consider a spin-conserving transition from a close

shell ground state and assume without loss of generality that the transition takes

place in the α-manifold. In this case we can write the occupied excited state

KS-orbitals generated from the unitary transformation of (2a) and (2b) as [28, 71]

ϕ
0
i ¼ cos ηγi½ �ϕoα

i þ sin ηγi½ �ϕvα
i ; i ¼ 1, occ=2 ð15Þ

and

ϕ
0
i ¼ ϕi; i ¼ occ=2þ 1, vir ð16Þ

whereas the corresponding KS-determinant is given by

ΨM ¼ ϕ
0
1ϕ

0
2 . . .ϕ

0
iϕ

0
j . . .ϕ

0
n




 


 ð17Þ

Here ΨM represents a mixed spin-state [40] which is half singlet and half triplet.

Further, γi i ¼ 1, occ=2ð Þ is a set of eigenvalues to

Vααð Þ{ Uααð Þ Wααð Þ ¼ 1γ ð18Þ

where γ is a diagonal matrix of dimension occ/2 whereas Uαα is the part of the

U matrix which runs over the occupied ϕi; i ¼ 1, occf g and virtual ϕa; a ¼ 1, virf g
ground state orbitals of α-spin [28, 71]. Further,
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ϕoα
i ¼

Xocc=2
j

�
Wαα

�
jiϕj ð19Þ

and

ϕvα
i ¼

Xocc=2
a

�
Vαα
�
aiϕa ð20Þ

Finally, η is determined in such a way that
Xocc=2

i¼1
sin 2



ηγi
� ¼ 1, corresponding to

the constraint that exactly one electron charge is involved in the transition [28]. The

orbitals defined in (19) and (20) have been referred to as Natural Transition Orbitals

(NTO) [72] because they give a more compact description of the excitations than

the canonical orbitals. Thus, a transition involving several i ! a replacements

among canonical orbitals can often be described by a single replacementϕoα
i ! ϕvα

i

in terms of NTOs. We note again that the set in (16) is obtained from the unitary

transformation (2a) and (2b) among the occupied ϕi : i ¼ vir=2þ 1, virf g and

virtual ϕa; i ¼ 1, vir=2f g ground state orbitals of α-spin with U represented by Uαα.

For a spin-flip transition from a closed shell ground state the unitary transfor-

mation (2a) and (2b) among the occupied ground state orbitals ϕi; i ¼ 1, occ=2f g of
α-spin and the virtual ground state orbitals ϕa; i ¼ vir=2þ 1, virf g of β-spin yields

the occupied excited state orbitals

ϕ
00
i ¼ cos ηγ

0
i

h i
ϕoα
i þ sin ηγ

0
i

h i
ϕ
vβ
i ; i ¼ 1, occ=2 ð21Þ

and

ϕ
00
i ¼ ϕi ; i ¼ occ=2þ 1, vir ð22Þ

whereas the corresponding KS-determinant is given by

ΨT ¼ ϕ
00
1ϕ

00
1 . . .ϕ

00
iϕ

00
j . . .ϕ

00
n




 


 ð23Þ

Here ΨT represents a triplet state. Further, γi i ¼ 1, occ=2ð Þ are the eigenvalues to

Vβα
� �{

Uβα
� �

Wβα
� � ¼ 1γ0 ð24Þ

where Uβα is the part ofU which runs over the virtual ground state orbitals of β-spin
and occupied ground state orbitals of α-spin. Finally
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ϕoα
i ¼

Xocc=2
j

�
Wβα

�
jiϕj ð25Þ

and

ϕ
vβ
i ¼

Xa¼vir

a¼vir=2þ1

�
Vβα
�
aiϕa ð26Þ

With the excitation energy of ΨT given by ΔET and that of ΨM by ΔEM, we can

write the singlet transition energy as [40]

ΔES ¼ 2ΔEM � ΔET ð27Þ

provided thatUαα ¼ Uβα. This implies thatVαα ¼ Vβα,Wαα ¼ Wβα, and γ ¼ γ0. As
a result, ϕoα

i of (19) and (25) become identical as do the spatial parts of ϕvα
i in (20)

and ϕ
vβ
i in (26). Straightforward manipulations [27, 28] allow us finally to write

down the mixed state transition energy to all orders in U in a compact and closed

form as

ΔEM ¼
Xocc=2
i¼1

sin 2


ηγi
�
εivα � εioαð Þ

þ 1

2

Xocc=2
i¼1

Xocc=2
j¼1

sin 2 ηγi½ � sin 2


ηγj
�
Kioα ioα joα joα þ Kivα ivα jvα jvα � 2Kioα ioα jvα jvα
� �

þ
Xocc=2
i¼1

Xocc=2
j¼1

sin ηγi½ � cos ηγi½ � sin 
ηγj� cos ηγj

 �

Kioα ivα joα jvα þ Kioα ivα jvα joα
� �

þ 2
Xocc=2
i¼1

Xocc=2
j¼1

sin ηγi½ � sin ηγi½ � sin 
ηγj� cos ηγj

 �

Kivα ivα joα jvα

� 2
Xocc=2
i¼1

Xocc=2
j¼1

sin ηγi½ � sin ηγi½ � sin 
ηγj� cos ηγj

 �

Kioα ioα joα jvα

ð28Þ

for spin-conserving transition from a close shell ground state. More details are

given in Sect. 2.4. Here the indices ioα , joα , ivα , and jvα refer to α-spin orbitals with the
spatial parts ϕoα

i ,ϕoα
j ,ϕvα

i , and ϕvα
j , respectively. The expression for the

corresponding triplet transition energy reads
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ΔET ¼
Xocc=2
i¼1

sin 2


η0γ

0
i

�
εivβ � εioαð Þ

þ 1

2

Xocc=2
i¼1

Xocc=2
j¼1

sin 2 η0γ
0
i

h i
sin 2



η0γ

0
i

�
Kioα ioα joα joα þ Kivβ ivβ jvβ jvβ � 2Kioα ioα jvβ jvβ
� �

þ
Xocc=2
i¼1

Xocc=2
j¼1

sin η0γ
0
i

h i
cos η0γ

0
i

h i
sin


η0γ

0
j

�
cos η0γ

0
j

h i
Kioα ivβ joα jvβ

ð29Þ

Here the indices ivβ and jvβ refer to β-spin orbitals with the spatial parts ϕ
vβ
i and ϕ

vβ
i ,

respectively. More details are given in Sect. 2.4. From (28) and (29) we can readily

express ΔES using (27).

In perturbative all order constricted variational DFT (P-CV(1)-DFT) [27, 64]

we make use of the U matrix optimized to second order according to (14), which is

also the U obtained by ATDDFT-TD (CV(2)-DFT-TD). With this U we are able to

generate ΨM of (17) and ΨT of (23) by means of (2a) and (2b). From that we can

calculate ΔET and ΔES by means of (27)–(29).

2.3.1 Application of Perturbative All Order Constricted Variational

Density Functional Theory to π!π*

We have carried out ATDDFT-TD, (CV(2)-DFT-TD), and P-CV(1)-DFT calcu-

lations [27] on π! π* transitions in the series of polyenes depicted in Fig. 1 using

LDA. In the following we simplify the notation by referring to ATDDFT,

ATDDFT-TD, CV(2)-DFT-TD, and P-CV(1)-DFT-TD as TDDFT, TDDFT-TD,

CV(2)-TD, and CV(1)-TD, respectively, throughout Sect. 2.3.

The results are displayed in Table 1. We have divided theπ ! π* transitions into
a group A where each excitation is dominated by a single orbital replacement (γmax

> 1:0 ) and a group B where the excitation is best described by several orbital

replacements (γmax < 1:0). The group B transitions generally consist of two orbital

replacements involving the HOMO!LUMO+1 and the HOMO� 1!LUMO

transitions. It can be seen that the group B results for P-CV(1)-TD with a root

Ethene E-Butadiene E-Hexatriene E-Octatriene

Cyclopropene Cyclopentadiene Norbonadiene Naphthalene

Fig. 1 Molecules used in the study of π ! π* transitions based on P-CV(1)-DFT
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mean square deviation (RMSD) of 0.34 eV compared to the best [73] wave function

results constitute an improvement over the TDDFT-TD excitation energies with an

RMSD of 0.51 eV. For the group A transitions we also note an improvement in

going from TDDFT-TD with RMSD¼ 0.48 eV to CV(1)-TD with

RMSD¼ 0.35 eV. From experience so far [27, 64] it seems that CV(1) can be

used with advantage in studies of π ! π* transitions involving dyes employing

simple local functionals.

2.3.2 Application of Perturbative All Order Constricted Variational

Density Functional Theory to Acenes

The singlet 1La and
1Lb π ! π* excitations in linear polyacenes represent a set of

benchmark excitations which have been studied extensively both experimentally

Table 1 Results from TDDFT-TD and CV(1)-TD calculations on excitation energiesa for π to

π* transitions in polyenes using LDA

Group State Bestb TDDFT-TDc CV(1)-TD γmax
d

Ethene A B1u 7.80 8.44 8.39 1.177

Butadiene A Bu 6.18 6.16 6.10 1.174

B Ag 6.55 6.24 6.70 0.841

Hexatriene B Ag 5.09 5.03 5.36 0.787

A Bu 5.10 5.05 4.93 1.200

Octatetraene B Ag 4.47 4.17 4.42 0.799

A Bu 4.66 4.34 4.16 1.212

Cyclopropene A B2 7.06 6.30 7.55 1.253

Cyclopentadiene A B2 5.55 5.39 5.87 1.254

B A1 6.31 6.05 6.45 0.809

Norbornadiene A A2 5.34 4.52 5.10 1.158

B B2 6.11 4.95 5.36 0.942

Naphthalene B B3u 4.24 4.20 4.39 0.788

A B2u 4.77 4.25 4.71 1.103

B B1g 5.99 4.97 5.24 0.850

B Ag 5.87 5.80 6.02 0.854

A B2u 6.33 6.12 6.09 1.043

B Ag 6.67 6.21 6.71 0.904

B B3u 6.06 6.22 6.14 0.730

B B1g 6.47 6.47 6.36 0.791

RMSD Ae 0.48 0.35

RMSD B 0.51 0.34

RMSD A+B 0.50 0.35
aEnergies in eV
bAb initio benchmark calculations [73]
cIdentical to CV(2)-TD
dMaximum γ eigenvalue for this transition; see (18)
eRoot mean square deviation in eV
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[74] and theoretically [75–78]. Here the acenes consist of a number (nr) of fused
benzene rings; see Fig. 2.

The distinct properties [74] of the 1La and
1Lb states for the linear acenes have

already been described in the literature [75–78]. Essentially, the 1La (or
1B2u when

the x-axis corresponds to the long molecular axis state) is dominated by a single

electron transition HOMO!LUMO, while the 1Lb (or
1B3u) state results from a

combination of HOMO� 1!LUMO and HOMO!LUMO+1 transitions. Fur-

ther, excitations to 1La (
1B2u) are short axis polarized with high intensity whereas

the transitions to 1Lb (
1B3u) are long axis polarized with low intensity.

It follows from Fig. 3a that the experimental energy gapΔE ¼ ΔE 1B2u2u
� �� Δ

E 1B3u3u
� �

starts out positive at naphthalene (nr¼ 2) with ΔE¼ 0.53 eV before

turning negative at anthracene (nr¼ 3) whereΔE¼ 0.04 eV:For larger linear acenes
ΔE becomes increasingly negative, reaching ΔE¼ 0.85 eV at hexacene. Thus,

experimentally, ΔE(1B2u) is seen to drop faster in energy than ΔE(1B3u).

Fig. 3 Excitation energies for the 1La and
1Lb transitions in linear acenes as a function of the

number of rings according to (a) experiment, (b) CV(2)-TD, (c) TDDFT, or (d) CV(1)-TD

Fig. 2 Linear acenes with up to six fused rings (nr¼ 6) considered in this study
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The ordering of the calculated CV(2)-TD (TDDFT-TD) excitation energies

based on LDA(VWN) is correct for naphthalene as well as for all other linear

acenes, although the gap differs from the experimental ΔE by almost 0.4 eV for

naphthalene, anthracene, and hexacene. This difference is smaller for naphthacene

and pentacene (Fig. 3b). It can be seen that the main contribution to this deviation

comes from the underestimation of ΔE(1B2u) Thus, the root mean square deviation

(RMSD) value for ΔE(1B2u) is 0.49 eV, while it is only 0.13 eV for ΔE(1B3u); see

Table 2.

As for the TDDFT results based on LDA(VWN), the deviation from the exper-

imental gaps is larger in absolute terms and the calculated ΔE has the wrong sign

for naphthalene (Fig. 3c). It happens because the ΔE(1B2u) values for TDDFT are

lower than those for CV(2)-TD while theΔE(1B3u) estimates for TDDFT are higher

than for CV(2)-TD. As a result, the RMSD value for ΔE(1B2u) increases for

TDDFT by approximately 0.2 eV and reaches 0.71 eV; see Table 2. On the other

hand, on average the TDDFT estimate of ΔE(1B3u) is as accurate as for CV(2)-TD

(TDDFT-TD). Thus, the TDDFT ΔE(1B3u) values for naphthacene, pentacene, and

hexacene are closer to experiment than those from CV(2)-TD while the opposite is

true for naphthalene and anthracene. The RMSD value for TDDFT is 0.14 eV

compare to 0.13 eV for CV(2)-TD; see Table 2.

It follows from the discussion given above that neither CV(2)-TD nor TDDFT

are able to give a quantitative description ofΔE as a function of nr with LDA, in line
with previous TDDFT studies [75–78], using both pure density functionals and

hybrids. The source of the error is in all cases primarily ΔE(1B2u) which is too low

compared to experiment. However, ΔE(1B3u) is also seen to be slightly too high.

We note finally from Table 3 and Fig. 3d that the CV(1)-TD results using LDA

[64] are in excellent agreement with experiment for both ΔE(1B3u) and ΔE(1B2u)

throughout the range of linear acenes (1–6 of Fig. 4). The RMSD for ΔE(1B2u) is

0.06 eV whereas that for ΔE(1B3u) is 0.13 eV; see Table 2. Thus, CV(1)-TD

clearly represents an improvement over TDDFT and CV(2)-TD for LDA. The

improvement is, as anticipated, most noticeable for ΔE(1B2u) where the RMSD

was 0.71 eV for TDDFT and 0.49 eV for CV(2)-TD. For ΔE(1B3u) all three

methods have a similar RMSD.

We have extended [64] our benchmark calculations to include the 15 nonlinear

acenes shown in Fig. 4. The RSMDs for the singlet transition energies involving 1La

Table 2 Root mean square deviations (dRMSD) from experiment for 1La and 1Lb π ! π*
excitations calculated by TDDFT, TDDFT-TD and CV(1)-TD for linear and nonlinear acenes

using LDA

Systems

RMSD 1B2u (
1La) RMSD 1B3u (

1Lb)

TDDFT TDDFT-TDa CV(1)-TD TDDFT TDDFT-TDa CV(1)-TD

Linearb 0.71 0.49 0.06 0.14 0.13 0.13

Nonlinearc 0.52 0.40 0.24 0.16 0.15 0.19
aIdentical to CV(2)-TD
bLinear acenes of Fig. 2
cNonlinear acenes of Fig. 4
dEv
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and 1Lb are given in Table 2 for TDDFT, CV(2)-TD, and CV(1)-TD based on

LDA. 1La CV(1)-TD with an RMSD of 0.24 eV is seen to perform better than CV

(2)-TD (RMSD¼ 0.40 eV) and especially TDDFT (0.52 eV). In fact our results are

of a similar quality to the best results obtained by long-range corrected (LRC)

functionals [79]. We note again that the 1La transitions involves a single

HOMO!LUMO orbital displacement with γi ¼ π=2. For 1Lb all three methods

perform equally well with RMSDs of 0.16 eV (TDDFT), 0.15 eV(CV(2)-TD), and

0.19 eV (P-CV(1)-DFT), respectively. It is interesting to note that the LRC-

functionals [79] in this case perform much more poorly with RMSDs around

0.4 eV. Thus, CV(1)-TD at the simple LDA level is the only scheme of the

methods discussed here which gives a balanced description of π ! π* transitions

involving a single orbital displacement (1La) and π ! π* transitions with more than

one displacement.

Table 3 CV(1)-TD singlet excitation energies (in eV) for linear acenes with LDA

Number of rings

Experimenta CV(1)-TD
1B2u

1B3u ΔEb 1B2u
1B3u ΔEb

2 4.66 4.13 0.53 4.73 4.39 0.34

3 3.60 3.64 �0.04 3.68 3.73 �0.05

4 2.88 3.39 �0.51 2.91 3.32 �0.41

5 2.37 3.12 �0.75 2.35 3.03 �0.68

6 2.02 2.87 �0.85 1.93 2.82 �0.89
aPlatt [74]
bΔE¼ΔE(1B2u)�ΔE(1B3u)

1 32 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 4 Nonlinear acenes with up to six fused rings (nr¼ 6) considered in this study
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For the CV(1)-scheme we note that the singlet excitation energy for a transition

involving a single promotion i ! a such as 1A1g1g ! 1B2u2u according to (27)–

(29) has the simple form [27]:

ΔECV 1ð Þ
S i ! að Þ ¼ εa � εi þ 1

2
Kaaaa þ 1

2
Kiiii þ 2Kaaii � Kiiaa

� �
ð30Þ

Here i is the HOMO π and a the LUMO π* in the current study. Further, a bar “–”

indicates an orbital of β-spin. For CV(2)-TD we obtain for the same transition

according to (14) and (27)

ΔECV 2ð Þ
S i ! að Þ ¼ εa � εi þ 2Kaiai � Kaiai ð31Þ

For HF these two expressions are identical [27] because Kaaaa ¼ Kiiii ¼ 0 and

Kaiai ¼ �Kaaii. However, for any of the popular functionals this is not the case.

Thus, the two expressions give rise to different excitation energies for the same

functional. In the study at hand [27] on the 1A1g1g ! 1B2u2u transition the sum of

the K-integrals in (30) is larger than the sum of the K-integrals in (31) by 0.5 eV,

giving rise to the better performance of CV(1)-TD compared to CV(2)-TD for the
1A1g1g ! 1B2u2u transition. We note that acenes have also been well described by

the variational DFT-based spin-restricted ensemble referenced Kohn–Sham

(REKS) method [57].1

2.4 Self-Consistent All Order Constricted Variational
Density Functional Theory

Using the U matrix from TDDFT-TD or CV(2)-TD to calculateΔEM of (28) orΔET

of (29), as is done in P-CV(1)-TD, might be a good approximation. However,

ultimately, one would want to use a Umatrix which actually minimizesΔEM of (28)

or ΔET of (29). Such a procedure leads us to self-consistent CV(1)-DFT (SCF-CV

(1)-DFT) [27] which we discuss next. We note that the U matrix can also be

organized as a vector U
!
with pairs “ai” of occupied and virtual orbitals as running

numbers. The two formulations are used interchangeably in the following.

From the occupied excited state orbitals of (17) and (23) we can express the

electron density and spin matrices.2,3 Starting with a spin-conserving transition

from a close shell ground state, we can, without loss of generality, assume that it

1 See the chapter “Ensemble DFT approach to excited states of strongly correlated molecular

systems” by M. Filatov.
2 See Sect. 3.1 from part S1 of supporting information in Ziegler et al. [27].
3 See Sect. 3.3 from part S1 of supporting information in Ziegler et al. [27].
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takes place between orbitals of α-spin. Thus, for such a spin-conserving transition,

the excited state orbitals ϕ
0
i ¼ cos ηγi½ �ϕoα

i þ sin ηγi½ �ϕvα
i (15) are obtained by the

unitary transformation at (2a) and (2b) to all orders involving the part of the

U matrix (Uαα) which, according to (1), mixes occupied ground state orbitals of

α-spin with virtual ground state orbitals of α-spin. We can now write (see footnote

3) the change in density within the α-manifold caused by the excitation as

ΔρM 1; 1
0� � ¼ Xocc=2

j

sin 2 ηαγ αj

h i
φvα
j 10ð Þφvα

j 1ð Þ � φoα
j 10ð Þφoα

j 1ð Þ
h i

þ
Xocc=2
j

sin ηαγ αj

h i
cos ηαγ αj

h i
φvα
j 1ð Þφoα

j 10ð Þ þ φvα
j 10ð Þφoα

j 1ð Þ
h i

ð32aÞ

In (32a) the scaling factor ηα is introduced to ensure thatΔρα 1ð Þ 1, 10ð Þ represents
the transfer of a single electron from the occupied orbital space density

�
Xocc=2

j
sin 2 ηαγ αj

h i
φoα
j 10ð Þφoα

j 1ð Þ to the virtual orbital space densityXocc=2

j
sin 2 ηαγ αj

h i
φvα
j 10ð Þφvα

j 1ð Þ or
Xocc=2

j
sin 2 ηαγ αj

h i
¼ 1 ð32bÞ

Here the constraint of (32b) is a generalization of the corresponding second order

constraint
X

ai
UaiUai ¼ 1 used to derive (14). The change in densityΔρα 1ð Þ 1, 10ð Þ

now allows us to write the excitation energy for the spin conserving excitation

within the α-manifold as [27]

ΔEM � EKS ρ0=2þ ΔρM, ρ0=2½ � � EKS ρ0=2, ρ0=2½ �
¼
ð
FKS



ρ0=2þ 1=2ΔρM, ρ0=2

��
ΔρM

ð33Þ

Here the right hand side of (33) is derived by Taylor expanding [80]

EKS ρ0=2þ ΔρM, ρ0=2½ � and EKS[ρ
0/2, ρ0/2] from the intermediate point

ρ0=2þ ΔρM=2, ρ0=2ð Þ. Further, FKS ρ0=2þ ΔρM=2, ρ0=2ð Þ is a Kohn-Sham Fock

operator defined with respect to the intermediate point. The expression in (33) is

exact to third order in ΔρM which is usually accurate enough [80]. However, its

accuracy can be extended to any desired order [80]. Taylor expanding

FKS ρ0=2þ ΔρM=2, ρ0=2ð Þ to second order in ΔρM finally affords ΔEM of (28)

(see footnotes 2 and 3). The expression for ΔET of (29) can be derived along

similar routes.4,5

4 See Sect. 3.2 from part S1 of supporting information in Ziegler et al. [27].
5 See Sect. 3.4 from part S1 of supporting information in Ziegler et al. [27].
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2.4.1 Energy Gradient in SCF-CV(1)-DFT

We now find vectors U
! Ið Þ

which optimize ΔEM and ΔET. In either case there are

several which we order in terms of increasing energy with I¼ 1, 2. . .. To this end,

we need the energy gradient with respect to variations inU
!
. Considering first a spin-

conserving transition6 between orbitals of α-spin, we take as a starting point Uαα

which generates ϕ
0
i ¼ cos ηαγ αi


 �
ϕoα
i þ sin ηαγ αi


 �
ϕvα
i (15) the elements in

U
! Ið Þ

2ð Þ ¼ U
! Ið Þ

which have been found by solving (14) for a spin conserving transition

within the CV(2)-TD (TDDFT-TD) approximation for the Ith state. To the vector

U
! Ið Þ

corresponds the matrix Ũ0,αα and the set eγα, 0k ; k ¼ 1, occ
� �

. Next, scaling Ũ0,αα

and eγα, 0k ; k ¼ 1, occ
� �

by ηα such that
Xocc=2

j
sin 2 ηαγ αj

h i
¼ 1 affords U0,αα ¼ ηαeU0,αα and γα, 0k ¼ ηαeγα, 0k ; k ¼ 1, occ

� �
where now

Xocc=2

j
sin 2 ηαγ αj

h i
¼ 1. The

matrix Ũ0,αα is obtained from a CV(2)-TD (TDDFT-TD) calculation where Uαα and

�Uαα afford the same energy according to (14). However, in CV(1) with the

energy expression given by (28), the sign matters through the terms containing cos

[ηαγαi ]sin[η
αγαi ]. As we are dealing with a variational approach, we must pick the

sign affording the lowest energy. The same considerations apply to the P-CV(1)-

DFT approach.

Next, a Taylor expansion of ΔEM in (33) from U0,αα to Uαα ¼ U0,αα þ ΔUαα

affords

ΔEM Uααð Þ ¼ EM U0,αα
� �þX

ai

dΔEM

dΔUαα
ai

� �
0

ΔUαα
ai

þ 1

2

X
ai

X
bj

d2ΔEM

dΔUαα
ai dΔU

αα
bj

 !
0

ΔUαα
ai ΔU

αα
bj

¼ ΔEM U0,αα
� �þX

ai

gα,eai ΔU
αα
ai þ

1

2

X
ai

X
bj

Hα,α
ai,bjΔU

αα
ai ΔU

αα
bj þO 3ð Þ ΔU½ �:

ð34Þ

A component of the gradient gα;eai evaluated at U0,αα reads

6 See Sect. 4.1 from part S1 of supporting information in Ziegler et al. [27].
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g
!α,e

ai U0,αα
� � ¼ dΔEM

dΔUαα
ai

� 	
0
¼ δΔEM

δρα

� 	
0

dΔρα
dΔUαα

ai

� 	
0

¼
ð
FKS



ρ0=2þ 1=2Δρα

M, ρ
0=2
� ∂Δρ α

M

dUαα
ai

� 	
0
dv1;

ð35Þ

Here ΔUαα
ai is the change in Uαα

ai in going from U0;αα
ai and Δρα is the corresponding

change in ρα. The subscript “0” in (35) indicates that the derivatives are evaluated at

Uαα
ai ¼ U0,αα

ai . The calculation of g
!α,e

ai U0,αα
� �

in (35) requires closed form expres-

sions for dΔρα/dΔUαα
ai (see footnote 6).7

2.4.2 Optimization of U in SCF-CV(1)-DFT

With the evaluation of g
!α,e

ai U0,αα
� �

we can now begin an iterative process from

U
0,αα generated by U

! Ið Þ
2ð Þ to the optimal Uαα matrix where ΔUαα ¼ 0. A differenti-

ation of (35) by ΔUαα affords

g
!e,α

U0,αα
� �þHαα U0,αα

� �
ΔUαα ¼ 0 ð36Þ

from which we can find the next Uαα. In the initial steps where ΔU
!αα





 



� δtresh1 the

Hessian is calculated approximately by assuming that Hαα U0,αα
� � ¼ εD with

εDð Þai,bj ¼ δijδab εa � εið Þ. Here εi, εa are the energies of the occupied and virtual

ground state orbitals, respectively. We thus get for each new step

ΔU
!αα

¼ εD
� ��1

g
!e,σ

U0,αα
� � ð37Þ

If
Xocc=2

j
sin 2 ηαγ αj

h i
resulting from eU0,αα ¼ U0,αα þ ΔUαα does not satisfy (32b),

we introduce a new ηα scaling so that
Xocc=2

j
sin 2 ηαγ αj

h i
constructed from bU0,αα

¼ ηαeU0,αα satisfies (32b). After that we finally ensure that 0,αα satisfies

Tr bU0,ααUK,αα
� 	

¼ 0 for the excited states K¼ 1,I� 1 which are below the excited

state I for which we are optimizing U. This is done by introducing the projection

U0,αα ¼ bU0,αα �
XI�1

k¼1

UK,ααTr UK,ααþbU0,αα
� 	

=Tr UK,ααþUK,αα
� � ð38Þ

7 See Sect. 3.0 from part S2 of supporting information in Ziegler et al. [27].
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After that, we go back to (37) for a new step with U0,αα defined in (38). When

δtresh1 	 ΔU
!αα





 



� δtresh2, the iterative procedure is resumed by the help of the

conjugated gradient technique described by Pople et al. [81]. It is not required in

this procedure explicitly to know the Hessian. Instead, use is made of the fact that

Hαα U0,αα
� �

ΔUαα ¼ g
!e,α

U0,αα þ ΔU
� �� g

!e,α
U0,αα
� �þ O 3½ � ΔUð Þ ð39Þ

The value for δtresh1 is typically 10�2 whereas δtresh2 ¼ 10�4. Convergence is

obtained when the threshold δtresh2 is reached. Typically 20–30 iterations are

required to reach δtresh1 and 5–10 to reach δtresh2. We have also attempted more

advanced Hessians for the first part of the optimization, such as the one suggested

by Fletcher [82] and implemented by Fischer and Almlöf [83]. However, it was

found to be less robust than the simple procedure in (37). The optimization

procedure outlined here for spin-conserving transitions can readily be formulated

for spin-flip transitions [27].

2.4.3 Application of SCF-CV(1)-DFT

We have applied SCF-CV(1)-DFT to a number of nσ ! π* transitions [63] where
an electron is moved from an occupied lone-pair orbital nσ to a virtual π * orbital in
the sample of molecules shown in Fig. 5. We present the results in Table. 4. For the

sample of nσ ! π* transitions studied here it can be seen that the perturbative P-CV
(1)-DFT approach with an RMSD of 1.14 eV is inadequate and one would hope

that a full optimization of U would improve the RMSD. In fact, applying SCF-CV

(1) with complete optimization of U drops the RMSD to 0.50 eV, which is still

poorer than CV(2)-TD (TDDFT-TD) with RMSD¼ 0.33 eV. At this point it is

important to note that all the excitations in Table 4 can be represented by a single

orbital replacement nσ ! π*. However, in going from P-CV(1)-DFT to SCF-CV

(1) the π * orbital is modified, leading to a lowering of the excitation energy and a

reduction of RMSD.

On the other hand, all the other orbitals remain in P-CV(1)-DFT and SCF-CV

(1) “frozen” as they are in the ground state. That this is a severe approximation can

be seen from the ΔSCF results in Table 4 where RMSD¼ 0.32 eV. In the ΔSCF
scheme we optimize not only nσ and π * but also all other occupied orbitals in the

excited state with respect to the (nσ)
1(π *)1 configuration. It is thus obvious that we

must carry out a similar relaxation. This is done next in our SCF-CV(1)-DFT

scheme where we introduce full orbital relaxation on top of optimizing U (SCF-CV

(1)-DFT.
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2.5 Self-Consistent All Order Constricted Variational
Density Functional Theory with Orbital Relaxation

In the description of the excited state by the SCF-CV(1)-DFT scheme all occupied

β-orbitals are unchanged (frozen) from the ground state and the same is the case for

a number of α-orbitals which do not directly participate in the transition. Thus in the
case of the nσ ! π* transitions, all α-orbitals other than nσ, π * are frozen. To

remedy this, we allow in the RSCF-CV(1)-DFT [26] scheme for a relaxation to

second order in the mixing matrix Rσσ σ ¼ α, βð Þ of all occupied orbitals in the

excited state [26]. Thus,

ψ σ
i 1ð Þ ! ϕσ

i 1ð Þ þ
Xvir=2
c

Rσσ
ci ϕ

σ
c 1ð Þ � 1

2

Xvir=2
c

Xocc=2
k

Rσσ
ci R

σσ
ckϕ

σ
k 1ð Þ þ O 3ð Þ Rσ½ � ð40aÞ

ψ σ
a 1ð Þ ! ϕσ

a 1ð Þ �
Xvir=2
k

Rσσ
akϕ

σ
k 1ð Þ � 1

2

Xvir=2
c

Xocc=2
k

Rσσ
akR

σσ
ckϕ

σ
c 1ð Þ þ O 3ð Þ Rσσ½ � ð40bÞ

Replacing in (2a) the matrix Ũ which combines occupied and virtual orbitals of

the unrelaxed set ϕq; q ¼ 1, occþ vir
� �

with the corresponding matrix U which

mixes the occupied and virtual orbitals of the relaxed basis ψq; q ¼ 1, occþ vir
� �

leads to the unitary transformation

Fig. 5 Sample of molecules used in the study of nσ ! π* transitions [26]
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Table 4 Vertical singlet excitation energiesa in n! π* transitions based on B3LYP

Molecule State Bestb CV(2)c P-CV(1)c SCF-CV(1) RSCF-CV(1) ΔSCF

1 A00 6.81 5.38 6.80 6.86 5.86 5.76

2 B1 4.59 4.92 6.01 5.34 4.91 4.69

A2 5.11 5.17 7.20 6.26 5.10 5.15

3 B3u 3.95 4.09 4.08 3.99 3.88 3.85

Au 4.81 4.74 5.49 5.30 4.52 4.63

B2g 5.56 5.67 5.92 5.81 5.56 5.48

B1g 6.6 6.40 7.92 7.78 6.20 6.38

4 B1 4.55 4.37 4.94 4.72 4.19 4.14

A2 4.91 4.68 5.50 5.29 4.46 4.54

5 B1 3.78 3.74 4.50 3.99 3.64 3.55

A2 4.31 4.26 5.75 5.29 3.96 4.15

A2 5.77 5.55 5.93 5.67 5.44 5.35

6 B3u 2.29 2.41 2.43 2.30 2.11 2.15

Au 3.51 3.59 4.13 4.02 3.38 3.48

B1g 4.73 4.88 4.89 4.73 4.53 4.56

Au 5.5 5.20 5.22 5.16 4.92 4.96

B2g 5.2 5.40 5.34 5.31 5.16 5.17

7 A2 3.88 3.93 4.53 4.30 3.53 3.52

8 A2 4.4 4.41 5.19 4.84 4.01 4.02

9 B1g 2.76 2.54 2.78 2.62 2.52 2.40

Au 2.77 2.69 3.15 2.97 2.72 2.55

B3u 5.64 5.47 6.82 6.18 5.40 5.40

10 A00 5.63 5.58 6.85 6.42 5.32 5.28

11 A00 5.69 5.59 6.94 6.43 5.33 5.31

12 A00 5.72 5.60 6.94 6.37 5.33 5.34

13 A00 4.87 4.78 7.56 5.90 4.92 4.83

A00 5.26 5.17 7.32 6.43 5.58 –d

14 A00 4.82 4.74 6.75 5.73 4.78 4.59

A00 6.16 5.63 6.66 6.64 5.96 5.82

15 A00 4.80 4.66 6.83 5.74 4.75 4.54

A00 6.10 5.75 8.03 6.75 5.84 6.07

A00 6.56 5.85 6.88 6.76 6.15 –d

16 A00 5.12 5.01 5.86 5.52 4.85 4.91

A00 5.75 5.49 6.66 6.02 5.80 5.63

RMSD 0.33 1.14 0.50 0.32 0.32
aEnergies in eV
bTheoretical best estimates are from Schreiber et al. [73]
cTamm-Dancoff approximation [70]
dDid not converge

Constricted Variational Density Functional Theory Approach to the. . . 81



Y
ψocc

ψvir

� �
¼ eU

ψocc

ψvir

� �
¼

X1
m¼0

Um

m!

 !
ψocc

ψvir

� �
¼ ψ

0
occ

ψ
0
vir

� �
ð41Þ

in which the sets of relaxed occupied ψ i; i ¼ 1, occf g and virtual ψa; a ¼ 1, virf g
ground state (reference) KS-orbitals are converted into the resulting sets

ψ
0
i; i ¼ 1, occ

� �
and ψ

0
a; a ¼ 1, vir

� �
of relaxed occupied and virtual excited state

orbitals, respectively. It should be noted that the relaxed orbital set is orthonormal

to second order in R.

We now obtain for a spin conserving transition the excited state KS determinant

which can be written as

ΨM ¼ ψ
0
1ψ

0
1 . . .ψ

0
iψ

0
j . . .ψ

0
n




 


 ð42Þ

The corresponding change in density ΔρM expanded in terms of the unrelaxed

ground state orbitals takes the form

ΔρM ¼ ΔρM Uααð Þ þ ΔρR
M ð43Þ

where

ΔρM Uααð Þ ¼
Xvir αð Þ

a

Xocc αð Þ

i

ΔPai U
ααð Þ ϕα

a 10ð Þϕα
i 1ð Þ þ ϕα

a 10ð Þϕα
i 1ð Þ
 �

þ
Xvir αð Þ

ab

ΔPab Uααð Þϕα
a 10ð Þϕα

b

�
1
�þ Xocc αð Þ

ij

ΔPij U
ααð Þϕα

i 10ð Þϕα
j

�
1
� ð44Þ

is the change in density caused by Uαα alone and equivalent to (32a) but expressed

in terms of unrelaxed ground state orbitals. On the other hand

ΔρR
M ¼

Xα, β
σ

Xvir σð Þ

a

Xocc σð Þ

i

T
1ð Þσσ
ai ϕα

a 10ð Þϕα
i 1ð Þ þ ϕα

a 10ð Þϕα
i 1ð Þ
 �

þ
Xvir σð Þ

ab

T
2ð Þσσ
ab ϕσ

a 10ð Þϕσ
b

�
1
�þ Xocc σð Þ

ij

T
2ð Þσσ
ij ϕσ

i 10ð Þϕσ
j

�
1
� ð45Þ

is the change in density caused by the relaxation. Here

T
1ð Þαα
ai ¼ Rαα

ai þ
Xocc αð Þ

j

ΔPαα
ij R

αα
aj ; T

1ð Þββ
ai ¼ Rββ

ai ð46aÞ
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T
2ð Þαα
ab ¼

Xocc αð Þ

i

Rαα
ai R

αα
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Xocc αð Þ

i

Xocc αð Þ

j
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ij Uααð ÞRαα

ai R
αα
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2ð Þββ
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a

Rββ
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ββ
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ð46bÞ

T
2ð Þαα
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Xvir αð Þ

a
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Xocc αð Þ

l

Xvir αð Þ

a
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2ð Þββ
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Rββ
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ββ
aj

ð46cÞ

We obtain for the excitation energy

ΔEM ¼ ΔEM Uααð Þ þ ΔER
M ð47Þ

where

ΔEM Uð Þ ¼
Xvir αð Þ

a

εαaΔP
αα
aa Uααð Þ2 �

Xocc αð Þ

i

� εαi ΔP
αα
ii Uααð Þ2
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Xvir αð Þ
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Xocc αð Þ

i

ΔPαα
ai Uααð ÞΔPαα

bj Uααð Þ Kaαiαbαjα þ Kaαiαbαjα
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þ 1

2

Xocc αð Þ

ijkl

ΔPαα
ij Uααð ÞΔPαα

kl Uααð ÞKiαjαkαlα

þ 1

2
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abcd

ΔPαα
ab Uααð ÞΔPαα

cd Uααð ÞKaαbαcαdα

þ
Xvir αð Þ
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Xocc αð Þ
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ΔPαα
ab Uααð ÞΔPαα

ij Uααð ÞKaαbαiαjα

þ 2
Xvir αð Þ

abc

Xocc αð Þ

k

ΔPαα
ab Uααð ÞΔPαα

ck Uααð ÞKaαbαcαkα

þ 2
Xvir αð Þ

ijk

Xocc αð Þ

c

ΔPαα
ij Uααð ÞΔPαα

ck Uααð ÞKiαjαcαkα

ð48Þ

is the excitation caused by U
αα alone and equivalent to ΔEM for the SCF-CV(1)-

DFT scheme of (28) but expressed in terms of canonical and unrelaxed ground state

orbitals. Further
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ΔER
M ¼

Xα, β
σ

Xvir σð Þ

a

T 2ð Þσσ
aa εσa �

Xvir σð Þ

i
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ð49Þ

is the relaxation contribution to the excitation energy. The total energy for ΨM is

given as EM ¼ E0 ρ0ð Þ þ ΔEM Uð Þ þ ΔER
M where E0(ρ

0) is the ground state energy

expressed in terms of unrelaxed orbitals. The expression for ΔER
M is derived after

orthogonalization of ΨM to the ground state to second order in R.

We optimize ΔEM of (49) by first performing a Taylor expansion from the

starting point reference (U0,αα,R0,αα,R0,ββ) to Uαα;Rαα;Rββ
� � ¼ U0,αα þ ΔUαα,

�
R0,αα þ ΔRαα,R0,ββ þ ΔRααÞ:

EM Uαα;Rαα;Rββ
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σσ
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þO 3½ �

ð50Þ

Here the subscript “0” indicates that the derivative is evaluated at the reference

(U0,αα,R0,αα,R0,ββ). We can alternatively write the expansion in terms of energy

gradients and energy Hessians as

EM Uαα;Rαα;Rββ
� �¼ EM U0,αα;R0,αα;R0,ββ

� �þ ΔU
!αα

ΔR
!αα

ΔR
!ββ

� 	 g
!Uαα

g
!Rαα

g
!Rββ

0BB@
1CCA

þ 1

2 ΔU
!αα

ΔU
!αα

ΔU
!αα

� 	 HUαα,Uαα

HUαα,Rαα

HUαα,Rββ

HRαα,Uαα

HRαα,Rαα

HRαα ,Rββ

HRββ ,Uαα

HRββ ,Rαα

HRββ ,Rββ

0@ 1A HRββ ,Rββ

ΔR
!αα

ΔR
!ββ

0B@
1CAþO 3½ �

ð51Þ

where the expressions for the gradients g
!Uαα

, g
!Rαα

, g
!Rββ

and Hessians HUαα,Uαα

,

HRαα,Uαα
, etc. can be obtained by a comparison between (50) and (51). Specific
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formula for g
!Uαα

, g
!Rαα

, and g
!Rββ

are also given in [26] for the spin-flip transition.

For the spin conserving transition, a differentiation of (51) with respect to the

individual components of ΔU
!αα

, ΔR
!αα

, and ΔR
!ββ

affords, after rearrangement,

g
!Uαα

0ð Þ
g
!Rαα

0ð Þ
g
!Rββ

0ð Þ

0BB@
1CCAþ

HUαα,Uαα

0ð Þ HUαα,Rαα

0ð Þ HUαα,Rββ

0ð Þ
HRαα ,Uαα

0ð Þ HRαα ,Rαα

0ð Þ HRαα,Rββ

0ð Þ
HRββ ,Uαα

0ð Þ HRββ ,Rαα

0ð Þ HRββ ,Rββ

0ð Þ

0B@
1CA ΔU

!αα

ΔR
!αα

ΔR
!ββ

0B@
1CA ¼ 0 ð52Þ

from which we can find ΔU
!αα

,ΔR
!αα

,ΔR
!ββ

� �
iteratively. More details can be

found in [26] which also covers the case of spin-flip transitions.

2.5.1 Application of RSCF-CV(1)-DFT to nσ! π* Transitions

It follows from Table 4 that the RSCF-CV(1)-DFT scheme with full orbital

relaxation gives nσ ! π* transition energies which on average are within 0.15 eV

of the ΔSCF results. This is acceptable given the fact that the RSCF-CV(1)-DFT

scheme is only second order in relaxation and that it satisfies constraints not

fulfilled by ΔSCF. In comparison to the “Best” ab initio results [73], RSCF-CV

(1)-DFT fares as well as ΔSCF and CV(2)-TD (TDDFT-TD) with an RMSD of

0.32 eV. Thus, although RSCF-CV(1)-DFT is somewhat more costly (~twice) for

each transition, it does not fare much better than CV(2)-TD in those cases where the

latter is reliable and fares well. However, what we show shortly is that RSCF-CV

(1)-DFT has a similar accuracy (RMSD ~0.3–0.2 eV) where CV(2)-TD fails such

as Rydberg and charge transfer transitions.

2.5.2 Application of RSCF-CV(1)-DFT to Rydberg Transitions

We have benchmarked [66] the performance of RSCF-CV-DFT in studies on

Rydberg transitions employing five different standard functionals and a diffuse

basis; see Table 5. Our survey is based on 71 triplet or singlet Rydberg transitions

distributed over 9 different species: N2(5), CO (7), CH2O (8), C2H2 (8), H2O (10),

C2H4 (13), Be (6), Mg (6), and Zn (8). The best performance comes from the long

range corrected functional LCBP86 (ω¼ 0.4.) with an average root mean square

deviation (RMSD) of 0.23 eV. Of similar accuracy are LDA and B3LYP, both with

an RMSD of 0.24 eV. The largest RMSD of 0.32 eV come from BP86 and

LCBP86* (ω¼ 0.75). The performance of RSCF-CV-DFT is considerably better

than that of adiabatic time-dependent density functional theory (ATDDFT) and

matches that of highly optimized long range corrected functionals. However, it is

not as accurate as ATDDFT based on highly specialized functionals.
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The reasonable success of RSCF-CV-DFT is based on its well documented

ability to afford good estimates of ionization potentials (IP) and electron affinities

(EA) even for simple local functionals after orbital relaxation has been taken into

account [66]. In adiabatic time-dependent density functional theory (ATDDFT)

based on regular functionals, both IP and -EA are poorly described with errors of up

to 5 eV [66]. In the transition energy (ΔE ¼ IP� EA) these errors are cancelled to

some degree. However, ΔE still carries an error exceeding 1 eV [66].

2.5.3 Application of RSCF-CV(1)-DFT to Charge Transfer

Transitions

It has been demonstrated that regular adiabatic TDDFT employing the general

gradient approximation (GGA) as well as hybrid functionals with a fraction (α) of
exact Hartree–Fock exchange included 0:0 
 α 
 0:5ð Þ underestimate charge

transfer excitation energies by as much as 2–4 eV [24, 25, 33]. This failure has

been discussed and analyzed extensively [24, 25, 32, 33]. By contrast, ATDDFT in

conjunction with long range corrected (LC) functionals affords charge transfer

excitation energies in good agreement with experiment [33]. In these functionals,

Hartree–Fock exchange is given a growing weight towards longer inter-electronic

distances.

We have recently [30] applied the RSCF-CV(1)-DFT scheme to a series of

charge transfer molecular complexes (CTMC) of the type X-TCNE where an

aromatic molecule (X¼ benzene, toluene, o-xylene, naphthalene, anthracene) is

bound to tetracyanoethylene (TCNE) [33]. All of these complexes have one or more

distinct charge transfer transitions involving the excitation of an electron from an

Table 5 Root mean square deviations of Rydberg excitation energiesa calculated with RSCF-CV

(1)-DFT using five functionals with the extended basis set [66]

Species Nr. of States

Functionals

LDA BP86 B3LYP LCBP86b LCBP86*c

N2 5 0.27 0.34 0.05 0.23 0.62

CO 7 0.22 0.43 0.13 0.12 0.37

CH2O 8 0.21 0.28 0.12 0.20 0.34

C2H2 8 0.31 0.50 0.52 0.25 0.24

H2O 10 0.27 0.17 0.14 0.21 0.24

C2H4 13 0.15 0.20 0.28d 0.28 0.29

Be 6 0.45 0.60 0.47 0.31 0.23

Mg 6 0.18 0.35 0.19 0.13 0.12

Zn 8 0.18 0.25 0.27 0.34 0.46

Average root mean square deviation 0.24 0.32 0.24 0.23 0.32
aEnergies in eV
bRefers to LC functional combined with BP86 and ω¼ 0.4
cRepresents LC functional combined with BP86 and ω¼ 0.75
dComprised of 12 states
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occupied π-orbital on X to the empty π-orbital on TCNE. The X-TCNE complexes

were first introduced by Stein et al. [33] as a benchmark set for CT-transitions in

connection with their study on the performance of LC functionals.

The charge transfer spectrum for the series of adducts X-TCNE (X¼benzene,

toluene, o-xylene, and naphthalene, TCNE¼tetracyanoethylene) has been studied

extensively by experimental [84–88] and computational techniques [32, 89]. The

experimental investigations include both gas phase [88] and solvation studies

[85, 86] whereas the computational examinations have made use of high level ab

initio schemes [89] and methods based on density functional theory [24, 25, 32, 33].

The simple adduct between benzene and TCNE has in the ground state two

conformational minima of C2V symmetry given as 1 and 2 in Fig. 6. The minima are

calculated in both gas phase and solution to be separated by at most 0.7 kcal. Each

conformation gives rise to one allowed and one forbidden transition. These transi-

tions are to the same π * LUMO orbital of TCNE but originate from two different

HOMO orbitals on benzene; see π2 and π3 of Fig. 6. The four calculated transitions
from π2 and π3 in 1 and 2 differ by less than 0.05 eV.

It is thus not surprising that the experimental spectrum in both gas phase and

solution exhibits one (broad) CT-band at room temperature. The CT spectrum in

gas phase has a halfwidth of 0.8 eV and a maximum at 3.59 eV [88]. This maximum

is in a dichloromethane solution shifted to 3.25 eV. We exhibit in Table 6 [30] the

calculated CT-excitation energies for CV(2)-DFT, CV(1)-DFT, SCF-CV(1)-

DFT, and RSCF-CV(1)-DFT using LDA, BP86, B3LYP, BHLYP, LCBP86, and

HF.

We note in Table 6 for CV(2)-TD (ATDDFT-TD) that local functionals under-

estimate the experimental charge transfer excitation energy (3.59 eV [88]). The

calculated excitation energies are still too low for the hybrids B3LYP and BHLYP,

whereas the long range corrected functional LC-BP86 is now within 0.1 eV of

experiment. For the perturbative P-CV(1) approach, calculated ΔES values in

Table 6 are in general seen to be higher than the observed excitation energy by

more than 1 eV. This is understandable because the “excited state” determinants in

P-CV(1) are constructed from U vectors optimized with respect to CV(2)-TD.

Further, all relaxation is neglected. In the SCF-CV(1)-DFT scheme the excited

state energy is minimized with respect to U while relaxation is still neglected. This

leads to some improvement. However, the best results are obtained with RSCF-CV

Fig. 6 Conformations and frontier orbitals in the benzene-TCNE adduct
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(1)-DFT where the energy is minimized with respect to both R and U. After full
optimization in RSCF-CV(1)-DFT, the calculated excitation energies are lowered

from CV(1)-TD to values in reasonable agreement with experiment. The best fit is

provided by B3LYP (3.56 eV) and the largest deviation is observed for LC-BP86

(3.10 eV). We must conclude that the RSCF-CV(1)-DFT method in general gives

reasonably good agreement with experiment for the different DFT schemes. Thus

the RSCF-CV(1)-DFT energy expressions of (28) and (29) seem to be relatively

robust with respect to the choice of functional; see Table 6. The relaxation brings

the calculated excitation energy to 2.85 eV for RSCF-CV(1)-HF; see Table 6 [30].

We present in Table 7 [30] RSCF-CV(1) results for calculations on X-TCNE

adducts I-IV of Fig. 7 using both local functionals and hybrids together with long

range corrected (LC) functionals. We notice again that the standard functionals

LDA, BP86, B3LYP, and BHLYP all are close to experiment. The LC-BP86

functional fares somewhat worse here. However, we have not optimized the LC

parameter which usually improves the results [33]. It should be noted that the

corresponding ATDDFT results are off by 2 eV for LDA, BP86, 1 eV for B3LYP

and BHLYP [30, 33]. For optimized LC functionals the ATDDFT results are in

excellent agreement with experiment [33].

Table 6 Calculated

excitation energiesa for

benzene-TCNEf
CV(2)-TDb P-CV(1)c

SCF-CV

(1)d
RSCF-CV

(1)e

LDA 1.40 4.99 3.64 3.30

BP86 1.37 4.92 3.69 3.32

B3LYP 1.85 4.89 4.38 3.56

BHLYP 2.75 4.80 4.76 3.31

LC-

BP86

3.74 4.92 4.69 3.10

HF 4.70 4.72 4.53 2.85
aEnergies in eV
bSecond order energies identical to adiabatic TD-DFT within the

Tamm–Dancoff approximation
cEnergies to all orders in U. Matrix U taken from CV(2)
dEnergies to all orders in U. Matrix U optimized with respect to

the SCF-CV(1) energy expression
eSCF-CV(1) with orbital relaxation
fAllowed transition in conformation 2 involving the transition

from π2 of benzene to π * of TCNE

Table 7 RSCF-CV(1)

calculations on the TCNE

adducts I–IV from [30]

Functional I II III IV

LDA 3.30 2.91 2.70 2.40

BP86 3.32 2.93 2.73 2.42

B3LYP 3.56 3.19 3.05 2.44

BHLYP 3.31 3.10 2.84 2.40

LC-BP86 3.10 2.90 2.60 2.29

Exp 3.56 3.32 3.15 2.60
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In a method which predates RSCF-CV(1) we combined P-CV(n) with orbital

relaxation (RP-CV(n)) to study charge transfer transitions in a series of substituted

anthracene–TCNE systems with various groups in the meso position where n¼ 4

[31]. Our results for the series X-anthracene of Fig. 8 are given in Table 8.

Experimentally, X-anthracene with pure anthracene or alkyl substituted anthra-

cenes have smaller excitation energies than X-anthracene systems with polar

oxygen or a CN group. This order is more or less reproduced by R-CV(4)-DFT.

The functional dependence shown in Table 8 is minor. Excitation energies

Fig. 7 Adducts I–IV of Table 7

Fig. 8 Different anthracene complexes examined by the RP-CV(4)-DFT scheme

Table 8 Singlet excitation energies (in eV) for π (donor) to π* (TCNE) transitions in

X-anthracene complexes based on a TZP-basis and the RP-CV(4) scheme with different

functionals

Substituents(X) LDA BP86 BLYP BPErev SAOP GRAC SKB Exp.

None 1.69 1.71 1.66 1.73 1.60 1.71 1.82 1.73

9,10-Dimethyl 1.43 1.46 1.41 1.47 1.34 1.45 1.77 1.44

9-Carbo-methoxy 1.74 1.78 1.70 1.80 1.71 1.77 1.84 1.84

9-Chloro 1.74 1.78 1.71 1.80 1.66 1.78 1.82 1.74

9-Cyano 2.00 2.03 1.96 2.04 1.97 2.00 2.03 2.01

9-Formyl 10-chloro 2.02 2.06 1.99 2.08 1.80 2.06 1.96 1.96

9-Formyl 1.99 2.03 1.97 2.05 1.97 2.04 1.95 1.90

9-Methyl 1.48 1.50 1.45 1.51 1.44 1.49 1.71 1.55

9-Nitro 1.94 1.97 1.92 1.99 1.96 1.98 2.12 2.03

RMSD 0.06 0.07 0.08 0.07 0.10 0.07 0.10 1.73

VWN [90], BP86 [91, 92], BLYP [91, 93], revPBE [94–96], SAOP [97], SKB [33], GRAC [98]
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calculated by the GGA functionals BP86, BLYP, and revBEP differ on average by

less than 0.05 eV from LDA estimates and introducing SAOP or GRAC with the

right asymptotic 1/r behavior does not lead to any significant change. Charge

transfer transitions can also be described well by the variational DFT-based spin-

restricted ensemble referenced Kohn–Sham (REKS) method [57] (see footnote 1).

It is at this point important to note that the experimental excitation energies for

the anthracene systems were all obtained in solution with CH3Cl as the solvent. We

do not expect the solvent effect to be significant. In fact, theoretical calculations

[33] using a continuum model revealed that the excitation energies were lower by

only 0.05 eV. We have, as a consequence, decided to compare our gas-phase results

directly with the experimental solvent data. We obtain from such a comparison that

the RMSD is 0.06 for LDA followed by 0.07 for BP86, revPBE, and 0.08 for BLYP.

The two 1/r asymptotically corrected functionals afford 0.10 for SAOP and 0.07 for

CRAC. Stein et al. [33] “SKB” introduced in their DZP gas-phase study a uniform

correction of �0.32 eV to simulate solvation effects; see Table 8. The magnitude

and sign of this correction was given without much explanation [33]. After applying

their correction the authors obtained an RMSD of 0.1 which is quite similar to the

one found here for our gas-phase results without any solvent correction. It should be

noted that ATDDFT with the same functionals carries errors of up to 1 eV.

3 Concluding Remarks

We have here reviewed the theoretical foundation of constricted variational density

functional theory and illustrated its scope through applications. CV(n)-DFT encom-

passes adiabatic TDDFT and ΔSCF-DFT as special cases. Thus our variational

second order CV(2)-DFT is identical to adiabatic TDDFT ground state response

theory [29, 62] and ΔSCF-DFT is the same as RSCF-CV(1)-DFT in the case

where the transition is described by a single orbital replacement with γ of (18) equal
to π/2 [28]. CV(n)-DFT can be used as a natural extension of adiabatic TDDFT. The

first step in this direction is the perturbative P-CV(1)-DFT approach [64] in which

the U from CV(2)-DFT is used to calculate the all order energy in CV(1)-DFT [27,

64]. It is shown to work well for π ! π* transitions in conjugated systems. At a

higher level, U is optimized with respect to the all order energy in CV(1)-DFT

scheme leading to SCF-CV(1)-DFT [28]. Experience has shown [27, 63] that

optimization of U alone is insufficient. One also has to relax all the other occupied

orbitals which do not directly participate in the transition. This is done in SCF-CV

(1)-DFT by introducing orbital relaxation (RSCF-CV(1)-DFT) [26]. The RSCF-

CV(1)-DFT scheme differs from adiabatic TDDFT (CV(2)-DFT) by going to all

orders in U and by introducing orbital relaxation. The extra effort involved in

connection with RSCF-CV(1)-DFT compared to adiabatic TDDFT does not result

in improved accuracy for cases where adiabatic TDDFT fares well, such as for the

π ! π* transition [26]. However, it does not fail for charge transfer [30, 31] and

Rydberg transitions [66] in the way adiabatic TDDFT does for regular functionals.
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This is an important point in studies of absorption spectra where many different

types of transitions are present.

In CV-DFT we use approximate ground state functionals in a variational

description of the excited states. Such a procedure is consistent with AD-TDDFT

in that this theory is equivalent to CV(2)-DFT within the TD-approximation. Going

beyond the adiabatic approximation by introducing frequency-dependent kernels

consistent with the approximate ground state functional in TDDFT has proven

difficult. Here we go beyond CV(2)-DFT in a variational approach, still using an

approximate ground state functional but introducing an optimization of U based on

the KS-energy to all orders in U as well as relaxation of the inactive orbitals. It is

hoped that going beyond CV(2) in this way is equivalent to introducing a

frequency-dependent kernel in TDDFT. Obviously with such a kernel, inactive

orbitals would be different from those of the ground state and vary between excited

states as in the RSCF-CV(1) scheme. Further, with a frequency-dependent kernel

and related Hessian, the Umatrix obtained for each excited state should be different

from that determined by the ground state Hessian in AD-TDDFT, just as in the

SCF-CV(1)-DFT scheme. At present, CV-DFT has the same problems as TDDFT

with regards to bond dissociation. Work is under way to introduce doubles into the

description of one-electron transitions [99, 100]. This should ensure a prober bond

dissociation and provides for a better description of the electron spectra of polyenes

[36]. The perturbative P-CV(1)-DFT approach doubles the time required for each

excitation compared to TDDFT, whereas the increase is fivefold for RSCF-CV(1).

This might change with more efficient iterative procedures.
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