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Fractional Kohn–Sham Occupancies from

a Strong-Correlation Density Functional

Axel D. Becke

Abstract It is not always possible in Kohn–Sham density-functional theory for the

non-interacting reference state to have integer-only occupancies. Cases of “strong”

correlation, with very small HOMO-LUMO gaps, involve fractional occupancies.

At the transition states of symmetric avoided-crossing reactions, for example,

representation of the correct density requires a 50/50 mixing of degenerate

HOMOs. In a recent paper (Becke, J Chem Phys 139:021104, 2013) the “B13”

strong-correlation density functional of Becke (J Chem Phys 138:074109, 2013 and

138:161101, 2013) was shown to give excellent barrier heights in symmetric

avoided-crossing reactions. However, the calculations were performed only at

reactant and transition-state geometries, where the fractional HOMO-LUMO occu-

pancies in the latter are 50/50 by symmetry. In the present chapter, we compute full

reaction curves for avoided crossings in H2 +H2, ethylene (twisting around the

double bond), and cyclobutadiene (double-bond automerization) by determining

fractional occupancies variationally. We adopt a practical strategy for doing so

which does not involve self-consistent B13 computations (not yet possible) and

involves minimal cost. Single-bond dissociation curves for H2 and LiH are also

presented.
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1 Introduction

Kohn–Sham density-functional theory (KS-DFT) is based on a non-interacting,

single-Slater-determinant reference state having the same total density ρ as the

“real” interacting system [1–3]. The KS reference orbitals ψ i satisfy the single-

particle Schroedinger equation

�1

2
∇2ψ i þ vKSψ i ¼ eiψ i ð1Þ

where vKS is the non-interacting potential such that

ρ ¼
X
i

niψ
2
i , ni ¼ 0, 1, or 2 ð2Þ

equals the density of the real system. The KS potential is given by [2]

vKS ¼ vext þ vel þ vXC, vel ¼
ð
ρ r2ð Þ
r12

d3r2, vXC ¼ δEXC

δρ
ð3Þ

where vext is the external (one-body) potential in the real system, vel is the classical
Coulomb potential arising from the electron density, and vXC is the functional

derivative [3] with respect to the density of the “exchange-correlation” energy

EXC defined by

Etotal ¼ �1

2

X
i

ni

ð
ψ i∇

2ψ i þ
ð
ρvext þ 1

2

ðð
ρ r1ð Þρ r2ð Þ

r12
þ EXC ð4Þ

i.e., that part of the total energy containing all the quantum and correlation effects.

We restrict ourselves in this work to singlet states. Thus the occupation numbers

ni in (2) and (4) are 0 or 2 if the reference state is a single Slater determinant. Not all

quantum systems, however, can be referred to a single determinant or “configura-

tion”. Consider a four-electron system in a perfectly square D4h nuclear framework:

square H4, for example, or the pi-electrons in square cyclobutadiene C4H4. The

orbital energies are as sketched in Fig. 1, with a doubly degenerate HOMO set, ψa

and ψb. Two equivalent singlet configurations (determinants) are possible: |ψ2
ai and

|ψ2
bi in the figure. These interact strongly to produce the two-configuration mixtures

Ψ�:
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Ψ� ¼ 1ffiffiffi
2

p ψ2
a

�� �� ψ2
b

�� �� � ð5Þ

withΨ� being the ground state. Neither of the individual determinants, |ψ2
ai or |ψ2

bi,
is an adequate reference state. Indeed, neither has a density having even the correct

D4h symmetry of the actual ground-state density (if we constrain ourselves to real
orbitals). The actual ground-state ρ is represented by

ρ ¼ 2
XHOMO�1

i¼1

ψ2
i þ ψ2

a þ ψ2
b ð6Þ

involving occupancies other than 2 for the degenerate HOMO orbitals. In each of

ψa and ψb, there is half an electron of spin up and half an electron of spin down.

The orbital occupancies in the above example are fixed by symmetry: i.e., a

doubly degenerate HOMO level yielding two symmetry-equivalent reference con-

figurations. In general, strongly correlated systems have densities of the form

ρ ¼ 2
XHOMO�1

i¼1

ψ2
i þ 2 1� fð Þψ2

HOMO þ 2fψ2
LUMO ð7Þ

where f may have any value in the interval 0� f� 1, depending on the HOMO-

LUMO gap and the relevant interaction matrix elements. The f parameter in (7), and

the corresponding fractional occupancies in (4), must be determined variationally.

An analysis by Schipper et al. [4] of the H2 +H2 reaction is a beautiful illustra-

tion. These authors have computed accurate CI and MRCI wavefunctions at various

points on the H2 +H2 potential-energy surface and, at each geometry, have

extracted the exact Kohn–Sham potential vKS and orbitals ψ i using a robust

Kohn–Sham inversion procedure [5]. For geometries close to perfect squares

(D4h), their inversion procedure fails to converge; i.e., occupation “holes” appear

under the HOMO if single-determinant occupancies are enforced. Stable KS solu-

tions are obtained only if fractional occupancies are allowed in (7). Geometries far

from D4h admit conventional integer-occupancy KS solutions. Standard exchange-

correlation GGAs (Generalized Gradient Approximations) also produce fractional

Fig. 1 D4h Slater

determinants
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occupancies near D4h geometries, but with rather poor accuracy compared to the

exact Kohn–Sham results [4].

In this chapter, a recently developed [6, 7] strong-correlation density functional,

“B13”, is benchmarked on the Schipper et al. [4] H2 +H2 data, and also on ethylene

torsion and cyclobutadiene automerization data from Jiang et al. [8]. All three of

these are challenging avoided-crossing problems involving fractional occupancies

near their transition states. The B13 functional is reviewed in Sect. 2. Variational

optimization of B13 fractional occupancies, and reaction profiles for our three

avoided-crossing tests, are discussed in Sect. 3. Dissociation curves for the single

bonds H2 and LiH are presented in Sect. 4. Concluding remarks and future pros-

pects are discussed in Sect. 5.

2 The B13 Strong-Correlation Density Functional

In recent papers [6, 7] we have introduced a correlation-energy density functional

able to describe both moderately and strongly correlated systems. “Strong” corre-

lation arises from a small HOMO–LUMO gap, resulting in strong mixing of the

configurations

� � �ψ2
HOMOψ

0
LUMO

�� �
and � � �ψ0

HOMOψ
2
LUMO

�� � ð8Þ

as described above. The signature of strong correlation in KS-DFT is fractional
occupancies in the minimum-energy KS density (see (7)). At the same time, Janak’s
theorem [3, 9] implies that

eHOMO ¼ eLUMO ð9Þ

in any such strongly-correlated, fractionally-occupied, Kohn–Sham minimum.

Strong correlation is often discussed in the context of molecular bond dissoci-

ation; i.e., the correlation energy required to dissociate molecular bonds using spin-
restricted orbitals. Small HOMO–LUMO gaps and strong mixing of configurations

play a major role here as well. Spin-restricted dissociation of molecules implies

Fig. 2 Carbon atom spin states
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that, for all free atoms, the usual Hund’s-rule spin-polarized configuration has the

same energy as the spin-depolarized configuration obtained by replacing every

unpaired electron by half an electron of spin up and half an electron of spin down

(as sketched for the carbon atom in Fig. 2). This is a stringent test of density

functionals. Conventional GGAs fail this test [7] with errors of the order of 40 kcal/

mol in the first three rows of the periodic table. Our B13 functional, however, is

designed to capture this spin-invariance property [7] while maintaining good

performance in standard thermochemical applications.

B13 is based on exact exchange and is hence a pure correlation theory. The total
exchange-correlation energy has the form [6, 7]

EB13
XC ¼ E exact

X þ EB13
C þ ΔEB13

strong C ð10Þ

where Eexact
X is the exactly-computed Kohn–Sham (or Hartree–Fock depending on

the implementation) exchange energy, EB13
C is a sum of opposite- and parallel-spin

static and dynamical correlation potential energies:

EB13
C ¼ aoppstat CU

opp
stat C þ aparstat CU

par
stat C þ aoppdynCU

opp
dynC þ apardynCU

par
dyn C ð11Þ

and ΔEB13
strongC is a strong-correlation correction given by

ΔEB13
strong C ¼

XN
n¼2

cn

ð
xnuCd

3r: ð12Þ

To an excellent first approximation, the four prefactors in (11) are all equal to each

other with optimum value 0.62 (see Becke [6]). Nevertheless, greater accuracy can

be achieved by fitting these independently. In (12), uC is the sum of the integrands
of the four terms in (11):

uC ¼ uoppstat C þ uparstat C þ uoppdynC þ upardyn C; ð13Þ

namely the static + dynamical correlation potential-energy density, and x is the

following ratio of the static correlation potential-energy density to the total:

x ¼ uoppstat C þ uparstat C

uC
: ð14Þ

This is a reasonable, local measure of strong correlation. In atoms, where strong

correlation is insignificant, x! 0. In stretched, spin-restricted H2, on the other

hand, the quintessential case of strong correlation, x! 1. We assume that interme-

diate situations are well characterized by intermediate values of x. The cn in (12) are
polynomial expansion coefficients fit to the atomic spin-depolarization condition of

the previous paragraph.
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Our fit set in Becke [7] consisted of the “G2/97” atomization energies of

Curtiss, Raghavachari, and Pople [10] plus the spin-depolarization condition on

all open-shell atoms Z< 36, including transition metal atoms. Two terms were

deemed optimum in the strong-correlation correction, (12). The best-fit coeffi-

cients are

coppstat C ¼ 0:552 cparstat C ¼ 0:844
coppdynC ¼ 0:640 cpardyn C ¼ 0:559
c2 ¼ 0:825 c3 ¼ �0:380

ð15Þ

and these are used in the present work. Mean absolute B13 errors on the G2/97

atomization energies and the atomic spin-depolarization tests are 3.8 and 5.7 kcal/

mol, respectively [7].

It should be noted that the B13 correlation model is based on a single Slater

determinant as the reference state [6]. The model adds multi-center correlations to

single-determinantal pair densities as the starting point. How then, can B13 be

justified in fundamentally two-configuration problems such as avoided crossings?

Consider again the 50/50 mixtures at symmetric avoided-crossing transition states

[11]. Imagine replicating the system of interest by an identical system at infinite

distance from the first. The degenerate orbitals ψa and ψb on the system (A) and its

replicant (B) combine to form the degenerate “super” system orbitals

ψ super
a� ¼ 1ffiffiffi

2
p ψ A

a � ψ B
a

� �
and ψ super

b� ¼ 1ffiffiffi
2

p ψ A
b � ψ B

b

� �
: ð16Þ

Now consider the single supersystem Slater determinant with occupancy

� � �ψ super
aþ "#ð Þψ super

bþ "#ð Þ�� �
: ð17Þ

In each subsystem, this determinant places one electron in ψa (half spin-up and half

spin-down) and similarly one electron in ψb, precisely the density of (6)

corresponding to a 50/50 configuration mixture.

The more general densities of (7) can be reproduced by single Slater determi-

nants spanning supersystems of more than two replicas. Appropriate numbers of

replicants and appropriate occupations of supersystem orbitals can reproduce any
two-configuration density. Because B13 maximizes multi-center correlation, it

delivers the ground state energy corresponding to any such two-configuration

density, not an excited-state energy or an ensemble energy. Excited states supported

by the HOMO–LUMO orbitals will be studied in future work.
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3 Avoided-Crossing Reaction Curves

In Becke [11], B13 was tested on barrier heights of four symmetric avoided-

crossing reactions: H4, ethylene double-bond twisting, and double-bond

automerization in cyclobutadiene and cyclooctatetraene. At the transition states

of these reactions, there is 50/50 HOMO–LUMO mixing by symmetry. Variational

determination of fractional occupancies was not needed. In this chapter, however,

we draw full reaction curves for the first three of these reactions. Thus fractional

occupancies must be computed.

Self-consistent B13 calculations are not yet possible, though prospects for

SCF-B13 are good; see Proynov et al. [12–14] for an SCF implementation, and

Arbuznikov and Kaupp [15] for an OEP implementation of an earlier B13 variant

known as B05 [16]. Our current calculations are “post-LDA.” All total energies are

evaluated using LDA orbitals computed by the grid-based NUMOL program [17,

18]. The optimum post-LDA fractional occupancies in (7) are determined by

searching in the range 0� f� 1 for the minimum-energy f value. We adopt the

simple strategy of minimizing the energy of a three-point quadratic interpolation

with calculations performed at f¼ 0, 1/2, and 1. For comparison purposes, the same

post-LDA three-point approach is applied to the B88 [19] + PBE [20] exchange-

correlation GGA.

In our first avoided-crossing reaction, H2 +H2, we consider the nine H4 geom-

etries in Table II of Schipper et al. [4]. Each geometry is a rectangle with the longer

side denoted R and the shorter side denoted r. Table 1 lists these geometries, along

with the fractional occupancies f for “exact” Kohn–Sham, for the B88 + PBE

exchange-correlation GGA, and for B13. We find qualitative agreement between

our B88 + PBE GGA results and the B88 +LYP [21] GGA results in Schipper

et al. [4] (also recorded in Table1), but both GGA sets agree poorly with exact

Kohn–Sham. There is qualitative agreement, however, between our B13 fractional

occupancies and the exact KS values, although B13 appears to be somewhat too

strongly correlated. Note that the region of fractional occupancies near the square

Table 1 Fractional

occupancies as in (7) for the

H2 +H2 reaction

R r Exact KS B88 +LYP B88 + PBE B13

2.32 2.32 0.50 0.50 0.50 0.50

2.35 2.29 0.32 0.10 0.07 0.45

2.40 2.21 0.07 0.00 0.00 0.33

2.50 2.06 0.00 0.00 0.00 0.11

2.75 1.68 0.00 0.00 0.00 0.00

3.00 1.44 0.00 0.00 0.00 0.00

4.00 1.41 0.00 0.00 0.00 0.00

5.00 1.40 0.00 0.00 0.00 0.00

10.0 1.40 0.00 0.00 0.00 0.00

Geometry parameters R and r in bohr. Exact KS and B88 +LYP

results from Schipper et al. [4]. B88 + PBE and B13 results from

the present work
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transition state is smaller for the GGA than for exact KS and B13. The exact KS,

GGA, and B13 energy curves are plotted in Fig. 3. The energy zero for each curve is

the energy at geometry R¼ 10.0 and r¼ 1.40 bohr. The B13 reaction barrier of

141.2 kcal/mol is in fair agreement with the MRCI barrier of 147.6 kcal/mol.

Fig. 3 Reaction profile for H2 +H2

Fig. 4 Reaction profile for ethylene twist
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Our second avoided-crossing test is twisting around the double bond in ethylene.

We took MR-ccCA (Multi-Reference Correlation Consistent Composite Approach)

reference data from Jiang, Jeffrey, and Wilson [8] and have performed all calcula-

tions at the geometries specified in their paper. Figure 4 plots reference, B88 + PBE

GGA, and B13 reaction curves. Zero energy for each method is the planar ethylene

equilibrium geometry. In this case, the GGA energies always minimize at f¼ 0

(no HOMO–LUMO mixing) producing an unphysical cusp at the top of the GGA

curve. The B13 curve, on the other hand, is smooth throughout. The B13 barrier of

77.1 kcal/mol agrees better with the MR-ccCA barrier of 68.3 kcal/mol than does

the GGA barrier, 90.2 kcal/mol.

Double-bond automerization in cyclobutadiene is an especially challenging

avoided-crossing test. The reaction profile is plotted in Fig. 5, with MR-ccCA

reference data and geometries again from Jiang, Jeffrey, and Wilson [8]. Zeroes

of all curves correspond to the rectangular equilibrium geometry. The GGA curve is

cuspless in this case but has a barrier more than twice too large (21.8 kcal/mol

compared to 9.2 kcal/mol for MR-ccCA). The B13 barrier of 10.4 kcal/mol

compares quite well with the 9.2 kcal/mol MR-ccCA barrier.

4 H2 and LiH Dissociation Curves

Spin-restricted KS-DFT dissociation curves, even employing sophisticated GGA

and hybrid functionals, have asymptotes well above the exact dissociation limits.

Spin-unrestricted calculations (“UKS”) can capture the correct limits. UKS

“reaction coordinate”

∆E

kcal/mol
GGA

B13

ref

Fig. 5 Reaction profile for cyclobutadiene automerization
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computations are undesirable, however, as they break spin and space symmetries.

To the best of our knowledge, no successful spin-restricted DFT dissociation curve

has yet been reported in the literature. We therefore apply B13 to this fundamental

problem.

In Fig. 6 the H2 dissociation curve is plotted for highly accurate Hylleraas

variational reference data from Sims and Hagstrom [22] for the B88 + PBE GGA

and for B13. Fractional mixing of the σg and the σu orbitals begins at R ~ 3.4 bohr

for B13. The GGA does not mix these orbitals at all, and the GGA curve is

significantly above the exact asymptote. B13, on the other hand, exhibits a good

dissociation limit and, quite interestingly, an asymptotic f of 0.50 (computed at

R¼ 30.0 bohr), in accord with the asymptotic CI wavefunction

1ffiffiffi
2

p σ2g

���
E
� σ2u
�� �� �

: ð18Þ

That B13 is sensitive enough to mix these MOs, and with the correct mixing

fraction no less, is intriguing.

The heteronuclear dissociation of LiH is even more interesting. At large sepa-

ration, the HOMO of the system is the 1s orbital of the H atom, and the LUMO is

the 2s orbital of the Li atom. Thus the two configurations

1s2Li � HOMO2
�� �

and 1s2Li � LUMO2
�� � ð19Þ

have charges Li+H� and Li�H+ and dissociation to neutral atoms requires f¼ 0.50.

Because LDA calculations on Li� and H� are problematic, the f¼ 0 and f¼ 1

E

(a.u.)

R (bohr)

GGA

B13

ref

Fig. 6 H2 dissociation
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endpoints of the quadratic minimization are unreliable at large separations. Instead,

we scan over f values in steps of 0.05 in order to locate the energy minimum at each

internuclear separation.

We plot LiH dissociation curves for MR-CISD (Multi-Reference Configuration

Interaction with Singles and Doubles) reference data [23], the B88 + PBE GGA, and

B13 in Fig. 7. All curves are zeroed at their minimum energy. The limit of the GGA

dissociation curve is too high. The B13 curve has an excellent asymptotic energy, and

an asymptotic f (computed at R¼ 80.0 bohr) of 0.45, very close to the required 0.50.

The dissociation limit is roughly Li+0.1H�0.1, very close to neutral atoms. The manner

in which B13 captures, to a very good approximation, the correct dissociation limit of

this heteronuclear bond is fascinating. At play is a “resonance” of singlet ionic atomic

states.

5 Summary and Conclusions

This work marks the first successful application of a spin-restricted Kohn–Sham

density functional, “B13”, to two-configuration mixing problems with densities as

in (7). Moreover, B13 is exact-exchange-based. Therefore stretched radical systems

such as H2
+ and He2

+, the bane of GGA and hybrid functionals [24], are correctly

accommodated.

These calculations have been post-LDA and not self-consistent. It is difficult to

predict how self-consistency might change their nature, and what significance

would be lent to the orbital energies. Is the HOMO–LUMO mixing in H2 and

R (bohr)

∆E

kcal/mol

GGA

ref

B13

Li+ H- + Li- H+

Fig. 7 LiH dissociation
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LiH an artifact of the post-LDA approach here? Might mixing be obviated in an

SCF approach? SCF implementations of the predecessor “B05” functional have

been published [12–15]. SCF-B13 should be possible too and could be very

interesting.

In future work we will also investigate multiple bond dissociations and other

strongly-correlated reactions requiring variational optimization of one or more
mixing fractions. Low-lying excited states of strongly-correlated systems, and

how they might depend on B13 ground-state determinations, will be explored

as well.
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