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Phosphate Tethers in Natural Product

Synthesis

Paul R. Hanson, Susanthi Jayasinghe, Soma Maitra, and Jana L. Markley

Abstract Recent advances in phosphate tether-mediated natural product synthesis

are reviewed. Synthetic approaches toward dolabelide C, (�)-salicylihalimide A,

(�)-tetrahydrolipstatin, and (+)-strictifolione are included. In addition, current

efforts in method development are briefly reviewed, including a detailed study on

the effect of stereochemical complexity on the phosphate-mediated, diastereo-

selective ring-closing metathesis reaction and recent advances in multi-reaction,

one-pot sequential processes mediated by the phosphate tether. Overall, this review

seeks to highlight the utility of phosphate triesters to serve as multifunctional

tethers with protecting group and latent leaving group characteristics and the ability

to orchestrate multiple, orthogonal reaction pathways to allow for the facile syn-

thesis of complex, bioactive small molecules and their analogs.

Keywords Chemical methods � Chemoselective transformations � Cross metathe-

sis (CM) � Natural product synthesis � One-pot � Phosphate � Phosphorus-based
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methodologies
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Abbreviations

2,2-DMP Dimethoxypropane

9-BBN 9-Borabicyclo(3.3.1)nonane

BOPCl Bis(2-oxo-3-oxazolidinyl)phosphonic chloride

CH2Cl2 Dichloromethane

CM Cross metathesis

DCE 1,2-Dichloroethane

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DIAD Diisopropyl azodicarboxylate

DMAP 4-Dimethylaminopyridine

DMSO Dimethyl sulfoxide

Et3N Triethylamine

G-I Grubbs first generation catalyst [(PCy3)2(Cl)2Ru¼CHPh]

G-II Grubbs second generation catalyst [(IMesH2)(PCy3)

(Cl)2Ru¼CHPh]

HG-II Hoveyda–Grubbs second generation catalyst

LiAlH4 Lithium aluminum hydride

LiDBB Lithium di-tert-butyl biphenylide
LLS Longest linear sequence

Me2SO4 Dimethylsulfate

MeCN Acetonitrile

MES Mesityl

MOM Methoxymethyl

NaHMDS Sodium bis(trimethylsilyl)amide

NMO N-Methylmorpholine-N-oxide
o-NBSH o-Nitrobenzene sulfonyl hydrazine
PMB para-Methoxybenzyl

PPTS Pyridinium p-toluenesulfonate
RCM Ring-closing metathesis

TBAF Tetra-n-butylammonium fluoride

TBSCl tert-Butyldimethylsilyl chloride

TES Triethylsilyl

TIPS- Triisopropylsilyl-

TMS-

diazomethane

Trimethylsilyldiazomethane
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1 Introduction

Streamlining of natural product syntheses through the development of new step-,

atom-, and redox-economical methods stands at the forefront of modern-day syn-

thesis and drug discovery [1–3]. In this regard, some of the most efficient synthetic

methods are those which couple a wide array of simple, as well as complex,

chemical fragments – preferably in an iterative and manipulatable fashion – to

rapidly access key portions of a wide array of bioactive small molecules. While

silicon-based tethers are the most prevalent systems reported in the literature [4–8],

the vast majority of applications couple fragments occupying only two of the four

available valencies on the silicon atom, leaving the remaining two vacancies to

ancillary groups. The synthetic utility of multivalent phosphorus, in particular the

ability of phosphate triesters to serve as protecting groups, functional handles for

transition metal-mediated transformations, and latent leaving groups (Fig. 1)

[9–13], provides a compelling argument in favor of the use of phosphate triesters

as multifunctional tripodal tethers in the synthesis of bioactive small molecules.

Towards this goal, in 2005, Hanson and coworkers published the first use of

phosphate triesters as tripodal tethers for the synthesis of 1,3-skipped polyol-

containing bioactive small molecules (Scheme 1) [14]. Inspired by the work of

Burke and coworkers with ketal tethers [15, 16], the authors envisioned that the

tripodal coupling of a chiral, non-racemic 1,3-anti-dienediol [as shown (S,S)-1.1]
with phosphorus oxychloride and allyl alkoxide could provide a phosphate triester

[as shown (S,S)-1.2] in which three-dimensional conformation could bias the

reactivity of each olefin in the once C2-symmetric dienediol. Symmetry breaking

ring-closing metathesis, promoted by (IMesH2)(PCy3)(Cl)2Ru¼CHPh (Grubbs

second generation catalyst, G-II) [17] or Hoveyda-Grubbs second generation

catalyst (HG-II) [18–20], yields the corresponding bicyclo[4.3.1]phosphate (1.3)

as a single diastereomer. The synthesis of 1.3 was later simplified to a three-step

process, whereby dichlorodione 1.4 undergoes enantioselective hydrogenation

under Noyori conditions [21] to provide dichlorodiol (S,S)-1.2 [22]. Subsequent

olefination using Me3S
+I� ylide furnishes the desired dienediol [(S,S)-1.1], which,

upon treatment with phosphorodiamidite 1.6, oxidation with tBuOOH, and

Fig. 1 Representative reactivity profile of phosphates in organic synthesis
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diastereoselective RCM with G-II, affords bicyclo[4.3.1]phosphate 1.3 in good

overall yield.

Since this initial report, efforts have been focused on the establishment of a

reactivity profile for this bicyclo[4.3.1]phosphate system so as to fully understand

its behavior in a variety of conditions (Fig. 2) [23]. This profile includes a variety of

nucleophilic additions, stability in acidic and basic media, reductive tether removal

with lithium aluminum hydride (LiAlH4), cross metathesis with a number of olefin

cross-partners, chemoselective hydrogenation of the exocyclic olefin utilizing mild

diimide reduction conditions [24], and stereoselective SN2
0-cuprate additions to

both the original diene-containing bicyclic phosphate and the hydrogenated analog.

Several significant features of phosphate tethers continue to emerge from these

investigations, including: (1) orthogonal stability, (2) latent leaving group ability

which orchestrates selective cleavage pathways within the phosphate tether,

(3) inherent stereochemical restraints which dictate regioselective hydrogenation

and facile cross metathesis (CM), and (4) stereo- and regioselective cuprate addi-

tion into the cyclic allylic phosphate.

The ongoing investigations involving the use of multivalent phosphate tethers

have led to a series of publications and reviews [25, 26] on the application of this

methodology to the total and formal syntheses of a number of biologically active

Scheme 1 Synthesis of bicyclo[4.3.1]phosphate 1.3
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natural products and their analogs, including dolabelide C, salicylihalamide A, (�)-

tetrahydrolipstatin, and (+)-strictifolione (Fig. 3). This review highlights these

syntheses, as well as certain advances in the development of this methodology

which have allowed for the stream-lined synthesis of stereochemically complex

polyol-containing intermediates with minimal purification and multiple points of

diversification to provide facile routes for library-amenable synthesis.

2 Total Synthesis of Dolabelide C

Dolabelide C (2.1) was isolated and characterized by Yamada and coworkers in

1995, from sea hare Dolabella auricularia, and was shown to possess potent

cytotoxicity against HeLa S3 cells (IC50¼ 1.0 μg/mL) – a trait it shares with the

other members of the dolabelide family (dolabelides A–D (Dolabelides A and B

were isolated 2 years prior to the isolation of dolabelides C and D, [27]), Scheme 2)

[28]. In 2008, the first two establishments of the northern and southern fragments

toward the total synthesis of dolabelide C were published [29, 30], followed by the

first complete total synthesis of the 24-membered macrolide in 2011

[31]. Retrosynthetic analysis showed that 2.1 could be obtained through the syn-

thesis and coupling of two major fragments which could be generated from both

enantiomers of [4.3.1]-bicyclic phosphate 1.3: C1–C14 subunit 2.2 and C15–C30

subunit 2.3 (Scheme 2). The eastern portion of 2.2 could be installed via cross-

metathesis/chemoselective hydrogenation of (R,R,RP)-1.3 with the suitable type II

cross partner [32]. Subsequent Pd(0)-formate ring opening of the bicyclic phos-

phate 2.4 would provide a terminal olefin for further diversification. Subunit 2.3

could be produced via organolithium addition of vinyl iodide 2.6 to aldehyde 2.5,

which could be acquired from a series of transformations utilizing bicyclic phos-

phate intermediates 2.7 (n¼ 0, 3). In turn, intermediates 2.7 could be provided via a

chemoselective hydroboration/oxidation pathway (through the intermediate where
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n¼ 0)1 or a cross-metathesis/chemoselective hydrogenation pathway (through the

intermediate where n¼ 3) from the simple [4.3.1]-bicyclic phosphate (S,S,SP)-1.3.
The synthesis of the C1–C14 fragment of dolabelide C commenced with the

cross-metathesis of (R,R,RP)-1.3 with olefin 3.1 – which was obtained in four steps

from the corresponding TBS-protected Roche ester – in the presence of HG-II

catalyst (6 mol%) in refluxing DCE (Scheme 3) (see footnote 1; [29, 31]). The

resultant 1,2-disubstituted olefin was then hydrogenated selectively, in the presence

of the internal olefin of the bicyclic phosphate, using mild diimide reduction, which

is generated in situ from o-nitrobenzene sulfonyl hydrazine [24], affording the

Scheme 2 Retrosynthetic analysis in the total synthesis of dolabelide C

Scheme 3 Synthesis of C1–C14 fragment

1 This was the route involved in our first synthetic plans (see [30]); however, in light of the shorter

second generation synthesis of this fragment which involves a one-pot, sequential cross-metath-

esis/hydrogenation, this first route is not addressed in this review.
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desired [4.3.1]-bicyclic phosphate 2.4 in 72% yield. Subsequent transposition of the

allylic phosphate olefin under Pd(0)-formate conditions, followed by methylation

of the free phosphate with TMS-diazomethane, selectively provided intermediate

3.2 containing the desired western terminal olefin – with regioselectivity of the

opening arising from orthogonal orbital alignment within the [4.3.1]-bicyclic phos-

phate precursor [14, 29]. Phosphate removal with LiAlH4 generated diol 3.3, which,

upon treatment with 2,2-dimethoxypropane (2,2-DMP) and pyridinium

p-toluenesulfonate (PPTS), provided acetal 3.4, in 75% and 96% yields, respec-

tively. Next, ozonolysis of the terminal olefin to form the terminal aldehyde and

Grignard addition with 1-iodo-3-methylbutene yielded a 1:1 diastereomeric mix-

ture of alcohol 3.5, which was successfully converted to a single diastereomer 3.6

via a three-step sequence involving oxidation of the secondary alcohol, acetonide

deprotection with cerium trichloride heptahydrate, and directed anti-reduction of

the resultant ketone under Evans’ conditions (60% yield, 90% based on recovered

starting material, ds� 20:1) [33].

The synthesis of the C15–C30 fragment of dolabelide C was initiated using a

cross-metathesis/chemoselective hydrogenation pathway which coupled [4.3.1]-

bicyclic phosphate (S,S,SP)-1.3 and PMB-protected 4-penten-1-ol to provide the

corresponding bicyclic phosphate 4.1 in good overall yield (Scheme 4). Stereo- and

regioselective SN2
0 cuprate addition to the bicyclic phosphate (the regio- and

stereoselective nature of this SN2
0 cuprate addition can be attributed to both

electronic and steric constraints inherent to the [4.3.1]-bicyclic phosphate system;

see Scheme 4 in [14]), followed by tether removal with lithium aluminum hydride,

afforded the corresponding diol (4.2) in 91% and 92% yields, for each respective

transformation. Acetonide formation with 2,2-DMP and PPTS, followed by

dihydroxylation/reductive cleavage to form a terminal aldehyde which was reduced

to the alcohol with sodium borohydride without purification, furnished alcohol 4.3

in excellent overall yield. TBS-protection of the eastern alcohol and

PMB-deprotection of the western alcohol generated 4.4, which was successfully

converted to the desired olefin via the formation and elimination of an intermediate

iodide followed by TBS-deprotection. Oxidation of the primary alcohol under

Swern conditions [34] to the corresponding aldehyde, followed by organolithium

Scheme 4 Synthesis of C15–C30 fragment. (a) Dess–Martin periodinane, CH2Cl2, 85%; (b)

NaBH4, MeOH, 0�C, 89%
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addition of vinyl iodide 4.6 using tert-butyllithium, produced 4.7 in good yield,

albeit a 1:1 diastereomeric mixture. This stereoselectivity was increased to nearly

3:1 syn:anti via oxidation and subsequent reduction with sodium borohydride,

allowing for some recovery of material (Scheme 4).

With the syntheses of the C1–C14 and C15–C30 fragments complete, coupling

of carboxylic acid 2.2 – obtained in three steps from 3.6 – with secondary alcohol

4.7 under Yamaguchi conditions [35] provided ester 5.1 in 77% yield (Scheme 5).

Protecting group interconversion (TES to acetate), followed by acetonide and

PMB-deprotection with PPTS and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

(DDQ), furnished the macrocyclization precursor 5.3 in 73% overall yield (over

four reactions). Finally, ring-closing metathesis in the presence of the G-II catalyst

(20 mol%) afforded dolabelide C (1.1), along with the undesired Z-stereoisomer

(1:1 E:Z ), in a 24-step longest linear sequence (LLS) from commercially available

starting materials. While the authors were hoping to improve the stereoselectivity

of the final macrocyclization by varying catalyst and conditions, efforts proved

fruitless, although new and improved methods in reagent-controlled,

stereoselective macrocyclic ring-closing metathesis could provide a means of

averting loss of precious material in this final step (for recent examples of

reagent-controlled E-selective metathesis processes, see [36, 37]).

One valuable aspect of tether methodologies, particularly those whose stereo-

chemical influences impart orthogonal reactivity patterns within a functionality-

rich system, is the potential to combine multiple steps into a one-pot, single

Scheme 5 Endgame of total synthesis of dolabelide C
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purification sequence which allows for more efficient and streamlined syntheses of

complex intermediates. In 2012, Hanson and coworkers published a series of

studies on the combination of ring-closing metathesis, cross-metathesis, and

chemoselective hydrogenation into a single three-reaction, one-pot sequential

sequential process [38]. Within this study, the application of this one-pot, sequential

protocol to the C1–C14 fragment of dolabelide C was included (Scheme 6). Expo-

sure of (R,R)-1.2 to the G-II catalyst (3 mol%), followed by addition of the HG-II

catalyst (6 mol%) and olefin cross partner, would provide the corresponding di-

olefin-containing [4.3.1]-bicyclic phosphate product, which, upon treatment with

o-NBSH and triethylamine (Et3N), would afford 2.4 selectively in 30% yield (67%

average per reaction). Subsequent allylic phosphate transposition with Pd(0)-

formate, methylation of the free phosphate, and tether removal with LiAlH4

would then generate the C1–C14 fragment (trans the carboxylic acid) 3.3 in five

linear steps from the commercially available starting materials. This protocol would

also reduce the LLS of the total synthesis of dolabelide C from 24 LLS to 22 LLS.

Further investigations involving other one-pot sequential processes mediated by the

phosphate tether could potentially streamline this synthesis – and other syntheses of

complex small molecules – moving forward.

3 Formal Synthesis of (�)-Salicylihalamides A

Salicylihalamide A (7.1) was isolated from Halicona sp. by Boyd, Erickson, and

coworkers in 1997 (Scheme 7) [39, 40]. This marine macrolide was found to exhibit

potent cytotoxicity (an average 15 nM GI50) against 60 NCI human tumor cell lines

and selective inhibition of H+-ATPase (V-ATPase), with an IC50 value <1.0 nM

against bovine brain V-ATPase [41]. In 2011, Hanson and coworkers reported the

formal syntheses of salicylihalamides A and B from (R,R,RP)-bicyclo[4.3.1]phos-

phate 1.3 (Scheme 7) [42]. The synthetic route involves the construction of the core

macrocycle via a late stage esterification of the diol fragment 7.3 followed by an E-
selective RCM. Diol intermediate 7.3 could likewise be generated from bicyclic

phosphate 1.3 via chemoselective hydroboration-oxidation of the exocyclic olefin,

followed by a stereoselective SN2
0-methylcuprate addition to open the bicyclic

structure.

Scheme 6 One-pot, sequential RCM/CM/chemoselective hydrogenation route to C1–C12 of

dolabelide C
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Bicyclo(4.3.1)-phosphate (R,R,RP)-1.3 was treated with 9-borabicyclo[3.3.1]

nonane (9-BBN), followed by oxidation with sodium perborate tetrahydrate

(NaBO3•4H2O), to provide the intermediate primary alcohol as the sole product;

subsequent PMB-protection furnished the corresponding bicyclic phosphate inter-

mediate 8.1 in good overall yield (Scheme 8). Next, regio- and diastereoselective

methylcuprate addition to 8.1, followed by methylation of the resultant free phos-

phate, afforded phosphate monocycle 8.2 (75% yield, dr> 20:1) with a terminal

olefinic functional handle. Monophosphate 8.2 was then subjected to cross metath-

esis with (Z )-2-butene-1,4-diyl diacetate (8.3) to generate monophosphate 8.4 in

83% yield; subsequent regioselective, Pd-catalyzed reductive allylic transposition,

followed by phosphate removal with LiAlH4 produced diol 7.3 in excellent overall

yield. The targeted diol 7.3 was esterified by treatment with sodium bis

(trimethylsilyl)amide (NaHMDS) followed by exposure to 8.5, affording ester 8.6

as a 3.6:1 (desired:undesired) mixture of regioisomers. Gratifyingly, the other

regioisomer was successfully converted back to the starting material 7.3 for further

recycling. Finally, MOM-protection of the remaining secondary alcohol, followed

by RCM with (PCy3)2(Cl)2Ru¼CHPh (Grubbs first generation catalyst, G-I), pro-

vided macrolactone core 7.2 in 9 longest linear steps (LLS).

4 Total Synthesis of (�)-Tetrahydrolipstatin

(�)-Tetrahydrolipstatin (THL, 9.6), or, as it is more commonly known, Orlistat®, is

a stable, saturated analog of lipstatin (for information on the isolation and biological

activity of lipstatin and its analogs, see: [43–47] and references cited therein) which

Scheme 7 Retrosynthetic analysis for salicylihalamide A

Scheme 8 Synthesis of advanced intermediate 7.2
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has been used as an anti-obesity agent but has found renewed interest as a potential

anti-cancer agent because of its selective inhibition of thioesterase activity of fatty

acid synthase (FAS) in cancer cells (Scheme 9) [48, 49] (see also [50, 51] and

references cited therein). In 2010, a concise total synthesis of THL was reported

utilizing a phosphate tether-mediated, one-pot sequential, ring-closing metathesis/

cross-metathesis/chemoselective hydrogenation protocol to afford the desired bio-

active small molecule in nine steps from the readily accessible (S,S)-dienediol
1.1 [22].

Prepared in three steps from (S,S)-dienediol 1.1, phosphate triene (S,S)-1.2 was

transformed into [4.3.1]-bicyclic phosphate 9.1 via the aforementioned RCM/CM/

chemoselective hydrogenation protocol. Treatment with the G-II catalyst (3 mol%),

followed by the addition of HG-II catalyst (10 mol%) and 1-undecene, provided the

intermediate diene-containing bicyclic phosphate, which could be converted to 9.1

via selective olefin hydrogenation under mild diimide reduction conditions in 40%

yield (75% average per reaction). Subsequent stereoselective SN2
0 cuprate addition of

n-hexyllithium, directed by the concave nature of the bicyclic phosphate 9.1,

followed by methylation of the free phosphate, furnished phosphate-containing 9.2

in 65% yield over two steps. Phosphate removal with LiAlH4 and chemoselective

protection of the more sterically accessible alcohol with TIPS-triflate generated

olefinic alcohol 9.3 in good yield. Ozonolysis of the terminal C–C double bond to

generate a terminal aldehyde, followed by oxidation under Pinnick conditions [52],

produced carboxylic acid 9.4 in 93% yield over two steps. β-Lactonization using bis

(2-oxo-3-oxazolidinyl)phosphonic chloride (BOPCl) and subsequent TIPS-

deprotection with HF•pyridine yielded β-lactone 9.5, which, under exposure to

N-formyl leucine and Mitsunobu conditions developed by Schneider [53], afforded

(�)-tetrahydrolipstatin (9.6) in 94% yield.

Scheme 9 Total synthesis of (�)-tetrahydrolipstatin
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5 Phosphate Tether-Mediated One-Pot, Sequential

Processes to Functionalized Polyols

In 2012, Hanson and coworkers developed a three-reaction, one-pot sequential

methodology involving RCM, CM, and chemoselective hydrogenation, without

intermediate isolation, to facilitate the efficient synthesis of complex and diverse

polyol fragments [38]. In this protocol, phosphate triene [as shown (R,R)-1.2]
would be treated with catalytic HG-II (6 mol%), in the presence of

1,4-benzoquinone additive, to facilitate a diastereotopic ring-closing metathesis

reaction (Scheme 10). Upon completion of the RCM, the solvent (CH2Cl2) was

evaporated, and CH2Cl2 or 1,2-dichloroethane, an olefin cross-partner, and addi-

tional catalyst were added to the crude reaction mixture to promote cross-

metathesis with the terminal olefin of the resultant bicyclic phosphate and provide

substituted intermediates 10.1.2 After the completion of CM, chemoselective

diimide reduction (utilizing o-NBSH) was performed to generate hydrogenated

CM bicyclic phosphates 10.2 in good to excellent overall yield (40%–85%, 74%–

95% average per reaction). The observed chemoselectivity presumably arises from

the deactivated nature of the endocyclic olefin, as well as steric constraints within

the bicyclic structure – characteristics innate to the phosphate tether which allow

for a certain amount of orthogonal reactivity between the two olefins. The terminal

olefin of the initial intermediate bicyclic phosphate, which shows nearly type III

[32] olefin behavior in CM reaction, readily undergoes cross-metathesis with a

variety of type I and type II olefin cross partners, including those containing free

alcohols (10.2a), electron-withdrawing groups (10.2b), and steric bulk (10.2c). In

addition, stereochemically-rich cross-partners could allow for the facile synthesis

of more complex bicyclic phosphate intermediates (10.2d, as well as the application

to C1–C14 of dolabelide C), which could prove useful in the simple and efficient

synthesis of polyol-containing bioactive small molecules.

In 2013, Hanson and coworkers reported a detailed study to investigate the effect

of ring-size, stereochemistry, and substitution in the context of RCM reactions to

provide bicyclo[n.3.1]phosphate tether systems (Scheme 11) [54]. In this study, a

series of phosphate tethered trienes were synthesized via the tripodal coupling of

different 1,3-anti diene diols (11.1), allylic (11.2) and homoallylic alcohol partners

(11.3) with phosphorus oxychloride (P(O)Cl3). Various bicyclo[n.3.1]phosphates
(11.4–11.8) were obtained in good to moderate yields, highlighting the potential of

phosphate tethers to mediate the coupling of stereochemically rich alcohols.

For seven- to nine-membered ring systems, exclusive Z-selectivity was observed

(11.4–11.7), while the ten-membered ring formations were highly E-selective (11.8).
More importantly, with respect to the eight-membered ring formation, the allylic

methyl substitution played a significant role in dictating which of the diastereo-

meric trienes SM 5.9 would participate in RCM (Scheme 12). When treated with

2 It was observed that the inclusion of CuI, as well as freeze-degas-thawed solvents, increased the

yield of cross-metathesis, as well as contributed to an overall cleaner reaction as observed by TLC.
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Scheme 10 RCM/CM/chemoselective hydrogenation protocols to functionalized bicyclic

phosphates
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G-II, the 1:1 mixture of diastereomeric trienes 12.2 provided bicyclic phosphate

12.3 as a single diastereomer, along with diastereomerically enriched unreacted

starting material. Product formation was rationalized according to the favored

transition state 12.4, in which the RuLn-metallocyclobutane and adjacent methyl

group were trans to each other, with the larger of the two (the metallocyclobutane)

exocyclic with respect to the newly formed bicyclic phosphate. This double

diastereotopic differentiation via kinetic resolution by RCM could prove useful in

the selective synthesis of stereochemically rich polyol-containing intermediates but

also currently presents a limitation and a challenge to the scope of molecules which

can be acquired via this specific protocol. Taken collectively, the RCM study

demonstrated the utility of phosphate tether in synthesizing complex systems with

high diastereoselectivity and also facilitated our understanding of the underlying

factors governing RCM for such complex systems.

Building upon the previous two studies described above, in 2014, Hanson and

coworkers united the idea of coupling stereochemically rich fragments with

one-pot, sequential processes to synthesize a variety of polyol scaffolds by phos-

phate tether-mediated one/two-pot sequential methods (Scheme 13) [55]. The

strategy relies on the order of addition of the alcohol partners for tripodal coupling

and the cross metathesis steps, thereby generating scaffolds bearing differentiated

olefinic ends. Thus, pseudo-C2-symmetric monophosphate (S,S)-12.1 was coupled

separately with allylic alcohol 13.1 and homoallylic alcohol 13.2, yielding two

different trienes, 13.3 and 13.4, respectively. Triene 13.3 was subjected to RCM

and subsequent CM with homoallylic alcohol 13.2, followed by chemoselective

hydrogenation in the presence of o-NBSH (ortho-nitrobenzenesulfonylhydrazide),
produced bicyclic phosphate intermediate (not shown in the scheme). Upon tether

removal of the resulting bicyclic phosphate intermediate, polyol 13.5 was obtained

in an overall yield of 26% over four reactions performed in a two-pot sequence

(71% avg/rxn). Similarly, triene 13.4 was subjected to the same two-pot protocol to

Scheme 13 General reaction conditions: RCM – HG-II (3 mol%), 1,2-DCE/CH2Cl2, 2 h; CM –

HG-II (3 mol%), CH2Cl2, CM partner (3–5 equiv.); LAH reduction – LiAlH4 (2–4 equiv.), THF,

0�C, 2 h; chemoselective H2 – o-NBSH (12 equiv.), CH2Cl2, Et3N, overnight; global H2 – o-NBSH
(20 equiv.), CH2Cl2, Et3N, overnight
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furnish polyol 13.6 in an overall yield of 24% over four reactions performed in a

two-pot sequence (70% avg/rxn).

Next, triene 13.3 was subjected to RCM, CM with homoallylic alcohol 13.2, and

subsequent tether removal with LAH to produce polyol 13.7, bearing both (Z )- and
(E)-configured olefins, in an overall yield of 35% over three reactions (70%

avg/rxn) in a one-pot sequence. Following a similar one-pot protocol, polyol 13.8

was generated from triene 13.4 in an overall yield of 35% over three reactions (70%

avg/rxn). Starting from triene 13.4, a one-pot sequential RCM/CM/LAH and global

hydrogenation, in the presence of excess o-NBSH, furnished polyol 13.9 in an

overall yield of 26% in two pots over four reactions (72% avg/rxn). The same

polyol 13.9 was obtained from triene 13.3 following similar reaction sequences.

Importantly, this study highlighted that stereochemically enriched polyol scaffolds

bearing both (Z )- and (E)-olefinic geometries – which would otherwise be difficult

to produce via (Z)- and (E)-selective CM of 1,3-anti diol subunits with olefinic

partners – can be generated via phosphate tether-mediated one-/two-pot reaction

protocols which minimize the time and effort spent on individual purification steps.

6 Total Synthesis of (+)-Strictifolione

In 2013, Hanson and co-workers reported a library-amenable, “pot-economical”

synthetic approach utilizing two consecutive, phosphate tether-mediated, one-pot

sequential processes and a cross metathesis reaction to afford two antifungal natural

products, (+)-strictifolione (14.4, Scheme 14) and (6R)-6[(E,4R,6R)-4,6-dihydroxy-
10-phenyl-1-decenyl]-5,6-dihydro-2H-2-pyrone (15.3, Scheme 15), in good yield

Scheme 14 Total synthesis of (+)-strictifolione via P-tether mediated, one-pot sequential

protocols
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with minimal purification [56]. Exposure of phosphate triene (R,R)-1.2 to one-pot,

sequential RCM/CM/chemoselective hydrogenation conditions, similar to those

described above [38], with olefin cross-partner cis-stilbene, provided bicyclic

phosphate 14.1 in 52% overall yield (81% avg/rxn). Subsequent allylic transposi-

tion under Pd(0)-formate conditions, in situ methylation of the resultant free

phosphate with dimethylsulfate [Me2SO4], and phosphate tether removal with

LiAlH4 furnished differentiated diol 14.2 in a single, high yielding purification

step (65% overall yield, 87% avg/rxn). Finally, cross-metathesis of diol 14.3 with

lactone 14.4, prepared in five steps according to via the Jacobsen protocol [57–59],

afforded (+)-strictifolione (14.4) in 77% yield and excellent E-selectivity. This
three-pot concise route generated the desired natural product in 26% overall yield

from (R,R)-1.2 and provides an efficient, scalable, and library-amenable approach

to strictifolione, as the protocol allows for easy diversification of the western and

eastern portions of the molecule through simple modification of cross-metathesis

cross partners.

Similarly, the total synthesis of (6R)-6[(E,4R,6R)-4,6-dihydroxy-10-phenyl-1-
decenyl]-5,6-dihydro-2H-2-pyrone (15.3) was accomplished following the three-

pot protocol utilized in the total synthesis of (+)-strictifolione. Exposure of phos-

phate triene (S,S)-1.2 to RCM/CM/chemoselective hydrogenation conditions with

olefin cross-partner phenyl-but-1-ene provided bicyclic phosphate 15.1 in 54%

overall yield (82% avg/rxn). Next, one-pot Pd-catalyzed allylic transposition, in

situ methylation of the resultant free phosphate, and reductive removal of the

phosphate tether, followed by cross metathesis with 14.3, afforded the desired

natural product (15.3) and good overall yield. Notably, this streamlined modular

approach takes full advantage of orthogonal protecting- and leaving-group proper-

ties innate to the phosphate tether to eliminate the protecting group manipulations

which – though often unavoidable – decrease the atom economy and simplicity of a

straightforward synthesis.

7 Conclusions

The use of multivalent phosphate tethers, which couple both simple and complex

alcohol fragments, has proven to be a valuable tool in the synthesis of

stereochemically rich, polyol-containing bioactive small molecules. Moreover,

the ability of the phosphate tether to mediate multiple orthogonal reaction

Scheme 15 Total synthesis of 15.3 via P-tether mediated, one-pot sequential protocols
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sequences in a single purification step highlights its synthetic utility in the

streamlining of routes toward both simple and complex intermediates, while pro-

viding facile means for the synthesis of analog libraries. Hopefully, as the under-

standing of these orthogonal reactivity patterns innate to the phosphate tether

deepens, the potential of this method to simplify the synthesis of complex natural

products and their analogs will incite other researchers to view these tethers as

profitable complements to more established silicon counterparts.
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